English
新闻公告
More
化学进展 2015, Vol. 27 Issue (6): 625-632 DOI: 10.7536/PC141036 前一篇   后一篇

• 超分子化学专辑 •

基于外壁作用的瓜环基超分子配位聚合物

祝黔江, 薛赛凤, 陶朱*   

  1. 贵州大学 贵州省大环化学及超分子化学重点实验室 贵阳 550025
  • 收稿日期:2014-10-01 修回日期:2014-11-01 出版日期:2015-06-15 发布日期:2015-03-23
  • 通讯作者: 陶朱 E-mail:gzutao@263.net
  • 基金资助:
    国家自然科学基金项目(No.21272045)资助

Supramolecular Coordination Polymers Based on the Outer-Surface Interaction of Cucurbit [n] urils

Zhu Qianjiang, Xue Saifeng, Tao Zhu*   

  1. Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
  • Received:2014-10-01 Revised:2014-11-01 Online:2015-06-15 Published:2015-03-23
  • Contact: 10.7536/PC141036 E-mail:gzutao@263.net
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21272045).
利用瓜环外壁的结构导向作用设计并构筑瓜环-金属离子超分子配位聚合物可能成为瓜环配位化学研究的一个新方向。根据瓜环外壁作用类型,研究内容包括:1) 瓜环外壁取代烷基推电子效应对瓜环基超分子配位聚合物形成的促进作用;2) 瓜环外壁与化合物芳环的相互作用对瓜环基超分子配位聚合物形成的促进作用;3) 瓜环外壁与无机阴离子的相互作用对瓜环基超分子配位聚合物形成的促进作用;4) 瓜环外壁取代羟基的配位作用对瓜环基超分子配位聚合物形成的促进作用。这些瓜环基超分子配位聚合物可能具有吸附捕集、分离提纯和分析等功能性质。
A series of supramolecular polymers based on direct coordination of metal ions to the cucurbit[n] urils with the aid of the outer-surface interactions of cucurbit[n] urils could become a new branch in Q s-based coordination chemistry. According to the characteristics of the outer-surface interactions of cucurbit[n] urils, they can be catalogued in: 1) electrodonating effect of the alkyl-substituted groups on the outer-surface of cucurbit[n] urils; 2) interactions between methine or methylene moieties on the outer-surface of cucurbit[n] urils and aromatic moiety of organic structure directing agents; 3) interactions between methine or methylene moieties on the outer-surface of cucurbit[n] urils as well as ion-dipole interactions between positive portal carbonyl carbon of cucurbit[n] urils and chloride anion from polychlorometallate anions; 4) coordination interaction between hydroxyl groups on the outer-surface of cucurbit[n] urils with metal ions. Based on the characteristics of the supramolecular coordination polymers, they have potential applications in the fields, such as absorption, analysis, separation, isolation, and so on.

Contents
1 Introduction
2 Typical outer-surface interactions of cucurbit[n]urils resulting in the formation of Q[n]s-based coordination polymers
2.1 Electrodonating effect of the alkyl-substituted groups on the outer-surface of cucurbit[n]urils
2.2 π…π stacking between portal carbonyl groups of cucurbit[n]uril as well as C—H…π interaction between methine or methylene moieties on the outer-surface of cucurbit[n]urils and aromatic moiety of organic structure directing agents
2.3 Unusual hydrogen bonding between methine or methylene moieties on the outer-surface of cucurbit[n]urils as well as ion-dipole interactions between positive portal carbonyl carbon of cucurbit[n]urils and chloride anion from polychlorometallate anions
2.4 Coordination interaction between hydroxyl groups on the outer-surface of cucurbit[n]urils with metal ions
3 Potential applications of the supramolecular coordination polymers
4 Conclusion and outlook

中图分类号: 

