English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 11-26 DOI: 10.7536/PC140942 前一篇   后一篇

• 综述与评论 •

随葡萄糖响应的合成类闭路胰岛素递释系统

张宇琪1,2,3,4, 俞计成1,2, 沈群东4, 顾臻*1,2   

  1. 1. 美国北卡罗来纳大学教堂山分校|北卡罗来纳州立大学生物医药工程系 北卡 27695;
    2. 美国北卡罗来纳大学教堂山分校 Eshelman药学院分子药学系 北卡 27599;
    3. 南京大学匡亚明学院 南京 210093;
    4. 南京大学化学化工学院 南京 210093
  • 收稿日期:2014-09-01 修回日期:2014-10-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 顾臻 E-mail:zgu@email.unc.edu,zgu3@ncsu.edu
  • 基金资助:

    美国糖尿病学会青年教授奖(No. 1-14-JF-29)资助

Glucose-Responsive Synthetic Closed-Loop Insulin Delivery Systems

Zhang Yuqi1,2,3,4, Yu Jicheng1,2, Shen Qundong4, Gu Zhen*1,2   

  1. 1. Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC 27695, USA;
    2. Molecular Pharmaceutics Division, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA;
    3. Kuangyaming Honors School, Nanjing University, Nanjing 210093, China;
    4. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received:2014-09-01 Revised:2014-10-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was supported by the Junior Faculty Award of American Diabetes Association (No. 1-14-JF-29).

糖尿病是日益严重的全球性公共健康问题。有效控制Ⅰ型及中晚期Ⅱ型糖尿病的关键在于实时的监测血糖浓度并适时的注射胰岛素。因此研制有效的对环境葡萄糖浓度做出响应的智能胰岛素递释系统成为近年来蛋白质递释研究领域的热点。本文主要介绍模拟胰腺分泌胰岛素反馈机制的化学合成闭路胰岛素递释系统。这种仿生系统也被称作“人工胰脏”,通常由葡萄糖敏感因子与相应的执行器材料整合而成,可以根据人体内血糖浓度的变化有效调节胰岛素的释放。本文将重点讨论基于葡萄糖氧化酶(GOx),葡萄糖结合蛋白(GBP)及苯硼酸(PBA)的三种不同递释体系的作用机理和最新研究进展。

Diabetes mellitus has become a major social health problem affecting all of the world. The key to efficiently treating type Ⅰ and advanced type Ⅱ diabetes is to inject insulin with a precise dose according to the blood glucose levels (BGLs). Thus, smart insulin delivery systems responding to glucose concentration of the surroundings have attracted extensive interest these years. This review mainly focuses on chemically controlled closed-loop insulin delivery able to mimic pancreas activity. One of the greatest advantages of these systems is to regulate insulin dosage and delivery by BGLs on an automated and continuous basis. So called this feedback-controlled insulin delivery system ‘artificial pancreas’. Strategies to achieve this ‘artificial pancreas’ are through glucose-responsive insulin delivery systems, typically based on the glucose-sensing elements of glucose oxidase (GOx), glucose binding protein (GBP), or phenylboronic acid (PBA). Main mechanisms and most recent studies are discussed in this review.

Contents
1 Introduction
2 Glucose oxidase based system
2.1 Swelling/shrinking mechanisms
2.2 Disassembling/degradation mechanisms
3 Glucose binding proteins based system
4 Phenylboronic acid moieties based system
4.1 Swelling/shrinking mechanisms
4.2 Glucose replacement mechanisms
4.3 Disassembling/degradation mechanisms
4.4 Other mechanisms
5 Conclusion and outlook

中图分类号: 

()

