English
新闻公告
More
化学进展 2012, Vol. 24 Issue (05): 810-822 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池有机硅电解液

秦雪英1,2, 汪靖伦1, 张灵志1*   

  1. 1. 中国科学院广州能源研究所 广州 510640;
    2. 中国科学院研究生院 北京 100039
  • 收稿日期:2011-09-01 修回日期:2012-02-01 出版日期:2012-05-24 发布日期:2012-04-10
  • 基金资助:
    国家自然科学基金项目(No.50973112)、中国科学院院地合作项目(No.2009B091300025/20108)、中国科学院百人计划、广东省自然科学基金博士启动项目(No.S2011040004072)资助

Organosilicon Based Electrolytes for Lithium-Ion Batteries

Qin Xueying1,2, Wang Jinglun1, Zhang Lingzhi1*   

  1. 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100039, China
  • Received:2011-09-01 Revised:2012-02-01 Online:2012-05-24 Published:2012-04-10
有机硅电解液具有优良的热稳定性、低可燃性、无毒性、高电导率和高分解电压等优点,近年来成为了锂离子电池新型电解液的研究热点。本文综述了有机硅电解液的研究进展,重点介绍了聚醚有机硅电解液的设计合成、物理化学性能、与电解质盐和电极材料的匹配性关系及其在电池中的性能表现;简述了有机硅功能化电解液添加剂的研究进展,如成膜添加剂、阻燃添加剂、吸酸吸水添加剂等;最后对有机硅电解液的进一步研究趋势和应用前景进行了展望。
Organosilicon compounds have attracted considerable interest as electrolytes for lithium-ion batteries because they are nontoxic, nonflammable, as well as have lower glass transition temperatures, lower vapor pressure and higher flash point than commercial alkyl carbonates. These compounds can improve the electrochemical performances and safety of lithium-ion batteries when used as electrolyte solvents or additives in the electrolytes. In this paper, the recent advances of organosilicon compounds both as electrolyte solvents and additives are reviewed. Organosilicon electrolytes containing ethylene oxide(EO) substituents with or without carbon spacer between silicon atom and EO unit are specially remarked as safe electrolytes. Organosilicon compounds as functional additives are also introduced in terms of the capabilities of passive film formation, flame-retardant, and acid/water scavenger.

Contents
1 Introduction
2 Organosilicon electrolyte solvents for lithium-ion batteries
2.1 Alkylsiloxane(Si—O) based electrolyte solvents
2.2 Alkylsilane(Si—C) based electrolyte solvents
2.3 Liquid oligomeric siloxane(—Si—O—Si—) based electrolyte solvents
3 Organosilicon electrolyte additives for lithium-ion batteries
3.1 Film-forming additives
3.2 Flame retardant additives
3.3 Acid and water scavenge additives
3.4 Low temperature and high output additives
3.4.1 Cyclic carbonate modified organosilicon compounds
3.4.2 Silane compounds containing EO group
4 Conclusions and outlook

中图分类号: 

