English
新闻公告
More
化学进展 2015, Vol. 27 Issue (12): 1754-1763 DOI: 10.7536/PC150542 前一篇   后一篇

• 综述与评论 •

非富勒烯类有机小分子受体材料

宋成杰1,2, 王二静1,2*, 董兵海1,2*, 王世敏1,2   

  1. 1. 有机化工新材料湖北省协同创新中心 武汉 43006;
    2. 湖北大学材料科学与工程学院 功能材料绿色制备与应用教育部重点实验室 武汉 430062
  • 收稿日期:2015-05-01 修回日期:2015-07-01 出版日期:2015-12-15 发布日期:2015-09-17
  • 通讯作者: 王二静, 董兵海 E-mail:wangej@hubu.edu.cn;wwwdbh@163.com
  • 基金资助:
    国家自然科学基金项目(No.21402045),湖北省科技厅创新群体项目(No.2013CFA005)和武汉市科技局应用基础项目(No.2013010501010140)资助

Non-Fullerene Organic Small Molecule Acceptor Materials

Song Chengjie1,2, Wang Erjing1,2*, Dong Binghai1,2*, Wang Shimin1,2   

  1. 1. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan 43006;
    2. Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
  • Received:2015-05-01 Revised:2015-07-01 Online:2015-12-15 Published:2015-09-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21402045), the Foundation of Science and Technology Department of Hubei Province for Innovative Research Groups (No. 2013CFA005) and the Wuhan Science and Technology Bureau of Hubei Province of China (No. 2013010501010140).
富勒烯及其衍生物因具有多维电荷传输特性和与给体材料形成独特的相分离结构等特点,在有机光伏领域占据主导地位。然而,富勒烯类受体材料本身也有一些难以克服的缺点,如可见光范围内吸收能力弱、修饰困难、成本高等,进而限制了器件性能的提高和规模化使用。非富勒烯类小分子受体材料的研究引起越来越多的重视。研究者可借助丰富的化学手段,设计合成出具有特定聚集态形貌和优异性能的有机小分子及其寡聚物。本文总结了近几年关于苝四甲酰二亚胺类、吡咯并吡咯二酮类、苯并噻二唑类等几类性能相对优异的非富勒烯类有机小分子受体材料的最新研究进展,从分子结构上对其性能进行了剖析,对高性能受体材料的设计合成具有一定的指导意义。最后,讨论了提高非富勒烯类有机小分子受体材料器件性能的主要因素及其研究前景。
Endowed with high charge transporting capabilities and formation of unique phase-separated microstructure, fullerenes and their derivatives have been playing a predominant role as electron acceptor in bulk hetero-junction devices. However, they also suffer from unconquerable drawbacks, such as poor absorption in visible light region, difficult modification and high cost, which limit the performance improvement and scalable application of organic solar cells. More interests are focused on the non-fullerene small-molecule acceptors. It is reasonable to regulate the molecular energy levels of non-fullerene materials through diversiform chemical approaches, especially for small organic molecules and their oligomers. And electron acceptors with specific aggregated-state morphologies and excellent properties could be accessible by virtue of diverse synthetic methods. In the review, the recent advances on non-fullerene acceptors are summarized with outstanding performance for solution-processed bulk-heterojunction solar cells. These non-fullerene acceptors mainly consist of perylenetetracarboxylic diimide acceptors including its monomers, dimers and quasi-3D-structured acceptors, diketopyrrolopyrrole acceptors, benzothiadiazole-based acceptors, as well as other miscellaneous high-performance small-molecule acceptors. The performance of these acceptors is analyzed from the view of molecular structures and their matching with the related donors. Finally, critical challenges that influence photovoltaic performance and the perspectives of small-molecule acceptors are discussed and addressed.

Contents
1 Introduction
2 High-performance small molecule acceptors for organic solar cells
2.1 Perylenetetracarboxylic diimide-based acceptors
2.2 Diketopyrrolopyrrole-based acceptors
2.3 Benzothiadiazole-based acceptors
2.4 Other small molecule acceptors
3 Conclusion and outlook

中图分类号: 