[1] Atlas I D. International Diabetes Federation.Brussels. 2013. 160.
[2] Guariguata L, Whiting D, Hambleton I, Beagley J, Linnenkamp U, Shaw J. Diabetes Research and Clinical Practice, 2014, 103: 137.
[3] Mo R, Jiang T, Di J, Tai W, Gu Z. Chemical Society Reviews, 2014, 43: 3595.
[4] Banting F G, Best C H. The Indian Journal of Medical Research, 2007, 125: 251.
[5] Diabete Control and Complications Trial Research Group. New England Journal of Medicine, 1995, 329: 977.
[6] Kahn C. Diabetes, 1994, 43: 1066.
[7] Owens D R, Zinman B, Bolli G B. The Lancet, 2001, 358: 739.
[8] Ravaine V, Ancla C, Catargi B. Journal of Controlled Release, 2008, 132: 2.
[9] Lu Y, Sun W J, Gu Z. Journal of Controlled Release, 2014, 194: 1.
[10] Bratlie K M, York R L, Invernale M A, Langer R, Anderson D G. Advanced Healthcare Materials, 2012, 1: 267.
[11] Bankar S B, Bule M V, Singhal R S, Ananthanarayan L. Biotechnology Advances, 2009, 27: 489.
[12] Ishihara K, Kobayashi M, Ishimaru N, Shinohara I. Polymer Journal, 1984, 16: 625.
[13] Hassan C M, Doyle F J, Peppas N A. Macromolecules, 1997, 30: 6166.
[14] Albin G, Horbett T A, Ratner B D. Journal of Controlled Release, 1985, 2: 153.
[15] Kang S I, Bae Y H. Journal of Controlled Release, 2002, 80: 145.
[16] Kang S I, Bae Y H. Journal of Controlled Release, 2003, 86: 115.
[17] Rauf S, Ihsan A, Akhtar K, Ghauri M, Rahman M, Anwar M, Khalid A. Journal of Biotechnology, 2006, 121: 351.
[18] 朱颖(Zhu Y), 郑梁元(Zheng L Y). 中国药学杂志(Chinese Pharmaceutical Journal), 2005, 40: 331.
[19] Podual K, Doyle F, Peppas N. Polymer, 2000, 41: 3975.
[20] Podual K, Doyle F J, Peppas N A. Biomaterials, 2000, 21: 1439.
[21] Podual K, Doyle F J, Peppas N A. Journal of Controlled Release, 2000, 67: 9.
[22] Guiseppi-Elie A, Brahim S I, Narinesingh D. Advanced Materials, 2002, 14: 743.
[23] Jung D Y, Magda J J, Han I S. Macromolecules, 2000, 33: 3332.
[24] Satish C, Shivakumar H. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2007, 44: 379.
[25] Chu L Y, Li Y, Zhu J H, Wang H D, Liang Y J. Journal of Controlled Release, 2004, 97: 43.
[26] Abdekhodaie M, Wu X. Journal of Membrane Science, 2009, 335: 21.
[27] Iwata H, Matsuda T. Journal of Membrane Science, 1988, 38: 185.
[28] Cartier S, Horbett T, Ratner B. Journal of Membrane Science, 1995, 106: 17.
[29] Ito Y, Casolaro M, Kono K, Imanishi Y. Journal of Controlled Release, 1989, 10: 195.
[30] Qiu Y, Park K. Advanced Drug Delivery Reviews, 2012, 64: 49.
[31] Zhang K, Wu X Y. Journal of Controlled Release, 2002, 80: 169.
[32] Gordijo C R, Koulajian K, Shuhendler A J, Bonifacio L D, Huang H Y, Chiang S, Ozin G A, Giacca A, Wu X Y. Advanced Functional Materials, 2011, 21: 73.
[33] Gordijo C R, Shuhendler A J, Wu X Y. Advanced Functional Materials, 2010, 20: 1404.