()
[1] 吴宇平(Wu Y P), 戴晓兵(Dai X B), 马军旗(Ma J Q), 程预(Cheng Y). 锂离子电池——应用与实践(Lithium Ion Batteries——Application and Practice). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004
[2] Li L L, Li L, Wang B, Liu L L, Wu Y P, van Ree T, Thavhiwa K A. Electrochem. Acta, 2011, 56: 4858—4864
[3] Fu L J, Liu H, Zhang H P, Li C, Zhang T, Wu Y P, Holze R, Wu H Q. Electrochem. Commun., 2006, 8: 1—4
[4] Zhao N H, Fu L J, Yang L C, Zhang T, Wang G J, Deng Y H, Wu Y P, van Ree T. Pure Appl. Chem., 2008, 80: 2283—2295
[5] Zhang T, Gao J, Zhang H P, Yang L C, Wu Y P, Wu H Q. Electrochem. Commun., 2007, 9: 886—890
[6] Zhao N H, Wang G J, Huang Y, Wang B, Yao B D, Wu Y P. Chem. Mater., 2008, 20: 2612—2614
[7] MacFarlane D R, Forsyth M, Howlett P C, Pringle J M, Sun J Z, Annat G, Neil W, Izgorodina E I. Acc. Chem. Res., 2007, 40: 1165—1173
[8] Ohno H. Electrochemical Aspects of Ionic Liquids. John Wiley & Sons, 2005. 392
[9] Caillon-Caravanier M, Claude-Montigny B, Lemordant D, Bosser G. J. Power Sources, 2002, 107(1): 125—132
[10] Ratner M A, Shriver D F. Chem. Rev., 1988, 88: 109—124
[11] Fernicola A, Croce F, Scrosati B, Watanabe T, Ohno H. J. Power Sources, 2007, 174: 342—348
[12] Xu K, Zhang S, Angell C A. J. Electrochem. Soc., 1996, 143: 3548—3554
[13] Garcia B, Lavallée S, Armand M. Electrochim. Acta, 2004, 49: 4583—4588
[14] Sirisopanaporn C, Fernicola A, Scrosati B. J. Power Sources, 2009, 186: 490—495
[15] Lane G H, Best A S, MacFarlane D R, Hollenkamp A F, Forsyth M. J. Electrochem. Soc., 2010, 157: A876—A884
[16] Chen R J, Wu F, Li L, Xu B, Qiu X P, Chen S. J. Phys. Chem. C, 2007, 111: 5184—5194
[17] Yuan L X, Feng J K, Ai X P, Cao Y L, Chen S L, Yang H X. Electrochem. Commun., 2006, 8: 610—614
[18] Han H B, Nie J, Liu K, Li W K, Feng W F, Armand M, Matsumoto H J, Zhou Z B. Electrochim. Acta, 2010, 55: 1221—1226
[19] Xiang H F, Yin B, Wang H, Lin H W, Ge X W, Xie S, Chen C H. Electrochim. Acta, 2010, 55: 5204—5209
[20] Jin J, Li H H, Wei J P, Bian X K, Zhou Z, Yan J. Electrochem. Commun., 2009, 11: 1500—1503
[21] Yang L, Zhang Z X, Gao X H, Zhang H Q, Mashita K. J. Power Sources, 2006, 162: 614—619
[22] Tamura T, Hachida T, Yoshida K, Yoshida K, Tachikawa N, Dokko K, Watanabe M. J. Power Sources, 2010, 195: 6095—6100
[23] Yamaki J I, Yamazaki I, Egashira M, Okada S. J. Power Sources, 2001, 102: 288—293
[24] Arai J. J. Electrochem. Soc., 2003, 152: A219—A228
[25] Zhang L Z, Zhang Z C, Harring S, Straugan M, Butorac M, Chen Z H, Lyons L J, Amine K, West R. J. Mater. Chem., 2008, 18: 3713—3717
[26] Amine K, Wang Q Z, Vissers D R, Zhang Z C, Rossi N A A, West R. Electrochem. Commun., 2006, 8: 429—433
[27] Tse K Y, Zhang L Z, Baker S E, Nichols B M, West R, Hamers R. Chem. Mater., 2007, 19: 5734—5741
[28] Rossi N A, West R. Polym. Int., 2009, 58: 267—272
[29] Kang J, Li W, Wang X, Lin Y, Xiao X, Fang S. Electrochim. Acta, 2003, 48: 2487—2491
[30] Lee I J, Song G S, Lee W S, Suh D H. J. Power Sources, 2003, 114: 320—329
[31] Aurbach D, Levi M D, Levi E. Solid State Ionics, 2008, 179: 742—751
