English
新闻公告
More
化学进展 2013, Vol. 25 Issue (05): 859-868 DOI: 10.7536/PC121002 前一篇   

• 综述与评论 •

甲烷重整制合成气镍催化剂积炭研究

姜洪涛*, 华炜, 计建炳   

  1. 浙江工业大学化学工程与材料学院 杭州 310014
  • 收稿日期:2012-10-01 修回日期:2012-11-01 出版日期:2013-05-24 发布日期:2013-04-15
  • 通讯作者: 姜洪涛 E-mail:jht@zjut.edu.cn
  • 基金资助:

    国家自然科学基金青年基金项目(No.20906084)资助

Study of Coke Deposition on Ni Catalysts for Methane Reforming to Syngas

Jiang Hongtao*, Hua Wei, Ji Jianbing   

  1. College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, China
  • Received:2012-10-01 Revised:2012-11-01 Online:2013-05-24 Published:2013-04-15

本文综述了甲烷转化制合成气镍催化剂积炭的研究进展,论述了积炭热力学和动力学、积炭类型、积炭机理和影响积炭的因素,详细分析了催化剂的镍粒子尺寸、镍-载体相互作用、载体碱性强度、载体氧化-还原性质和添加助剂对镍催化剂的积炭速率和积炭量的影响,并总结了重整反应工艺参数和反应器形式对镍催化剂积炭的影响。最后指出, 采用现代表征手段阐明镍催化剂的积炭机理、种类和数量, 明确积炭的规律, 可为设计开发抗积炭性能强的镍催化剂提供理论依据; 可通过增强金属与载体的相互作用、减小镍粒子的尺寸(镍粒子尺寸小于20 nm)和选择适宜的载体来制备抗积炭性能强的催化剂; 可通过采用流化床反应器且优化工艺参数来减少重整过程积炭量; 可通过寻求行之有效的积炭催化剂再生方法来解决镍催化剂积炭问题。

In this paper, the recent research progresses in carbon deposition on the Ni catalysts for conversion of CH4 to synthesis gas has been summarized. The thermodynamics, kinetics and type of coke, the mechanism of carbon deposition, and the impact factors of coke formation are discussed. The effects of nickel particles size, the alkali strength degree and redox properties of supports, the interaction between nickel and supports to the amount and the type of coke deposition have been substantially analyzed. By using modern characterization measures, the mechanism, type, and amount of carbon deposition in this methane reforming reaction and elements which influence the carbon deposition are reviewed in detail, which can provide a theoretical basis for the design and development of resistance to coke properties of nickel catalyst. The well anti-coke performance catalyst can be prepared by enhancing the interaction between Ni and supports, improving the degree of dispersion of Ni on the carrier, reducing the size of Ni particles (less than 20 nm). Less amount of coke formation can be achieved by using fluidized bed reactor than fixed bed, optimizing the process parameters, and seeking for the effective regeneration method of used carbon deposition catalyst. Contents
1 Introduction
2 Catalysts for methane reforming
3 Coke deposition on Ni-based catalysts
3.1 Thermodynamics and dynamics of coke deposition
3.2 Type of coke
3.3 Mechanism of coke deposition
3.4 Influence factors for coke deposition
3.5 Partially elimination of surface coke
4 Conclusions and outlook

中图分类号: 