()
[1] Gueymard C A. Solar Energy, 2004, 76: 423.
[2] He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat. Photonics, 2012, 6: 591.
[3] Mazzio K A, Luscombe C K. Chem. Soc. Rev., 2015, 44: 78.
[4] Etxebarria I, Ajuria J, Pacios R. Org. Electron., 2015, 19: 34.
[5] Lin Y, Li Y, Zhan X. Chem. Soc. Rev., 2012, 41: 4245.
[6] Søndergaard R, Hösel M, Angmo D, Larsen-Olsen T T, Krebs F C. Mater. Today, 2012, 15: 36.
[7] Tang C W. Appl. Phys. Lett., 1986, 48: 183.
[8] He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell T P, Cao Y. Nat. Photonics, 2015, 6: 174.
[9] bin Mohd Yusoff A R, Kim D, Kim H P, Shneider F K, da Silva W J, Jang J. Energy Environ. Sci., 2015, 8: 303.
[10] 杨正龙(Yang Z L), 卜戈龙(Bo G L), 陈秋云(Chen Q X). 化学进展(Progress in Chemistry), 2011, 23(12): 2607.
[11] Mihailetchi V D, Xie H X, de Boer B, L. Koster L J A, Blom P W M. Adv. Funct. Mater., 2006, 16: 699.
[12] Liu T, Troisi A. Adv. Mater., 2013, 25: 1038.
[13] Li C Z, Chang C Y, Zang Y, Ju H X, Chueh C C, Liang P W, Cho M, Giner D S, Jen A K Y. Adv. Mater., 2014, 26: 6262.
[14] Yan H, Chen Z, Zheng Y, Newman C, Quinn J R, Dotz F,Kastler M, Facchetti A. Nature, 2009, 457: 679.
[15] Scharber M C, Mühlbacher S, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J. Adv. Mater., 2006, 18: 789.
[16] Lin Y, Zhan X. Mater. Horiz., 2014, 1: 470.
[17] Zhan C, DQ L A. Curr. Org. Chem., 2011, 15: 1314.
[18] Delgado M C R, Kim E G, da Silva D A, Bredas J L. J. Am. Chem. Soc., 2010, 132: 3375.
[19] Zhao Y, Guo Y, Liu Y. Adv. Mater., 2013, 25: 5372.
[20] Schmidt R, Oh J H, Sun Y S, Deppisch M, Krause A M, Radacki K, Braunschweig H, Könemann M, Erk P, Bao Z N, Würthner F. J. Am. Chem. Soc., 2009, 131: 6215.
[21] Würthner F. Chem. Commun., 2004, 14: 1564.
[22] 王洪宇(Wang H Y), 彭波(Peng B), 韦玮(Wei W). 化学进展(Progress in Chemistry), 2008, 20 (11): 1751.
[23] Erten S, Meghdadi F, Gunes S, Koeppe R, Sariciftci N S, Icli S. J. Appl. Phys., 2006, 36: 225.
[24] Shivanna R, Shoaee S, Dimitrov S, Kandappa S K, Rajaram S, Durrant J R, Narayan K S. Energy Environ. Sci., 2014, 7: 435.
[25] Wang J, Yao Y, Dai S, Zhang X, Wang W, He Q, Han L, Lin Y, Zhan X. J. Mater. Chem. A, 2015, 3: 13000.
[26] Lin Y, Wang J, Dai S, Li Y, Zhu D, Zhan X. Adv. Energy Mater., 2014, 4: 1400420.
[27] Zhong Y, Trinh M T, Chen R, Wang W, Khlyabich P P, Kumar B, Xu Q, Nam C Y, Sfeir M Y, Black C, Steigerwald M L, Loo Y L, Xiao S, Ng F, Zhu X Y, Nuckolls C. J. Am. Chem. Soc., 2014, 136: 15215.
[28] Zhao J, Li Y, Lin H, Liu Y, Jiang K, Mu C, Ma T, Lai J Y L, Yan H. Energy Environ. Sci., 2015, 8: 520.
[29] Lin Y, Wang Y, Wang J, Hou J, Li Y, Zhu D, Zhan X. Adv. Mater., 2014, 26: 5137.
[30] Liu S Y, Wu C H, Li C Z, Liu S Q, Wei K H, Chen H Z, Jen A K Y. Adv. Sci., 2015, 1500014.
[31] Liu Y, Mu C, Jiang K, Zhao J, Li Y, Zhang L, Li Z, Lai J Y L, Hu H, Ma T, Hu R, Yu D, Huang X, Tang B Z, Yan H. Adv. Mater., 2015, 27: 1015.
[32] Hartnett P E, Timalsina A, Matte H R, Zhou N, Guo X, Zhao W, Facchetti A, Chang R H, Hersam M C, Wasielewski M R, Marks T J. J. Am. Chem. Soc., 2014, 136: 16345.
[33] Cai Y, Huo L, Sun X, Wei D, Tang M, Sun Y. Adv. Energy Mater., 2015, 5: 150032.
