English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 492-502 DOI: 10.7536/PC141038 前一篇   后一篇

• 综述与评价 •

光敏化铱配合物三线态材料

王栋东*1, 董化2, 雷小丽3, 于跃2, 焦博2, 吴朝新*2   

  1. 1. 西安交通大学理学院应用化学系 西安 710049;
    2. 西安交通大学电子与信息工程学院 西安 710049;
    3. 西安邮电大学理学院 西安 710121
  • 收稿日期:2014-10-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 王栋东, 吴朝新 E-mail:ddwang@mail.xjtu.edu.cn;zhaoxinwu@mail.xjtu.edu.cn
  • 基金资助:
    中央高校基本科研业务费和陕西省博士后基金资助

Iridium Complexes for Triplet Photosensitizer

Wang Dongdong*1, Dong Hua2, Lei Xiaoli3, Yu Yue2, Jiao Bo2, Wu Zhaoxin*2   

  1. 1. Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China;
    2. School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
    3. School of Science, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
  • Received:2014-10-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the Fundamental Research Funds for the Central Universities and Shaanxi Postdoctoral Science Foundation.
铱配合物由于高的激发单线态到三线态的量子转化效率和可调节的三线态寿命,近年来在三线态光敏化应用领域备受瞩目.科学家们就调控铱配合物发光波长和发光量子效率已建立起有效的分子设计策略和原则,但对如何调控铱配合物的可见光吸光响应,三线态量子产率和寿命等光敏化应用要求的重要光物理参数的相关探索并不多,相应的分子设计策略和原则远未建立.本文介绍了铱配合物与光敏化过程相关的光物理特征,改进铱配合物可见光吸收性能、调控三线态量子产率和寿命的分子设计策略,综述了铱配合物近年来应用于染料敏化太阳能电池、三线态-三线态湮灭能量上转化和光裂解水制氢的研究进展,梳理了铱配合物分子结构与光敏化性能之间的部分关联关系.
More concerns to iridium complexes are recently put on light-harvesting applications due to its fast spin-orbital coupling and long triplet lifetimes. The strategies and rules on how to tune the emission energy and improve emission efficiency of the iridium complexes are well established after active investigations in the past two decades. However, the knowledge on how to extend the absorption response of the iridium complexes toward lower energy of the visible region, and improve quantum yields and lifetimes of the excited triplet state by rational molecular design are still deficiency for scientists. Meanwhile, these parameters are crucial important for iridium complexes to be efficient photosensitizer. In this review, the general photophysical process of the iridium complex, the developed strategies/rules for tuning the absorption properties,triplet lifetimes and quantum yield of the iridium complexes are discussed. The relationships between the molecular structure of the iridium complexes and their photophyscial characteristics related to photosensitization behavior are elucidated. Also the recent development of the dye-sensitized solar cells, triplet-triplet annihilation energy upconversion, and photoinduced hydrogen production using iridium complexes as photosensitizer are reviewed.
Contents
1 Introduction
2 The photophysical characteristics of the iridium complexes and their regulation
2.1 The photophysics of the iridium complexes
2.2 The basic rules for improving absorption capacity of the iridium complexes in visible-light region
2.3 The management of triplet lifetime of the iridium complex
3 Applications of the iridium complex
3.1 Dye-sensitized solar cells
3.2 Triplet-triplet annihilation energy upconversion
3.3 Photoinduced hydrogen production
4 Conclusion

中图分类号: 