()
[1] 姜洪涛(Jiang H T), 李会泉(Li H Q), 张懿(Zhang Y). 化学进展(Progress in Chemistry), 2006, 18: 1270-1277
[2] Shen W H, Momoi H, Komatsubara K, Saito T, Yoshida A, Naito S. Catalysis Today, 2011, 171: 150-155
[3] Byrne J P J, Gohr R J, Haslam R T. Ind. Eng. Chem., 1932, 24: 1129-1135
[4] Ross J R H. Catalysis Today, 2005, 100: 151-158
[5] Baek S C, Bae J W, Cheon J Y, Jun K W, Lee K Y. Catalysis Letters, 2011, 141: 224-234
[6] Al-Nakoua M A, El-Naas M H. International Journal of Hydrogen Energy, 2012, 37: 7538-7544
[7] Avetisov A K, Rostrup-Nielsen J R, Kuchaev V L, Hansen J H B, Zyskin A G, Shapatina E N. Journal of Molecular Catalysis A-Chemical, 2010, 315: 155-162
[8] Cao L, Ni C J, Yuan Z S, Wang S D. Catalysis Letters, 2009, 131: 474-479
[9] Simeone M, Salemme L, Menna L. International Journal of Hydrogen Energy, 2012, 37: 9049-9057
[10] Mosayebi Z, Rezaei M, Ravandi A B, Hadian N. International Journal of Hydrogen Energy, 2012, 37: 1236-1242
[11] Pino L, Vita A, Cipiti F, Lagana M, Recupero V. Applied Catalysis B-Environmental, 2011, 104: 64-73
[12] Jiang H T, Li H Q, Xu H B, Zhang Y. Fuel Processing Technology, 2007, 88: 988-995
[13] Song C S, Pan W. Catalysis Today, 2004, 98: 463-484
[14] Hu Y H, Ruckenstein E. Adv. Catal., 2004, 48: 297-345
[15] Liu C J, Ye J Y, Jiang J J, Pan Y X. ChemCatChem, 2011, 3: 529-541
[16] Arkatova L A. Catalysis Today, 2012, 157: 170-176
[17] Shamsi A, Johnson C D. Catalysis Today, 2003, 84: 17-25
[18] Claridge J B, Green M H L, Tsang S C, York A P E, Ashcroft A T, Battle P D. Catal. Lett., 1993, 22: 299-305
[19] 史克英(Shi K Y), 徐恒泳(Xu H Y), 范业(Fan Y). 分子催化(Chinese Journal of Molecular Catalysis), 1996, 10: 41-47
[20] Pengpanich S, Meeyoo V T R. Catalysis Today, 2004, 93/95: 95-105
[21] Koo K Y, Roh H S, Seo Y T, Seo D J, Yoon W L, Park S B. Applied Catalysis A: General, 2008, 340: 183-190
[22] Pan Y X, Liu C J, Shi P. Journal of Power Sources, 2008, 176: 46-53
[23] Guczi L, Stefler G, Geszti O, Sajo I, Paszti Z, Tompos A, Schay Z. Applied Catalysis A-General, 2010, 375: 236-246
[24] Parizotto N V, Rocha K O, Damyanova S, Passos F B, Zanchet D, Marques C M P, Bueno J M C. Applied Catalysis A-General, 2007, 330: 12-22
[25] Sokolov S, Kondratenko E V, Pohl M M, Barkschat A, Rodemerck U. Applied Catalysis B: Environmental, 2012, 113/114: 19-30
[26] Yu X, Wang N, Chu W, Liu M. Chemical Engineering Journal, 2012, 209: 623-632
[27] Koo K Y, Roh H S, Jung U H, Seo D J, Seo Y S, Yoon W L. Catalysis Today, 2009, 146: 166-171
[28] Tavares M T, Alstrup I, Berriardo C A, Rostrup-Nielsen J R. Journal of Catalysis, 1994, 147: 525-534
[29] Lamouroux E, Serp P, Kalck P. Catal. Rev. Sci. Eng., 2007, 49: 341-405
[30] Hou Z Y, Yokota O, Tanaka T, Yashima T. Catalysis Letters, 2003, 89: 121-127
[31] Kroll V C H, Swaan H M, Mirodatos C. Journal of Catalysis, 1996, 161: 409-422
[32] Zhang Z L, Verykios X E. Catalysis Today, 1994, 21: 589-595
[33] 李文英(Li W Y), 冯杰(Feng J), 谢克昌(Xie K C). 燃料化学学报(Journal of Fuel Chemistry and Technology), 1997, 25: 460-464
