English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 1977-1986 DOI: 10.7536/PC140728 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

DNA甲基化电化学分析

杨引1, 樊梦醒2, 郭智慧1, 张卉*1, 吴萍1, 蔡称心1   

  1. 1. 江苏省新型动力电池重点实验室 南京师范大学化学与材料科学学院 南京 210023;
    2. 南京邮电大学信息材料与纳米技术研究院 南京 210023
  • 收稿日期:2014-07-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 张卉 E-mail:zhangh@njnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.221175067, 21273117, 21375063, 21335004)、江苏省高校自然科学研究项目(No.13KJB150024)、江苏省高校优秀科技创新团队项目和江苏省高校优势学科建设工程资助项目资助

Electrochemical Analysis for DNA Methylation

Yang Yin1, Fan Mengxing2, Guo Zhihui1, Zhang Hui*1, Wu Ping1, Cai Chenxin1   

  1. 1. Jiangsu Key Laboratory of New Power Batteries, College of Chemical and Materials Science, Nanjing Normal University, Nanjing 210023, China;
    2. Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
  • Received:2014-07-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21175067, 21273117, 21375063, 21335004), the Foundation of the Jiangsu Education Committee (No.13KJB150024), the Program for Outstanding Innovation Research Team of Universities in Jiangsu Province, and the Priority Academic Program Development of Jiangsu Higher Education Institutions

DNA甲基化是目前研究最多的DNA表观遗传修饰之一.大量研究表明,DNA甲基化会引起DNA结构、稳定性以及DNA与蛋白质相互作用方式的改变,从而影响基因表达,进而引起多种神经退行性疾病、免疫系统疾病甚至癌症.因此,发展简易、灵敏、准确、可靠的方法进行DNA甲基化的分析是至关重要的.本文简单介绍了DNA甲基化的分析方法,重点综述了DNA甲基化的电化学分析方法,并对DNA甲基化的研究前景进行了展望.

DNA methylation, which refers to methyltransferases (MTases)-catalyzed covalent addition of a methyl group to adenine or cytosine residues in the specific DNA sequence, is one of the hottest research areas on epigenetic modification of genomic DNA. According to numerous studies, DNA methylation may cause the change of DNA structure, stability and interaction mode between DNA and protein, thus affecting gene expression, which may lead to many neurodegenerative diseases, immune system diseases and even cancer. Therefore, development of sensitive, selective, simple, and economical methods for DNA methylation determination is highly required. With increasing progress in the methylation studies, a series of detecting techniques has been developed to match various requirements of methylation studies. All of these study methods can be divided into four groups: genome-wide methylation extent analysis, gene-specific methylation analysis, methylation transferase activity analysis and new methylated sites screening. Among these methods, electrochemical techniques have been widely used for DNA methylation determination and MTases activity. Here we briefly review the detection of DNA methylation. Then more detail in the work on the electrochemical method are described, including direct electrochemical analysis methods, indirect electrochemical analysis methods, electrogenerated chemiluminescence methods and photoelectrochemical methods. In the end, the prospects of DNA methylation analysis are introduced.

Contents
1 Introduction
2 Analysis methods for DNA methylation
3 Electrochemical analysis methods for DNA methylation
3.1 Direct electrochemical analysis methods for DNA methylation
3.2 Indirect electrochemical analysis methods for DNA methylation
3.3 Electrogenerated chemiluminescence methods for analysis of DNA methylation
3.4 Photoelectrochemical methods for analysis of DNA methylation
4 Conclusion

中图分类号: 

()