()
[1] Baranoff E, Yum J H, Graetzel M, Nazeeruddin M K. J. Organomet. Chem., 2009, 694: 2661.
[2] You Y, Nam W. Chem. Soc. Rev., 2012, 41: 7061.
[3] Zhao J Z, Wu W H, Sun J F, Guo S. Chem. Soc. Rev., 2013, 42: 5323.
[4] Yan Q F, Fan Y P, Zhao D H. Macromolecules, 2012, 45: 133.
[5] Schwartz K R, Chitta R, Bohnsack J N, Ceckanowicz D J, Miro P, Cramer C J, Mann K R. Inorg. Chem., 2012, 51: 5082.
[6] Sun J F, Wu W H, Zhao J Z. Chem. Eur. J., 2012, 18: 8100.
[7] Sun J F, Zhong F F, Yi X Y, Zhao J Z. Inorg. Chem., 2013, 52: 6299.
[8] Sun J F, Zhong F F, Zhao J Z. Dalton Trans., 2013, 42: 9595.
[9] Yi X Y, Zhang C S, Guo S, Ma J, Zhao J Z. Dalton Trans., 2014, 43: 1672.
[10] Sun J F, Wu W H, Guo H M, Zhao J Z. Eur. J. Inorg. Chem., 2011: 3165.
[11] Ma L H, Guo H M, Li Q T, Guo S, Zhao J Z. Dalton Trans., 2012, 41: 10680.
[12] Yi X Y, Yang P, Huang D D, Zhao J Z. Dyes Pigment., 2013, 96: 104.
[13] Hasan K, Zysman-Colman E. Inorg. Chem., 2012, 51: 12560.
[14] Takizawa S Y, Shimada K, Sato Y, Murata S. Inorg. Chem., 2014, 53: 2983.
[15] Gao R M, Ho D G, Hernandez B, Selke M, Murphy D, Djurovich P I, Thompson M E. J. Am. Chem. Soc., 2002, 124: 14828.
[16] Djurovich P I, Murphy D, Thompson M E, Hernandez B, Gao R, Hunt P L, Selke M. Dalton Trans., 2007, 3763.
[17] Mayo E I, Kilsa K, Tirrell T, Djurovich P I, Tamayo A, Thompson M E, Lewis N S, Gray H B. Photochem. Photobiol. Sci., 2006, 5: 871.
[18] Ning Z J, Zhang Q, Wu W J, Tian H. J. Organomet. Chem., 2009, 694: 2705.
[19] Shinpuku Y, Inui F, Nakai M, Nakabayashi Y. J. Photochem. Photobiol. A Chem., 2011, 222: 203.
[20] Yuan Y J, Zhang J Y, Yu Z T, Feng J Y, Luo W J, Ye J H, Zou Z G. Inorg. Chem., 2012, 51: 4123.
[21] Dragonetti C, Valore A, Colombo A, Righetto S, Trifiletti V. Inorg. Chim. Acta, 2012, 388: 163.
[22] Paulose B, Rayabarapu D K, Duan J P, Cheng C H. Adv. Mater., 2004, 16: 2003.
[23] Rayabarapu D K, Paulose B, Duan J P, Cheng C H. Adv. Mater., 2005, 17: 349.
[24] Kang D M, Kang J W, Park J W, Jung S O, Lee S H, Park H D, Kim Y H, Shin S C, Kim J J, Kwon S K. Adv. Mater., 2008, 20: 2003.
[25] Wang D D, Wu Y, Dong H, Qin Z X, Zhao D, Yu Y, Zhou G J, Jiao B, Wu Z X, Gao M, Wang G. Org. Electron., 2013, 14: 3297.
[26] Wang D D, Wu Y, Jiao B, Dong H, Zhou G J, Wang G, Wu Z X. Org. Electron., 2013, 14: 2233.
[27] Wang D D, Dong H, Zhang X Y, Wu Y, Shen S H, Jiao B, Wu Z X, Gao M, Wang G. Sci. China Chem., 2014, doi: 10.1007/s11426-014-5212-x.
[28] Wang D D, Dong H, Wu Y, Yu Y, Zhou G J, Li L, Wu Z X, Gao M, Wang G. J. Organomet. Chem., 2015, 775: 55.
[29] Baldo M A, Lamansky S, Burrows P E, Thompson M E, Forrest S R. Appl. Phys. Lett., 1999, 75: 4.
[30] Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee H E, Adachi C, Burrows P E, Forrest S R, Thompson M E. J. Am. Chem. Soc., 2001, 123: 4304.
[31] Hay P J. J. Phys. Chem. A, 2002, 106: 1634.
[32] Tang K C, Liu K L, Chen I C. Chem. Phys. Lett., 2004, 386: 437.
[33] Zhao W, Castellano F N. J. Phys. Chem. A, 2006, 110: 11440.
[34] Peng J, Jiang X P, Guo X Y, Zhao D H, Ma Y G. Chem. Commun., 2014, 50: 3.
[35] Goldsmith J I, Hudson W R, Lowry M S, Anderson T H, Bernhard S. J. Am. Chem. Soc., 2005, 127: 7502.
[36] Whang D R, Sakai K, Park S Y. Angew. Chem. Int. Edit., 2013, 52: 11612.
[37] Yu Z T, Yuan Y J, Cai J G, Zou Z G. Chem. Eur. J., 2013, 19: 1303.
[38] Yuan Y J, Yu Z T, Gao H L, Zou Z G, Zheng C, Huang W. Chem. Eur. J., 2013, 19: 6340.
[39] Jasimuddin S, Yamada T, Fukuju K, Otsuki J, Sakai K. Chem. Commun., 2010, 46: 8466.
[40] DiSalle B F, Bernhard S. J. Am. Chem. Soc., 2011, 133: 11819.
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[3] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[4] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[5] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
[6] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[7] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[8] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[9] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[10] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[11] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[12] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[13] 王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 界面钝化策略:提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.
[14] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[15] 许頔, 沈沪江*, 袁慧慧, 王炜, 解俊杰. 聚(3,4-乙撑二氧噻吩)基电极材料:制备、改性及在电子器件中的应用[J]. 化学进展, 2018, 30(2/3): 252-271.
阅读次数
全文


摘要

光敏化铱配合物三线态材料