[34] 李春义(Li C Y), 余长春(Yu C C), 沈师孔(Shen S K). 催化学报(Chinese Journal of Catalysis), 2001, 22: 377-382
[35] Dent F J, Moignard L A, A.H. Eastwood, Blackburn W H, Heeden D. An Investigation into the Catalytic Synthesis of Methane. Gas Research Board, London, 1945/1946. 604-693
[36] 徐占林(Xu Z L), 林险峰(Lin X F), 青仁(Qing R). 应用化学(Chinese Journal of Applied Chemistry), 2001, 18: 908-911
[37] Guisnet M, Magnoux P. Applied Catalysis A: General, 2001, 212: 83-96
[38] Mattos L V, Oliveira E R D. Catalysis Today, 2002, 77: 245-256
[39] 李丽(Li L), 阎子峰(Yan Z F). 化学进展(Progress in Chemistry), 2005, 17: 651-659
[40] 吴廷华(Wu Y H), 李少斌(Li S B), 严新古(Yan X G). 催化学报(Chinese Journal of Catalysis), 2001, 22: 501-504
[41] Chen P, Hou Z, Zheng X, Yashima T. React.Kinet.Catal.Lett., 2005, 86: 51-58
[42] Newnham J, Mantri K, Amin M H, Tardio J, Bhargava S K. International Journal of Hydrogen Energy, 2012, 37: 1454-1464
[43] Hu Y H. Catalysis Today, 2009, 148: 206-211
[44] Wang Y H, Liu H M, Xu B Q. Journal of Molecular Catalysis A: Chemical, 2009, 299: 44-52
[45] Takahashi H, Takeguchi T, Yamamoto N, Matsuda M, Kobayashi E, Ueda W. Journal of Molecular Catalysis A-Chemical, 2011, 350: 69-74
[46] Zheng W T, Sun K Q, Liu H M, Liang Y, Xu B Q. International Journal of Hydrogen Energy, 2012, 37: 11735-11747
[47] Garcia-Dieguez M, Pieta I S, Herrera M C, Larrubia M A, Alemany L J. Journal of Catalysis, 2010, 270: 136-145
[48] Gonzalez-Delacruz V M, Pereniguez R, Temero F, Holgado J P, Caballero A. ACS Catalysis, 2011, 1: 82-88
[49] Hou Z Y, Gao J, Guo J Z, Liang D, Lou H, Zheng X M. Journal of Catalysis, 2007, 250: 331-341
[50] Takenaka S, Kato E, Tomikubo Y K O. Journal of Catalysis, 2003, 219: 176-185
[51] Zhang H G, Wang H, Dalai A K. Applied Catalysis A:General, 2008, 339: 121-129
[52] Tang S, Ji L, Lin J, Zeng H C, Tan K L, Li K. Journal of Catalysis, 2000, 194: 424-430
[53] Xu J K, Zhou W, Wang J H, Li Z J, Ma J X. Chinese Journal of Catalysis, 2009, 30: 1076-1084
[54] Goula G, Kiousis V, Nalbandian L, Yentekakis I V. Solid State Ionics, 2006, 177: 2119-2123
[55] Du X J, Zhang D S, Shi L Y, Gao R H, Zhang J P. Journal of Physical Chemistry C, 2012, 116: 10009-10016
[56] Qin P, Xu H Y, Long H L, Ran Y, Shang S Y, Yin Y X, Dai X Y. Journal of Natural Gas Chemistry, 2011, 20: 487-492
[57] Sun L Z, Tan Y S, Zhang Q D, Xie H J, Han Y Z. International Journal of Hydrogen Energy, 2011, 36: 12259-12267
[58] Lisboa J S, Terra L E, Silva P R J, Saitovitch H, Passos F B. Fuel Processing Technology, 2011, 92: 2075-2082
[59] Kambolis A, Matralis H, Trovarelli A, Papadopoulou C. Applied Catalysis A-General, 2010, 377: 16-26
[60] Li H S, Xu H, Wang J F. Journal of Natural Gas Chemistry, 2011, 20: 1-8
[61] 王锐(Wang R), 刘雪斌(Liu X B), 陈燕馨(Chen Y X), 李文钊(Li W Z), 徐恒泳(Xu H Y). 催化学报(Chinese Journal of Catalysis), 2007, 28: 865-869
[62] Sutthiumporn K, Maneerung T, Kathiraser Y, Kawi S. International Journal of Hydrogen Energy, 2012, 37: 11195-11207
[63] Li X C, Hu Q H, Yang Y F, Wang Y, He F. Applied Catalysis A-General, 2011, 413: 163-169