[1] Stains C I, Furman J L, Segal D J, Ghosh I. J. Am. Chem. Soc., 2006, 128: 9761.
[2] Wu C T, Morris J R. Science, 2001, 293: 1103.
[3] Bird A P. Nature, 1986, 321: 209.
[4] Cooper D N, Krawczak M. Hum. Genet., 1989, 83: 181.
[5] Ushijima T. Nat. Rev. Cancer, 2005, 5: 223.
[6] Carvalho A L, Jerenimo C, Kim M M, Henrique R, Zhang Z, Hoque M O, Chang S, Brait M, Nayak C S, Jiang W W, Claybourne Q, Tokumaru Y, Lee J, Goldenberg D, Garrentt M E, Goodman S, Moon C, Koch W, Westra W H, Sidransky D, Califano J A. Clin. Cancer Res., 2008, 14: 97.
[7] Wilson A S, Power B E, Molloy P L. Biochim. Biophys. Acta, 2007, 1775: 138.
[8] Torres A L, Barrientos E Y, Wrobel K, Wrobel K. Anal. Chem., 2011, 83: 7999.
[9] De Prins S, Koppen G, Jacobs G, Dons E, van de Mieroop E, Nelen V, Fierens F, Int Panis L, De Boever P, Cox B, Nawrot T S, Schoeters G. Environ. Int., 2013, 59: 418.
[10] Poloni A, Goteri G, Zizzi A, Serrani F, Trappolini S, Costantini B, Mariani M, Olivieri A, Catarini M, Centurioni R, Alesiani F, Giantomassi F, Stramazzotti D, Biagetti S, Alfonsi S, Berardinelli E, Leoni P. Eur. J. Haematol., 2013, 91: 219.
[11] Fraga M F, Uriol E, Borja Diego L, Berdasco M, Esteller M, Cañal M J, Rodríguez R. Electrophoresis, 2002, 23: 1677.
[12] 张敏(Zhang M), 汪国生(Wang G S), 陈伟(Chen W), 汪云敏(Wang Y M), 李向培(Li X P), 阚明(Kan M), 何晓东(He X D). 实用医学杂志(The Journal of Practical Medicine), 2009, 25: 889.
[13] Ge Z J, Luo S M, Lin F, Liang Q X, Huang L, Wei Y C, Hou Y, Han Z M, Schatten H, Sun Q Y. Environ. Health. Persp., 2014, 122: 159.
[14] Hsu S H, Motiwala T, Roy S, Claus R, Mustafa M, Plass C, Freitas M A, Ghoshal K, Jacob S T. J. Cell. Biochem., 2013, 114: 1810.
[15] Lee D H, Tran D A, Singh P, Oates N, Rivas G E, Larson G P, Pfeifer G P, SzabóP E. Epigenetics, 2011, 6: 212.
[16] Yang W T, Zheng P S. PloS One, 2014, 9: e88827.
[17] Hu J, Zhang C Y. Biosens. Bioelectron., 2012, 31: 451.
[18] Barhoumi A, Halas N J. J. Phys. Chem. Lett., 2011, 2: 3118.
[19] Liu X, Clements A, Zhao K H, Marmorstein R. J. Biol. Chem., 2006, 281: 578.
[20] Yokoyama S, Kitamoto S, Yamada N, Houjou I, Sugai T, Nakamura S, Arisaka Y, Takaori K, Higashi M, Yonezawa S. BMC Cancer, 2012, 12: 67.
[21] Juhl-Christensen C, Ommen H B, Aggerholm A, Lausen B, Kjeldsen E, Hasle H, Hokland P. Pediatric Blood & Cancer, 2012, 58: 525.
[22] Valls-Bautista C, Bougel S, Piñol-Felis C, Viñas-Salas J, Benhattar J. Oncol. Lett., 2011, 2: 1257.
[23] Pan S, Xu J, Shu Y, Wang F, Xia W, Ding Q, Xu T, Zhao C, Zhang M, Huang P. Biosens. Bioelectron., 2010, 26: 850.
[24] Carrascosa L G, Ibn Sina A, Palanisamy R, Sepulveda B, Otte M A, Rauf S, Shiddiky M J A,Trau M. Chem. Commun., 2014, 50: 3585.
[25] López C M R, Asenjo B G, Lioyd A J, Wilkinson M J. Anal. Chem., 2010, 82: 9100.