[34] Gu Z, Dang T T, Ma M, Tang B C, Cheng H, Jiang S, Dong Y, Zhang Y, Anderson D G. ACS Nano, 2013, 7: 6758.
[35] Kim C K, Im E B, Lim S J, Oh Y K, Han S K. International Journal of Pharmaceutics, 1994, 101: 191.
[36] Kim A, Yun M O, Oh Y K, Ahn W S, Kim C K. International Journal of Pharmaceutics, 1999, 180: 75.
[37] Jain S, Amit K, Chalasani K, Jain A, Chourasia M, Jain A, Jain N. Journal of Drug Delivery Science and Technology, 2007, 17: 399.
[38] Jo S M, Lee H Y, Kim J C. International Journal of Biological Macromolecules, 2009, 45: 421.
[39] Uchiyama T, Kiritoshi Y, Watanabe J, Ishihara K. Biomaterials, 2003, 24: 5183.
[40] Uchiyama T, Watanabe J, Ishihara K. Journal of Biomaterials Science, Polymer Edition, 2004, 15: 1237.
[41] Kaczmarek H, Kamińska A, S ' wiatek M, Rabek J. Die Angewandte Makromolekulare Chemie, 1998, 261: 109.
[42] Kaczmarek H, Lindén L, Rabek J. Journal of Polymer Science Part A: Polymer Chemistry, 1995, 33: 879.
[43] Mai C, Majcherczyk A, Schormann W, Hüttermann A. Polymer Degradation and Stability, 2002, 75: 107.
[44] Qi W, Yan X, Duan L, Cui Y, Yang Y, Li J. Biomacromolecules, 2009, 10: 1212.
[45] Zhao W, Zhang H, He Q, Li Y, Gu J, Li L, Li H, Shi J. Chem. Commun., 2011, 47: 9459.
[46] Gu Z, Aimetti A A, Wang Q, Dang T T, Zhang Y, Veiseh O, Cheng H, Langer R S, Anderson D G. ACS Nano, 2013, 7: 4194.
[47] Tai W, Mo R, Di J, Subramanian V, Gu X, Buse J B, Gu Z. Biomacromolecules, 2014,15(10): 3495.
[48] Sharon N, Lis H. Trends in Biochemical Sciences, 1987, 12: 488.
[49] Sharon N, Lis H. Science, 1972, 177: 949.
[50] Brownlee M, Cerami A. Science, 1979, 206: 1190.
[51] Wu Q, Wang L, Yu H, Wang J, Chen Z. Chemical Reviews, 2011, 111: 7855.
[52] Jeong S Y, Kimn S W, Eenink M J, Feijen J. Journal of Controlled Release, 1984, 1: 57.
[53] Kim S W, Paii C M, Kimiko M, Seminoff L A, Holmberg D L, Gleeson J M, Wilson D E, Mack E J. Journal of Controlled Release, 1990, 11: 193.
[54] Makino K, Mack E J, Okano T, Kim S W. Journal of Controlled Release, 1990, 12: 235.
[55] Kim J J, Park K. Pharmaceutical Research, 2001, 18: 794.
[56] Liu F, Song S C, Mix D, Baudy M, Kim S W. Bioconjugate Chemistry, 1997, 8: 664.
[57] Nakamae K, Miyata T, Jikihara A, Hoffman A S. Journal of Biomaterials Science, Polymer Edition, 1995, 6: 79.
[58] Lee S J, Park K. Journal of Molecular Recognition, 1996, 9: 549.
[59] Obaidat A A, Park K. Pharmaceutical Research, 1996, 13: 989.
[60] Obaidat A A, Park K. Biomaterials, 1997, 18: 801.
[61] Miyata T, Jikihara A, Nakamae K, Hoffman A S. Macromolecular Chemistry and Physics, 1996, 197: 1135.
[62] Taylor M, Tanna S, Taylor P, Adams G. Journal of Drug Targeting, 1995, 3: 209.
[63] Taylor M J, Tanna S, Sahota T. Journal of Pharmaceutical Sciences, 2010, 99: 4215.