[64] Dantas S C, Escritori J C, Soares R R, Hori C E. Chemical Engineering Journal, 2010, 156: 380-387
[65] Sun N N, Wen X, Wang F, Peng W C, Zhao N, Xiao F K, Wei W, Sun Y H, Kang J T. Applied Surface Science, 2011, 257: 9169-9176
[66] Horiguchi J, Kobayashi S, Yamazaki Y, Nakanishi T, Itabashi D, Omata K, Yamada M. Applied Catalysis A-General, 2010, 377: 9-15
[67] Nagaraja B M, Bulushev D A, Beloshapkin S, Ross J R H. Catalysis Today, 2011, 178: 132-136
[68] Gaur S, Haynes D J, Spivey J J. Applied Catalysis A-General, 2011, 403: 142-151
[69] Li J, Wang D, Zhou G D, Xue Y X, Li C, Cheng T X. Industrial & Engineering Chemistry Research, 2011, 50: 10955-10961
[70] Chanburanasiri N, Ribeiro A M, Rodrigues A E, Arpornwichanop A, Laosiripojana N, Praserthdam P, Assabumrungrat S. Industrial & Engineering Chemistry Research, 2011, 50: 13662-13671
[71] Fan M S, Abdullah A Z, Bhatia S. International Journal of Hydrogen Energy, 2011, 36: 4875-4886
[72] Xu G, Shi K, Gao Y, Xu H, Wei Y. Journal of Molecular Catalysis A: Chemical, 1999, 147: 47-54
[73] Serrano-Lotina A, Martin A J, Folgado M A, Daza L. International Journal of Hydrogen Energy, 2012, 37: 12342-12350
[74] Zhu J Q, Peng X X, Yao L, Shen J, Tong D M, Hu C W. International Journal of Hydrogen Energy, 2011, 36: 7094-7104
[75] 史克英(Shi K Y), 徐恒泳(Xu H Y), 张桂玲(Zhang G L), 王玉忠(Wang Y Z), 徐国林(Xu G L), 韦永德(Wei Y D). 催化学报(Chinese Journal of Catalysis), 2002, 1: 15-18
[76] Ozkara-Aydinoglu S, Aksoylu A E. Catalysis Communications, 2010, 11: 1165-1170
[77] Zhang K, Zhou G D, Li J, Zhen K J, Cheng T X. Catalysis Letters, 2009, 130: 246-253
[78] Li D, Nakagawa Y, Tomishige K. Applied Catalysis A: General, 2011, 408: 1-24
[79] Zhou L, Guo Y, Chen J, Sakurai M, Kameyama H. Fuel, 2012, 92: 373-376
[80] De Miguel S R, Vilella I M J, Maina S P, Jose-Alonso D S, Roman-Martinez M C, Illan-Gomez M J. Applied Catalysis A-General, 2012, 435: 10-18
[81] Steinhauer B, Kasireddy M R, Radnik J, Martin A. Applied Catalysis A-General, 2009, 366: 333-341
[82] Lucredio A F, Assaf J M, Assaf E M. Applied Catalysis A-General, 2011, 400: 156-165
[83] Yasyerli S, Filizgok S, Arbag H, Yasyerli N, Dogu G. International Journal of Hydrogen Energy, 2011, 36: 4863-4874
[84] Tomishige K, Chen Y, Fujimoto K. Journal of Catalysis, 1999, 181: 91-103
[85] 严前古(Yan Q G), 吴廷华(Wu T H), 李基涛(Li J T). 应用化学 (Chinese Journal of Applied Chemistry), 1999, 16: 20-22
[86] 李春义(Li C Y), 余长春(Yu C C), 沈师孔(Shen S K). 化学学报(Chinese Journal of Chemistry), 2001, 22: 383-386
[87] 孙卫中(Sun W Z), 武向阳(Wu X Y), 靳国强(Jin G Q). 分子催化(Chinese Journal of Molecular Catalysis), 2007, 21: 200-204
[88] Nurunnabi M, Mukainakano Y, Kado S, Miyao T, Naito S, Okumura K, Kunimori K, Tomishige K. Appl. Catal. A: Gen., 2007, 325: 154-162
[89] Wang Y, Xu B. Catalysis Letters, 2005, 99: 89-96
[90] Tomishige K, Himeno Y, Matsuo Y, Yoshinaga Y, Fujimoto K. Industrial & Engineering Chemistry Research, 2000, 39: 1891-1897
[91] Tomishige K, Fujimoto K. Sekiyu Gakkaishi-Journal of the Japan Petroleum Institute, 2001, 44: 65-79
