English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1291-1301 DOI: 10.7536/PC150106 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池有机正极材料

陈军*, 丁能文, 李之峰, 张骞, 钟盛文*   

  1. 江西理工大学材料科学与工程学院 赣州 341000
  • 收稿日期:2015-01-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 陈军, 钟盛文 E-mail:chenjun@iccas.ac.cn;zhongshw@126.com
  • 基金资助:
    国家自然科学基金项目(No. E0210)和江西理工大学人才引进基金项目(No.3402228077)资助

Organic Cathode Material for Lithium Ion Battery

Chen Jun*, Ding Nengwen, Li Zhifeng, Zhang Qian, Zhong Shengwen*   

  1. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Received:2015-01-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. E0210) and the Talent Found of Jiangxi University of Science and Technology (No.3402228077).
随着储能电源和电动汽车的迅猛发展,开发高能量密度的锂离子电池成为研究的重点之一。锂离子电池性能的提高很大程度上取决于正极材料的特性。目前,广泛使用的无机正极材料普遍存在容量提升有限、生产过程消耗能源大、存在安全隐患和成本高等缺陷。因此,需要开发比容量更高、安全性更好和在自然界中储量更为丰富的绿色能源材料。与无机正极材料相比,有机物正极材料具有理论比容量高、原料丰富、环境友好、结构可设计性强和体系安全的优点,是一类具有广泛应用前景的储能物质。本文综述了目前国内外已经开展的研究工作,介绍了作为锂离子正极材料的几类主要的有机化合物,包括导电高分子聚合物、含硫化合物、氮氧自由基化合物和含氧共轭化合物等;对比分析了这些化合物的电化学性能、电化学反应机理及其具备的优势和存在的不足;指出了有机化合物作为锂离子正极材料需要解决的问题及今后研究和改进方向。
With the rapid development of energy storage power supply and electric cars, development of high energy density for lithium ion battery becomes focus of the future study. The performance of lithium ion battery greatly depends on the cathode materials. At present, there are some defects in widely used inorganic cathode materials such as limited capacity upgrade space, large energy consumption for production process, existence of security risks, etc. Therefore, it is necessary to develop green energy materials with higher specific capacity, better safety performance and abundant reserves in nature. Compared with inorganic cathode materials, organic cathode material is a kind of energy storage material with broad application prospects due to the advantages of high theoretical capacity, abundant resources, environmental friendness, structure design easily and system security. This paper summarizes the researches which have been carried out at home and abroad recent years. Several main kinds of organic cathode materials including conductive polymer, sulfur compounds, nitrogen oxygen free radical compounds and containing oxygen conjugated compounds are introduced. The electrochemical properties, electrochemical reaction mechanism, advantages and disadvantages of these compounds are compared and analyzed. Through the analysis and prospects for the future, the problems need to be solved for cathode materials of lithium ion battery are pointed out, and the future direction for research and improvement of organic cathode materials is proposed.

Contents
1 Introduction
2 Organic conductive polymer cathode materials
3 Organic sulfide cathode materials
4 Organic containing oxygen cathode materials
5 Conclusion and prospect

中图分类号: 