[64] Zhang R, Tang M, Bowyer A, Eisenthal R, Hubble J. Reactive and Functional Polymers, 2006, 66: 757.
[65] Che A F, Liu Z M, Huang X J, Wang Z G, Xu Z K. Biomacromolecules, 2008, 9: 3397.
[66] Yin R, Tong Z, Yang D, Nie J. International Journal of Biological Macromolecules, 2011, 49: 1137.
[67] You L C, Lu F Z, Li Z C, Zhang W, Li F M. Macromolecules, 2003, 36: 1.
[68] Karathanasis E, Bhavane R, Annapragada A V. International Journal of Nanomedicine, 2007, 2: 501.
[69] Yin R, Han J, Zhang J, Nie J. Colloids and Surfaces B: Biointerfaces, 2010, 76: 483.
[70] Wu S, Huang X, Du X. Angewandte Chemie, 2013, 125: 5690.
[71] Lorang J P, Edwards J O. The Journal of Organic Chemistry, 1959, 24: 769.
[72] Angyal S, Greeves D, Pickles V. Carbohydrate Research, 1974, 35: 165.
[73] 徐丹(Xu D), 褚良银(Chu L Y). 化工进展(Chemical Industry and Engineering Progress), 2006, 25: 1045.
[74] Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y. Journal of the American Chemical Society, 1998, 120: 12694.
[75] Kataoka K, Miyazaki H, Okano T, Sakurai Y. Macromolecules, 1994, 27: 1061.
[76] Langer R S, Anderson D G, Gu Z, Aimetti A A. 2013, WO 2013123491-A1.
[77] Ma R, Shi L. Polymer Chemistry, 2014, 5: 1503.
[78] Roy D, Cambre J N, Sumerlin B S. Progress in Polymer Science, 2010, 35: 278.
[79] Tanaka T, Fillmore D, Sun S T, Nishio I, Swislow G, Shah A. Physical Review Letters, 1980, 45: 1636.
[80] Wu W, Zhou S. Macromolecular Bioscience, 2013, 13: 1464.
[81] Zhang Y, Guan Y, Zhou S. Biomacromolecules, 2006, 7: 3196.
[82] Zhang S B, Chu L Y, Xu D, Zhang J, Ju X J, Xie R. Polymers for Advanced Technologies, 2008, 19: 937.
[83] Hoare T, Pelton R. Macromolecules, 2007, 40: 670.
[84] Hoare T, Pelton R. Biomacromolecules, 2008, 9: 733.
[85] Matsumoto A, Ikeda S, Harada A, Kataoka K. Biomacromolecules, 2003, 4: 1410.
[86] Matsumoto A, Yoshida R, Kataoka K. Biomacromolecules, 2004, 5: 1038.
[87] Matsumoto A, Yamamoto K, Yoshida R, Kataoka K, Aoyagi T, Miyahara Y. Chem. Commun., 2010, 46: 2203.
[88] Lapeyre V, Ancla C, Catargi B, Ravaine V. Journal of Colloid and Interface Science, 2008, 327: 316.
[89] Wu W, Mitra N, Yan E C, Zhou S. ACS Nano, 2010, 4: 4831.
[90] Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y. Angewandte Chemie, 2012, 124: 2166.
[91] Wang B, Ma R, Liu G, Li Y, Liu X, An Y, Shi L. Langmuir, 2009, 25: 12522.
[92] Yao Y, Zhao L, Yang J, Yang J. Biomacromolecules, 2012, 13: 1837.
[93] Cambre J N, Roy D, Gondi S R, Sumerlin B S. Polymer Preprints, 2008, 49: 426.
[94] De P, Gondi S R, Roy D, Sumerlin B S. Macromolecules, 2009, 42: 5614.
[95] Qin Y, Cheng G, Sundararaman A, Jäkle F. Journal of the American Chemical Society, 2002, 124: 12672.