[26] Jacquin E, Baraquin A, Ramanah R, Carcopino X, Morel A,Valmary D S, Bravo I G, de Sanjosé S, Riethmuller D, Mougin C, Prétet J L. J. Clin. Microbiol., 2013, 51: 3207.
[27] Laszlo A H, Derrington I M, Brinkerhoff H, Langford K W, Nova I C, Samson J M, Bartlett J J, Pavlenok M, Gundlach J H. Proc. Natl. Acad. Sci. U.S.A., 2013, 110: 18904.
[28] Ferapontova E E. Electrochim. Acta, 2004, 49: 1751.
[29] Yan F, Chen J, Ju H X. Electrochem. Commun., 2007, 9: 293.
[30] Goncalves L M, Batchelor-McAuley C, Barros A A, Compton R G. J. Phys. Chem. C, 2010, 114: 14213.
[31] Halliwell B, Gutteridge J M C, Free Radicals in Biology and Medicine, third ed. New York: Oxford University Press, 1999.
[32] Tanaka K, Tainaka K, Kamei T, Okamoto A. J. Am. Chem. Soc., 2007, 129: 5612.
[33] Kato D, Sekioka N, Ueda A, Kurita R, Hirono S, Suzuki K, Niwa O. J. Am. Chem. Soc., 2008, 130: 3716.
[34] Goto K, Kato D, Sekioka N, Ueda A, Hirono S, Niwa O. Anal. Biochem., 2010, 405: 59.
[35] Kato D, Goto K, Fujii S, Takatsu A, Hirono S, Niwa O. Anal. Chem., 2011, 83: 7595.
[36] Wang P, Mai Z B, Dai Z, Zou X Y. Chem. Commun., 2010, 46: 7781.
[37] Wang P, Chen H, Tian J, Dai Z, Zou X Y. Biosens. Bioelectron., 2013, 45: 34.
[38] Meng X M, Xu Z N, Wang M, Yin H S, Ai S Y. Electrochim. Acta, 2013, 95: 200.
[39] Zheng X X, Wang L S. Electroanalysis, 2013, 25: 1697.
[40] Khulan B, Thompson R F, Ye K, Ye K, Fazzari M J, Suzuki M, Stasiek E, Figueroa M E, Glass J L, Chen Q, Montagan C, Hatchwell E, Selzer R R, Richmond T A, Green R D, Melnick A, Greally J M. Genome Res., 2006, 16: 1046.
[41] Ordway J M, Bedell J A, Citek R W, Nunberg A, Garrido A, Kendall R, Stevens J R, Cao D, Doerge R W, Korshunova Y, Holemon H, McPherson J D, Lakey N, Leon J, Martienssen R A, Jeddeloh J A. Carcino Genesis, 2006, 27: 2409.
[42] Dai Z, Hu X, Wu H, Zou X Y. Chem. Commun., 2012, 48: 1769.
[43] Su J, He X X, Wang Y H, Wang K, Chen Z F, Yan G P. Biosens. Bioelectron., 2012, 36: 123.
[44] Wei X F, Ma X M, Sun J J, Lin Z Y, Guo L H, Qiu B, Chen G N. Anal. Chem., 2014, 86: 3563.
[45] Muren N B, Barton J K. J. Am. Chem. Soc., 2013, 135: 16632.
[46] Xu Z N, Wang M, Zhou T T, Yin H S, Ai S Y. Sens. Actuators. B, 2013, 178: 412.
[47] Wang G L, Zhou L Y, Luo H Q, Li N B. Anal. Chim. Acta, 2013, 768: 76.
[48] He X X, Su J, Wang Y H, Wang K M, Ni X Q, Chen Z F. Biosens. Bioelectron., 2011, 28: 298.
[49] Wang Y H, He X X, Wang K M, Su J, Chen Z F, Yan G P, Du Y D. Biosens. Bioelectron., 2013, 41: 238.
[50] Wu H W, Liu S C, Jiang J H, Shen G L, Yu R Q. Chem. Commun., 2012, 48: 6280.
[51] Deng H M, Yang X J, Yeo S P X, Gao Z Q. Anal. Chem., 2014, 86: 2117.
[52] Baek S, Won B Y, Park K S, Park H G. Biosens. Bioelectron., 2013, 49: 542.
[53] Liu S N, Wu P, Li W, Zhang H, Cai C X. Chem. Commun., 2011, 47: 2844.