()
[1] 冯瑞(Feng R), 王立纬(Wang L J), 吕之阳(Lyu Z Y), 吴强(Wu Q), 杨立军(Yang L J), 王喜章(Wang X Z), 胡征(Hu Z). 化学学报(Acta Chimica Sinica), 2014, 72: 653.
[2] Scrosati B, Hassoun J, Sun Y. Energy Environ. Sci., 2011, 4: 3287.
[3] Goodenough J B, Kim Y. Chem. Mater., 2010, 22: 587.
[4] 赵磊 (Zhao L), 王维坤(Wang W K), 王安邦(Wang A B), 余仲宝(Yu Z B), 陈实(Chen S), 杨裕生(Yang Y H). 化学进展(Progress in Chemistry), 2010, 22 (12): 2268.
[5] Liang Y L, Tao Z L, Chen J. Adv. Energy Mater., 2012, 2: 742.
[6] 王运灿(Wang Y C), 罗琳(Luo L), 刘钰(Liu Y), 郝建原(Hao J Y). 化工进展(Chemical Industry and Engineering Progress), 2013, 32 (1): 134.
[7] 王诗文(Wang S W), 陶占良(Tao Z L), 陈军(Chen J). 科学通报(Chin. Sci. Bull. (Chin. Ver.)), 2013, 58 (31): 3132.
[8] Zang L X, Liu Z H, Cui G L, Chen L Q. Progress in Polymer Science, 2015, 43: 136.
[9] Novoak P, Muller K, Santhanam S V, Hass O. Chem. Rev., 1997, 97: 207.
[10] Sahin Y, Pekmez K, Yildiz A. Synthetic Metals, 2002, 129 (2): 117.
[11] Fujii M, Kushida K, Ihori H. Thin Solid Films, 2003, (438/439): 356.
[12] Yang D H, Gao Z Q. Synthetic Metals, 2000, 108 (2): 89.
[13] Karami H, Mousavi M F, Shamsipur M. Journal of Power Sources, 2003, 124 (1): 303.
[14] Gemeay A H, Nishiyama H, Kuwabata S. J. Electrochem. Soc., 1995, 142 (12): 4190.
[15] Johansson T, Mammo W, Svensson M. J. Mater. Chem., 2003, 13: 1316.
[16] 任丽(Ren L). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2006.
[17] Ren L, Cheng G X, Zhu C E, Gao L X. Polymer Materials Science and Engineering, 2006, 22 (1), 222.
[18] Kang S G, Kim K M, Park N G, Ryu K S, Chang S H. Journal of Power Sources, 2004, 133 (2): 263.
[19] Fedorkova A, Wiemhofer H D, Orinakova D, Orinak A, Stan M C. Journal of Solid State Electrochemistry, 2009, 13 (12): 1867.
[20] Naoi K, Inouey K K. J. Electrochem. Soc., 1997, 144 (6): 170.
[21] Chu M Y. 1998, US 5814420.
[22] Pope J M, Sato T, Shoji E, Oyama N, White K C, Buttry D A. J. Electrochem. Soc., 2002, 149(7), 939.
[23] 张敬华(Zhang J H), 张永生(Zhang Y S), 郑绵平(Zheng M P), 其鲁(Qi L), 冯波(Feng B), 李立(Li L). 物理化学学报(Acta. Phys. Chim. Sin.), 2007, 23(supp): 51.
[24] Henderson J C, Kiya Y, Hutchison G R, Abruna H D. J. Phys. Chem. C, 2008, 112 (10): 3989.
[25] Kiya Y, Iwata A, Sarukawa T, Henderson J C, Abruna H D. J. Power Source, 2007, 173: 522.
[26] Chi T Y, Li H, Li X. W, Bao H, Wang G C. Electrochim. Acta, 2013, 96: 206.
[27] Canobre S C, Almeida D A, Fonseca C P, Neves S. Electrochem. Acta, 2009, 54 (26): 6383.
[28] Jin L F, Wang G C, Li X W, Li L B. J. Appl. Electrochem., 2011, 41 (4): 377.
[29] Park J E, Park S G, Koukitu A, Hatozaki O, Oyama N. Synth. Met., 2004, 140 (2/3): 121.
[30] Wang G C, Jin L F, Ye J K, Li X W. Mater. Chem. Phys., 2010, 122 (1): 224.
[31] 迟婷玉(Chi T Y), 李涵(Li H), 王庚超(Wang G C). 物理化学学报(Acta Phys. Chim. Sin.), 2013, 29 (9): 1981.
[32] Naio K, Kawase K, Mori M, Komiyama M. Electrochem. Soc., 1997, 144 (6): 173.
[33] Uemachi H, Iwasa Y, Mitani T. Electrochimica. Acta, 2001, 46 (15): 2305.
[34] Gorkovenko A, Skotheim T A. 2001, WO 99/33130.
[35] Chen H, Armand M, Demailly G, Dolhem F, Poizot P. J. M. Tarascon, ChemSusChem., 2008, 1 (4): 348.
[36] Reddy A L M, Nagarajan S, Chumyim P. Sci. Rep., 2012, 2: 960.