[92] Nurunnabi M, Fujimoto K, Suzuki K, Li B T, Kado S, Kunimori K, Tomishige K. Catalysis Communications, 2006, 7: 73-78
[93] Nurunnabi M, Mukainakano Y, Kado S, Li B T, Kunimori K, Suzuki K, Fujimoto K, Tomishige K. Applied Catalysis A-General, 2006, 299: 145-156
[94] Ozkara-Aydinoglu S, Aksoylu A E. International Journal of Hydrogen Energy, 2011, 36: 2950-2959
[95] 李春林(Li C L), 伏义路(Fu Y L), 孟明(Meng M). 化学物理学报(Chinese Journal of Chemical Physics), 2004, 17: 95-99
[96] 黄传敬(Huang C J), 郑小明(Zhen X M). 淮北煤师院学报(Journal of Huaibei Teachers College), 1999, 20: 51-54
[97] Jiang H T, Li H Q, Zhang Y. Journal of Fuel Chemistry and Technology, 2007, 35: 72-78
[98] Arstad B, Prostak J, Blom R. Chemical Engineering Journal, 2012, 189: 413-421
[99] Wang Y F, Chao Z X, Jakobsen H A. Clean Technologies and Environmental Policy, 2011, 13: 559-565
[100] Xie D L, Qiao W Y, Wang Z L, Wang W X, Yu H, Peng F. International Journal of Hydrogen Energy, 2010, 35: 11798-11809
[101] Gallucci F, Sintannaland M V, Kuipers J A M. International Journal of Hydrogen Energy, 2010, 35: 7142-7150
[102] Lindborg H, Jakobsen H A. Industrial & Engineering Chemistry Research, 2009, 48: 1332-1342
[103] Arstad B, Blom R, Bakken E, Dahl I, Jakobsen J P, Rokke P. Greenhouse Gas Control Technologies, 2009, 1: 715-720
[104] Tomishige K. Catalysis Today, 2004, 89 405-418
[105] Jing Q S, Fang L X, Lou H, Zheng X M. Journal of Rare Earths, 2009, 27: 431-436
[106] Bharadwaj S S, Schmidt L D. Journal of Catalysis, 1994, 146: 11-21
[107] Santos A, Menendez M, Santariana J. Catalysis Today, 1994, 21: 481-488
[108] Tomoshige K, Kanazawa S, Suzuki K, Asadullah M, Sato M, Ikushima K, Kunimori K. Appllied Catalysis A-General, 2002, 233: 35-44
[109] Gao J, Hou Z, Guo J, Zhu Y, Zheng X. Catalysis Today, 2008, 131: 278-284
[110] Xie C, Chen Y S, Li Y, Wang X X, Song C S. Applied Catalysis A-General, 2011, 394: 32-40
[111] Takanabe K, Aika K I, Inazu K, Baba T, Seshan K, Lefferts L. Journal of Catalysis, 2006, 243: 263-269
[1] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[2] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[3] 卢君颖, 郭禹, 刘其瑞, 韩广智, 王周君. 甲烷二氧化碳重整制合成气钴基催化剂[J]. 化学进展, 2017, 29(12): 1471-1479.
[4] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[5] 王莉, 敖先权*, 王诗瀚. 甲烷与二氧化碳催化重整制取合成气催化剂[J]. 化学进展, 2012, (9): 1696-1706.
[6] 黄振, 何方*, 赵坤, 郑安庆, 李海滨, 赵增立. 基于晶格氧的甲烷化学链重整制合成气[J]. 化学进展, 2012, 24(08): 1599-1609.
[7] 陈兆旭*, 黄玉成, 何翔. Pd/ZnO催化甲醇水蒸气重整理论研究[J]. 化学进展, 2012, 24(06): 873-878.
[8] 张超, 郎林, 阴秀丽, 吴创之. 生物乙醇重整制氢反应器[J]. 化学进展, 2011, 23(4): 810-818.
[9] 桑丽霞, 孙彪, 李艳霞, 吴玉庭, 马重芳. 太阳能甲烷重整反应中的催化活性吸收体[J]. 化学进展, 2011, 23(11): 2233-2239.
[10] 胥月兵, 陆江银, 王吉德, 张战国. Mo基分子筛催化剂及甲烷无氧芳构化[J]. 化学进展, 2011, 23(01): 90-106.
[11] 胡勋 吕功煊. 水蒸气重整生物质裂解油及其模型分子制氢*[J]. 化学进展, 2010, 22(09): 1687-1700.
[12] 祝星 王华 魏永刚 李孔斋 晏冬霞. 金属氧化物两步热化学循环分解水制氢*[J]. 化学进展, 2010, 22(05): 1010-1020.
[13] 杨旸 郑雯 程党国 陈丰秋 詹晓力. 原位FT-IR技术在研究甲烷氧化反应中的应用*[J]. 化学进展, 2009, 21(10): 2205-2211.
[14] 代小平,余长春. 氧载体的氧物种直接氧化甲烷制合成气*[J]. 化学进展, 2009, 21(0708): 1626-1635.
[15] 胡兴邦,李浩然. 碳氢化合物的活化及氧化理论研究*[J]. 化学进展, 2009, 21(04): 577-587.