[34] Zhan X, Facchetti A, Barlow S, Marks T J, Ratner M A, Wasielewski M R, Mader S R. Adv. Mater., 2011, 23: 268.
[35] Anthony J E, Facchetti A, Heeney M, Mader S R, Zhan X. Adv. Mater., 2010, 22: 3876.
[36] Lee J, Han A R, Yu H, Shin T J, Yang C, Oh J H. J. Am. Chem. Soc., 2013, 135: 9540.
[37] Fu L, Fu W, Cheng P, Xie Z, Fan C, Shi M, Ling J, Hou J, Zhan X, Chen H. J. Mater. Chem. A, 2014, 2: 6589.
[38] Sonar P, Ng G M, Lin T T, Dodabalapur A, Chen Z K. J. Mater. Chem., 2010, 20: 3626.
[39] Lin Y, Cheng P, Li Y, Zhan X. Chem. Commun., 2012, 48: 4773.
[40] Lin Y, Li Y, Zhan X. Adv. Energy Mater., 2013, 3: 724.
[41] Raynor A M, Gupta A, Patil H, Bilic A, Bhosale S V. RSC Adv., 2014, 4: 57635.
[42] Patil H, Zu W X, Gupta A, Chellappan V, Bilic A, Sonar P, Rananaware A, Bhosale S V. Phys. Chem. Chem. Phys., 2014, 16: 23837.
[43] Shi H, Fu W, Shi M, Ling J, Chen H. J. Mater. Chem. A, 2015, 3: 1902.
[44] Woo C H, Holcombe T W, Unruh D A, Sellinger A, Fréchet J M J. Chem. Mater., 2010, 22: 1673.
[45] Bloking J T, Han X, Higgs A T, Kastrop J P, Pandey L, Norton J E, Risko C, Chen C E, Brédas J L, Sellinger A. Chem. Mater., 2011, 23: 5484.
[46] Chen L, Huang L, Yang D, Ma S, Zhou X, Zhang J, Tu G, Li C. J. Mater. Chem. A, 2014, 2: 2657.
[47] Douglas J D, Chen M S, Niskala J R, Lee O P, Yiu A T, Young E P, Fréchet J M. Adv. Mater., 2014, 26: 4313.
[48] Holliday S, Ashraf R S, Nielsen C B, Kirkus M, Röhr J A, Tan C H, Collado-Fregoso E, Knall A C, Durrant J R, Nelson J, McCulloch I. J. Am. Chem. Soc., 2015, 137: 898.
[49] Ebenhoch B, Prasetya N B, Rotello V M, Cooke G, Samuel I D. J. Mater. Chem. A, 2015, 3: 7345.
[50] Mao Z, Senevirathna W, Liao J Y, Gu J, Kesava S V, Guo C, Gomez E D, Sauvé G. Adv. Mater., 2014, 26: 6290.
[51] Li H, Earmme T, Ren G, Saeki A, Yoshikaw S, Murari N M, Subramaniyan S, Crane M J, Shu S, Jenekhe S A. J. Am. Chem. Soc., 2014, 136: 14589.
[52] Kwon O K, Park J H, Kim D W, Park S K. Adv. Mater., 2015, 27: 1951.
[53] Lin Y, Zhang Z, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X. J. Mater. Chem. A, 2015, 3: 1910.
[54] Lin Y, Wang J, Zhang Z, Bai H, Li Y, Zhu D, Zhan X. Adv. Mater., 2015, 27: 1170.
[1] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[2] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[3] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[4] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[5] 康建喜, 王世荣, 孙孟娜, 刘红丽, 李祥高. 体异质结型聚合物太阳能电池中的微观形貌调控方法[J]. 化学进展, 2017, 29(4): 400-411.
[6] 吴阳, 王再禹, 孟向毅, 马伟. 同步辐射共振软X射线散射对有机太阳能电池中活性层形貌的解析[J]. 化学进展, 2017, 29(1): 93-101.
[7] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[8] 王克让. 基于芳香分子-糖类手性超分子组装体及功能[J]. 化学进展, 2015, 27(6): 775-784.
[9] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
[10] 关丽, 张晓远, 孙福强, 姜月, 钟一平, 刘平. 齐聚噻吩及其衍生物有机光伏材料[J]. 化学进展, 2015, 27(10): 1435-1447.
[11] 赖衍帮, 丁益民, 王洪宇. 苯并[1,2-b:4,5-b’]二噻吩的结构修饰及在有机光伏材料中的应用[J]. 化学进展, 2014, 26(10): 1673-1689.
[12] 蒋邦平, 郭东升, 刘育*. 苝酰亚胺和大环化合物的超分子组装[J]. 化学进展, 2013, 25(06): 869-880.
[13] 王维, 周铭露, 梁露英, 王文*, 凌启淡*. 多功能可交联材料在聚合物太阳能电池中的应用[J]. 化学进展, 2013, 25(0203): 350-362.
[14] 汤雅芸, 梅群波, 徐志杰, 凌启淡. 卟啉化合物在有机染料敏化太阳能电池中的研究[J]. 化学进展, 2011, 23(9): 1915-1928.
[15] 高玉荣, 马廷丽. 体异质结型聚合物太阳电池[J]. 化学进展, 2011, 23(5): 991-1013.
阅读次数
全文


摘要

非富勒烯类有机小分子受体材料