[37] Zeng R H, Li X P, Qiu Y C. Electrochem. Commun., 2010, 12: 1253.
[38] Liang Y L, Zhang P, Chen J. Chem. Sci., 2013, 4: 1330.
[39] Liang Y L, Zhang P, Yang S Q. Adv. Energy. Mater., 2013, 3: 600.
[40] 王维坤(Wang W K), 张勇勇(Zhang Y Y), 王安邦(Wang A B), 余仲宝(Yu Z B), 韩敏芳(Han M F), 杨裕生(Yang Y S). 物理化学学报(Acta Phys. Chim. Sin.), 2010, 26 (1): 47.
[41] 张勇勇(Zhang Y Y), 王维坤(Wang W K), 王安邦(Wang A B), 徐仲宝(Yu Z B), 韩敏芳(Han M F). 第15届全国电化学会议(长春)(15th National Conference on Electrochemistry (Changchun)), 2009. B-P33.
[42] Boschi T, Pappa R, Pistoia G, Tocci M. Journal of Electro-analytical Chemistry, 1984, 176(1/2): 235.
[43] Yao M, Senoh H, Sakai T. Int. J. Electrochem. Sci., 2011, 6: 2905.
[44] Geng J Q, Bonnet J P, Renault S. Angew. Chem. Int. Ed., 2010, 49: 8444.
[45] Tobishima S, Yamaki J, Yamaji A. J. Electrochem. Soc., 1984, 131 (1): 57.
[46] 崔月芝(Cui Y Z), 华寿南(Hua S N). 山东师范大学学报(自然科学版)(Journal of Shandong Normal University (Nature Science)), 2000, 15 (2): 157.
[47] Bu P, Liu S Q, Lu Y. Int. J. Electrochem. Sci., 2012, 7: 4617. K, Wang A B. J. Electrochem.Soc., 2011, 158: 991.
[48] Zhao L, Wang W K, Wang A B. J. Electrochem.Soc., 2011,158: 991.
[49] Genorio B, Pirnat K, Cerc-Korosec R. Angew Chem. Int. Ed., 2010, 49: 7222.
[50] Luo C, Huang R M, Kevorkyants R, Pavanello M, He H X, Wang C S. Nano Lett., 2014, 14: 1596.
[51] Chen H Y, Armand M, Courty M. J. Am. Chem. Soc., 2009, 131: 8984.
[52] Wang S W, Wang L J, Zhang K, Zhu Z Q, Tao Z L, Chen J. Nano. Lett., 2013, 13: 4404.
[53] Armand M, Grugeon S, Vezin H. Nat. Mater., 2009, 8: 120.
[54] Renault S, Brandell D, Gustafsson T. Chem. Commun., 2013, 49: 1945.
[55] Ste'ven R, Geng J Q, Dolhem F. Chem. Commun., 2011, 47: 2414.
[56] Kim D J, Je S H, Sampath S. RSC Adv., 2012, 2: 7968.
[57] Gall L T, Reiman K H, Grossel M C. J. Power Sources, 2003, 119: 316.
[58] Nokami T, Matsuo T, Inatomi Y, Hojo N, Tsukagoshi T, Shimizu A, Kuramoto H, Komae K, Tswyama H, Yoshida J. J. Am. Chem. Soc., 2012, 134: 19694.
[59] Pham M C, Piro B, Bazzaoni E A, Hedayatulla C, Novak P, Haas O. Synthetic Metals, 1998, 92(3): 197.
[60] 唐致远(Tang Z P), 徐国祥(Xu G X). 物理化学学报(Acta Phys. Chim. Sin.), 2003, 19: 307.
[61] Song Z P, Zhan H, Zhou Y H. Chem. Commun., 2009, 448.
[62] Liu K, Zheng J M, Zhong G M. J. Mater. Chem., 2011, 21: 4125.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 颜廷义, 张光耀, 喻琨, 李梦洁, 曲丽君, 张学记. 基于智能手机的即时检测[J]. 化学进展, 2022, 34(4): 884-897.
[4] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[5] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[6] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[7] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[8] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[9] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[10] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[11] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[12] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[13] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[14] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[15] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
阅读次数
全文


摘要

锂离子电池有机正极材料