()
[1] Wang F, Han C Y, He C L, Zhou Q Z, Zhang J Q, Wang C, Li N, Huang F H. J. Am. Chem. Soc., 2008, 130: 11254.
[2] Zhang Z B, Luo Y, Chen J Z, Dong S Y, Yu Y H, Ma Z, Huang F H. Angew. Chem. Int. Ed., 2011, 50: 1397.
[3] Dong S Y, Luo Y, Yan X Z, Zheng B, Ding X, Yu Y H, Ma Z, Zhao Q L, Huang F H. Angew. Chem. Int. Ed., 2011, 50: 1905.
[4] Yan X Z, Xu D H, Chi X D, Chen J Z, Dong S Y, Ding X, Yu Y H, Huang F H. Adv. Mater., 2012, 24, 362.
[5] Kuehl C J, Kryschenko Y K, Radhakrishnan U, Seidel S R, Huang S D, Stang P J. Proc.Natl.Acad.Sci.U.S.A., 2002, 99: 4932.
[6] Kim H J, Kim T, Lee L. Acc. Chem. Res., 2011, 44: 72.
[7] Sanchez C, Arribart H, Guille M M G. Nature Mat., 2005, 4: 277.
[8] Orme C A, Noy A, Wierzbicki A, McBride M T, Grantham M, Teng H H, Dove P M, DeYoreo J J. Nature, 2001, 411: 775.
[9] Dong S Y, Zheng B, Xu D H, Yan X Z, Zhang M M, Huang F H. Adv. Mater., 2012, 24, 3191.
[10] Zhang M M, Xu D H, Yan X Z, Chen J Z, Dong S Y, Zheng B, Huang F H. Angew. Chem. Int. Ed., 2012, 51: 7011.
[11] Ji X F, Yao Y, Li J Y, Yan X Z, Huang F H. J. Am. Chem. Soc., 2013, 135: 74.
[12] Freeman W A, Mock W L, Shih N Y. J. Am. Chem. Soc., 1981, 103: 7367.
[13] Day A I, Arnold A P. WO 0068232 2000, 8.
[14] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2000, 122: 540.
[15] Day A I, Blanch R J, Arnold A P, Lorenzo S, Lewis G R, Dance I A. Angew. Chem. Int. Ed., 2002, 41: 275.
[16] Cheng X J, Liang L L, Chen K, Ji N N, Xiao X, Zhang J X, Zhang Y Q, Xue S F, Zhu Q J, Ni X L, Tao Z. Angew. Chem. Int. Ed., 2013, 52: 7252.
[17] Ni X L, Xiao X, Cong H, Zhu Q J, Xue S F, Tao Z. Acc. Chem. Res., 2014, 47: 1386.
[18] Kim K. Chem. Soc. Rev., 2002, 31: 96.
[19] Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed., 2005, 44: 4844.
[20] Masson E, Ling X X, Joseph R, Kyeremeh-Mensah L, Lu X Y. RSC Adv., 2012, 2: 1213.
[21] Sokolov M N, Dybtsev D N, Fedin V P. Russ. Chem. Bull. Int. Ed., 2003, 52: 1041.
[22] Gerasko A, Sokolov M N, Fedin V P. Pure Appl. Chem., 2004, 76: 1633.
[23] Fedin V P. Russ. J. Coord. Chem., 2004, 30: 151.
[24] Ni X L, Xiao X, Cong H, Liang L L, Chen K, Cheng X J, Ji N N, Zhu Q J, Xue S F, Tao Z. Chem. Soc. Rev., 2013, 42: 9480.
[25] Zhang F, Yajima T, Li Y Z, Xu G Z, Chen H L, Liu Q T, Yamauchi O. Angew. Chem. Int. Ed., 2005, 44: 3402.
[26] Fang X K, Kogerler P, Isaacs L, Uchida S, Mizuno N. J. Am. Chem. Soc., 2009, 131: 432.