[54] Li W, Wu P, Zhang H, Cai C X. Anal. Chem., 2012, 84: 7583.
[55] Shiraishi M, Sekiguchi A, Oates A J. Anal. Biochem., 2004, 329: 1.
[56] Yegnasubramanian S, Lin X, Haffner M C, Nelson W G. Nucleic Acid Res., 2006, 34: e19.
[57] Wang M, Xu Z N, Chen L J, Yin H S, Ai S Y. Anal. Chem., 2012, 84: 9072.
[58] Yin H S, Zhou Y L, Xu Z N, Chen L J, Zhang D, Ai S Y. Biosens. Bioelectron., 2013, 41: 492.
[59] Xu Z N, Yin H S, Tian Z B, Zhou Y L, Ai S Y. Microchim. Acta, 2014, 181: 471.
[60] Yin H S, Zhou Y L, Xu Z N, Wang M, Ai S Y. Biosens. Bioelectron., 2013, 49: 39.
[61] Bartosik M, Fojta M, Palecek E. Electrochim. Acta, 2012, 78: 75.
[62] Saheb A, Patterson S, Josowicz M. Analyst, 2014, 139: 786.
[63] Wang P, Wu H, Dai Z, Zou X Y. Chem. Commun., 2012, 48: 10754.
[64] Dai Z, Cai T, Zhu W Y, Gao X Y, Zou X Y. Chem. Commun., 2013,49: 1939.
[65] Li Y, Huang C C, Zheng J B, Qi H L. Biosens. Bioelectron., 2012, 38: 407.
[66] Li Y, Luo X E, Yan Z, Zheng J B, Qi H L. Chem. Commun., 2013, 49: 3869.
[67] Kurita R, Arai K, Nakamoto K, Kato D, Niwa O. Anal. Chem., 2012, 84: 1799.
[68] Zhang H, Li M X, Fan M X, Gu J X, Wu P, Cai C X. Chem. Commun., 2014, 50: 2932.
[69] 吴一萍(Wu Y P), 郭良宏(Guo L H). 化学进展(Progress in Chemistry), 2014, 26: 1.
[70] Wu Y P, Zhang B T, Guo L H. Anal. Chem., 2013, 85: 6908.
[71] Zhou Y L, Xu Z N, Wang M, Sun B, Yin H S, Ai S Y. Biosens. Bioelectron., 2014, 53: 263.
[72] Yin H S, Sun B, Zhou Y L, Wang M, Xu Z N, Fu Z L, Ai S Y. Biosens. Bioelectron., 2014, 51: 103.
[73] Zhao X H, Gong L, Zhang X B, Yang B, Fu T, Hu R, Tan W H, Yu R Q. Anal. Chem., 2013, 85: 3614.
[74] Chen F, Zhao Y X. Analyst, 2013, 138: 284.
[75] Ji L J, Cai Z W, Qian Y D, Wu P, Zhang H, Cai C X. Chem. Commun., 2014, 50: 10691.
[76] Mao X H, Wei M, Zhu C F, Lu J X, Gao J M, Simon A J, Shi J Y, Huang Q, Fan C H. ACS Appl. Mater. Inter., 2013, 5: 2604.
[77] Wu Z, Wu Z K, Tang H, Tang L J, Jiang J H. Anal. Chem., 2013, 85: 4376.
[78] Zhao Y X, Chen F, Lin M L, Fan C H. Biosens. Bioelectron., 2014, 54: 565.
[79] Liu K C, Ho H C, Huang A C, Ji B C, Lin H Y, Chueh F S, Yang J S, Lu C C, Chiang J H, Meng M, Chung J G. Environ. Toxicol., 2013, 28: 579.
[80] Park J Y, Kim D, Yang M, Park H Y, Lee S H, Rincon M, Kreahling J, Plass C, Smiragliae D J, Tockmana M S, Kim S J. Lung Cancer, 2013, 79: 198.
[81] Ghosh S, Yates A J, Frühwald M C, Miecznikowski J C, Plass C, Smiraglia D J. Epigenetics, 2010, 5

[1] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[2] 孙兵, 艾仕云. 光电化学传感器的构建及应用[J]. 化学进展, 2014, 26(05): 834-845.
[3] 吴翠明 肖新乐 崔鹏 徐铜文. 杂化离子膜的制备和应用*[J]. 化学进展, 2010, 22(10): 2003-2013.
[4] 李平,张建林,王爱勤. 壳聚糖及其衍生物在分析化学中的应用[J]. 化学进展, 2006, 18(04): 467-473.
[5] 孔继烈. 现代电化学分析技术在中药研究领域中的应用与前景[J]. 化学进展, 1999, 11(03): 300-.
阅读次数
全文


摘要

DNA甲基化电化学分析