[96] Qin Y, Sukul V, Pagakos D, Cui C, Jäkle F. Macromolecules, 2005, 38: 8987.
[97] Roy D, Cambre J N, Sumerlin B S. Chemical Communications, 2009, 2106.
[98] Kim H, Kang Y J, Kang S, Kim K T. Journal of the American Chemical Society, 2012, 134: 4030.
[99] Shiino D, Murata Y, Kataoka K, Koyama Y, Yokoyama M, Okano T, Sakurai Y. Biomaterials, 1994, 15: 121.
[100] Shiino D, Murata Y, Kubo A, Kim Y J, Kataoka K, Koyama Y, Kikuchi A, Yokoyama M, Sakurai Y, Okano T. Journal of Controlled Release, 1995, 37: 269.
[101] Zhao Y, Trewyn B G, Slowing I I, Lin V S Y. Journal of the American Chemical Society, 2009, 131: 8398.
[102] Guo Q, Wu Z, Zhang X, Sun L, Li C. Soft Matter, 2014, 10: 911.
[103] Ma R, Yang H, Li Z, Liu G, Sun X, Liu X, An Y, Shi L. Biomacromolecules, 2012, 13: 3409.
[104] Ding Z, Guan Y, Zhang Y, Zhu X. Soft Matter, 2009, 5: 2302.
[105] De Geest B G, Jonas A M, Demeester J, de Smedt S C. Langmuir, 2006, 22: 5070.
[106] Wang Y, Zhang X, Han Y, Cheng C, Li C. Carbohydrate Polymers, 2012, 89: 124.
[107] Cheng C, Zhang X, Wang Y, Sun L, Li C. New Journal of Chemistry, 2012, 36: 1413.
[108] Cheng C, Zhang X, Xiang J, Wang Y, Zheng C, Lu Z, Li C. Soft Matter, 2012, 8: 765.
[109] Wu Z, Zhang S, Zhang X, Shu S, Chu T, Yu D. Journal of Pharmaceutical Sciences, 2011, 100: 2278.
[110] Yang H, Sun X, Liu G, Ma R, Li Z, An Y, Shi L. Soft Matter, 2013, 9: 8589.
[111] De Geest B G, Sanders N N, Sukhorukov G B, Demeester J, de Smedt S C. Chemical Society reviews, 2007, 36: 636.
[112] Hoeg-Jensen T, Havelund S, Nielsen P K, Markussen J. Journal of the American Chemical Society, 2005, 127: 6158.
[113] Hoeg-Jensen T, Ridderberg S, Havelund S, Schäffer L, Balschmidt P, Jonassen I, Vedsø P, Olesen P H, Markussen J. Journal of Peptide Science, 2005, 11: 339.
[114] Chapman T M, Noble S, Goa K L. Drugs, 2002, 62: 1945.
[115] Havelund S, Plum A, Ribel U, Jonassen I, Vølund A, Markussen J, Kurtzhals P. Pharmaceutical Research, 2004, 21: 1498.
[116] Di J, Price J, Gu X, Jiang X, Jing Y, Gu Z. Advanced Healthcare Materials, 2014, 3: 811.
[117] 陈孟婕(Chen M J), 姚晋荣(Yao J R), 邵正中(Shao Z Z), 陈新(Chen X). 化学进展(Progress in Chemistry), 2011, 23: 202.
[118] 陈梦君(Chen M J), 杨万泰(Yang W T), 尹梅贞(Yin M Z). 化学进展(Progress in Chemistry), 2012, 24: 2403.

[1] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[2] 韩毅, 董海青, 李胜, 李维达, 李永勇. 胰岛封装技术及其在胰岛移植中的应用[J]. 化学进展, 2018, 30(11): 1660-1668.
[3] 周军, 白兆帅, 徐辉碧, 黄开勋*. 硒蛋白与糖尿病——硒的两面性[J]. 化学进展, 2013, 25(04): 488-494.
[4] 黄美玲, 武亚玲, 赵攀, 杨晓达*. 无机药物: 问题和解决思路[J]. 化学进展, 2013, 25(04): 650-660.
[5] 杨晓改,王琴,刘竟成,王夔. 从钒化合物生物效应的多样性看其作用机制*[J]. 化学进展, 2009, 21(05): 890-895.
[6] 韦丹,丁文军,周桔,彭端,李明. 钒化合物抗糖尿病作用的研究进展*[J]. 化学进展, 2009, 21(05): 896-902.
[7] 杨晓改,杨晓达,王夔. 钒化合物生物效应的化学基础和药用前景__金属药物研究的化学问题[J]. 化学进展, 2002, 14(04): 279-.