[27] Hoffmann F, Cornelius M, Morell J, Froba M. Angew. Chem. Int. Ed., 2006, 45: 3216.
[28] Lu Y. Angew. Chem. Int. Ed., 2006, 45: 7664.
[29] Ni X L, Lin J X, Zheng Y Y, Wu W S, Zhang Y Q, Xue S F, Zhu Q J, Tao Z, Day A I. Cryst. Growth Des., 2008, 8: 3446.
[30] Li Z F, Wu F, Zhou F G, Ni X L, Feng X, Xiao X, Zhang Y Q, Xue S F, Zhu Q J, Lindoy L F, Clegg J K, Tao Z, Wei G. Cryst. Growth Des., 2010, 10: 5113.
[31] Li Z F, Liang L L, Wu F, Zhou F G, Ni X L, Feng X, Xiao X, Zhang Y Q, Xue S F, Zhu Q J, Clegg J K, Tao Z, Lindoy L F, Wei G. CrystEngComm, 2013, 15: 1994.
[32] Feng X, Du H, Chen K, Xiao X, Luo S X, Xue S F, Zhang Y Q, Zhu Q J, Tao Z, Zhang X Y, Gang W. Cryst. Growth Des., 2010, 10: 2901.
[33] Feng X, Chen K, Zhang Y Q, Xue S F, Zhu Q J, Tao Z, Day A I. CrystEngComm, 2011, 13: 5049.
[34] Chen K, Liang L L, Liu H J, Zhang Y Q, Xue S F, Tao Z, Xiao X, Zhu Q J, Lindoy L F, Wei G. CrystEngComm, 2012, 14: 7994.
[35] Chen K, Hu Y F, Xiao X, Xue S F, Tao Z, Zhang Y Q, Zhu Q J, Liu J X. RSC Adv., 2012, 2: 3217.
[36] Liang L L, Ni X L, Zhao Y, Chen K, Xiao X, Zhang Y Q, Redshaw C, Zhu Q J, Xue S F, Tao Z. Inorg. Chem., 2013, 52: 1909.
[37] Liang L L, Zhao Y, Chen K, Xiao X, Clegg J K, Zhang Y Q, Tao Z, Xue S F, Zhu Q J, Wei G. Polymers, 2013, 5: 418.
[38] Liang L L, Zhao Y, Zhang Y Q, Tao Z, Xue S F, Zhu Q J, Liu J X. CrystEngComm, 2013, 15: 3943.
[39] Zhao Y, Liang L L, Chen K, Zhang T, Xiao X, Zhang Y Q, Tao Z, Xue S F, Zhu Q J. CrystEngComm, 2013, 15: 7987.
[40] Xiao X, Tao Z, Xue S F, Zhang Y Q, Zhu Q J, Liu J X, Wei G. CrystEngComm, 2011, 13: 3794.
[41] Jon S Y, Selvapalam N, Oh D H, Kang J K, Kim S Y, Jeon Y J, Lee J W, Kim K. J. Am. Chem. Soc., 2003, 125: 10186.
[42] Zhao Y, Liang L L, Chen K, Ji N N, Cheng X J, Xiao X, Zhang Y Q, Xue S F, Zhu Q J, Dong N, Tao Z. Dalton Trans., 2014, 43: 929.
[1] 贾盈盈, 李洋, 周瑞莎, 宋江锋. 咪唑二羧酸及其衍生物构筑配合物的研究进展[J]. 化学进展, 2016, 28(4): 482-496.
[2] 付艳艳, 严秀平*. 金属-有机骨架复合材料[J]. 化学进展, 2013, 25(0203): 221-232.
[3] 孙文艳 王灯旭 来庆玲 张洁 冯圣玉. 官能化硅烷及其配位化合物的研究[J]. 化学进展, 2010, 22(0203): 400-405.
[4] 杜淼 卜显和. 向高功能发展的配位聚合物*[J]. 化学进展, 2009, 21(11): 2458-2464.
[5] 陈玉婷,徐辉,窦建民,李大成. 氮杂金属冠醚的研究进展[J]. 化学进展, 2008, 20(11): 1666-1674.
[6] 杨勇 沈泓滢 邢航 潘毅 白俊峰 . 微孔配位聚合物作为新型储氢材料的研究[J]. 化学进展, 2006, 18(05): 648-656.
[7] 魏文英,方键,孔海宁,韩金玉,常贺英. 金属有机骨架材料的合成及应用[J]. 化学进展, 2005, 17(06): 1110-1115.