[32] Hooper R, Lyons L J, Mapes M K, Schumacher D, Moline D A, West R. Macromolecules, 2001, 34(4): 931—936
[33] Hooper R, Lyons L J, West R. Silicon Chem., 2002, 1(2): 121—128
[34] Rossi N A A , West R. Polym Int., 2009, 58: 267—272
[35] Zhang L Z, Zhang Z C, Harring S, Straughan M, Butorac R, Chen Z H, Lyons L, Amine K, West R. J. Mater. Chem., 2008, 18: 3713—3717
[36] Dong J, Zhang Z C, Kusachi Y K, Amine K. J. Power Sources, 2011, 196: 2255—2259
[37] Amine K, Wang Q Z, Vissers D R, Zhang Z C, Rossi N A A, West R. Electrochem. Commun., 2006, 8: 429—433
[38] Zhang L Z, Lyons L, Newhouse J, Zhang Z C, Straughan M, Chen Z H, Amine K, Hamers R J, West R. J. Mater. Chem., 2010, 20: 8224—8226
[39] Zhang Z C, Lyons L J, Jin J J, Amine K, West R. J. Mater. Chem., 2005, 17: 5646—5650
[40] Rossi N A A, Zhang Z C, Schneider Y, Morcom K, Lyons L J, Wang Q Z, Amine K, West R. J. Mater. Chem., 2006, 18: 1289—1295
[41] Zhang Z C, Dong J, West R, Amine K. J. Power Sources, 2010, 195: 6062—6068
[42] Nakahara H, Yoon S Y, Piao T, Mansfeld F, Nutt S. J. Power Sources, 2006, 158: 591—599
[43] Nakahara H, Yoon S Y, Nutt S. J. Power Sources, 2006, 158: 600—607
[44] Nakahara H, Masias A, Yoon S Y, Koike T, Takeya K. Proceedings of the 41st Power Sources Conference, Philadelphia, 14—17 June, 2004. 165—165
[45] Nakahara H, Nutt S. J. Power Sources, 2006, 158: 1386—1393
[46] Nakahara H, Yoon S Y, Nutt S. J. Power Sources, 2006, 160: 548—557
[47] Nakahara H, Tanaka M, Yoon S Y, Nutt S. J. Power Sources, 2006, 160: 645—650
[48] Nakahara H, Nutt S. J. Power Sources., 2006, 160: 1355—1360
[49] 郑洪河(Zheng H H), 秦建华(Qin J H), 郭宝生(Guo B S), 徐仲榆(Xu Z Y). 化学通报(Chemistry), 2004, 67(10): 786—788
[50] Zhang S S. J. Power Sources, 2006, 162: 1379—1394
[51] Schroeder G, Gierczyk B, Waszak D, Kopczyk M, Walkowiak M. Electrochem. Commun., 2006, 8: 523—527
[52] Schroeder G, Gierczyk B, Waszak D, Walkowiak M. Electrochem. Commun., 2006, 8: 1583—1587
[53] Xia Q, Wang B, Wu Y P, Luo H J, Zhao S Y, van Ree T. J. Power Sources, 2008, 180: 602—606
[54] Markovsky B, Nimberger A, Talyosef Y, Rodkin A, Belostotskii A M, Salitra G, Aurbach D, Kim H J. J. Power Sources, 2004, 136: 296—302
[55] Walkowiak M, Waszak D, Schroeder G, Gierczyk B. Electrochem. Commun., 2008, 10: 1676—1679
[56] Walkowiak M, Waszak D, Schroeder G, Gierczyk B. J. Solid State Electrochem., 2010, 14: 2213—2218
[57] Ryu Y G, Lee S S, Mah S K, Lee D J, Kwon K, Hwang S S, Doo S G. J. Electrochem. Soc., 2008, 155: A583—A589
[58] Song S W, Baek S W. Electrochem. Solid-State Lett., 2009, 12: A23—A27
[59] Zhang H P, Xia Q, Wang B, Yang L C, Wu Y P, Sun D L, Gan C L, Luo H J, Bebeda A W, van Ree T. Electrochem. Commun., 2009, 11: 526—529
[60] Takechi K, Shiga T. US 6 235 431 B1, 2001
[61] Nakanishi T, Kashida M, Miyawaki S, Ichinohe S, Aramata M. US 2006083 992 A1, 2006
[62] Rossi N A A, Wang Q Z, Amine K, West R. Silicon, 2010, 2: 201—208
[63] Kashida M, Nakanishi T, Miyawaki S, Aramata M. US 0 048 621 A1, 2007 《化学进展——量子化学专辑》近期目次预告 锌酶的计算模拟:挑战与最新进展 (巫瑞波 曹泽星 张颖凯) 小分子光解动力学的理论研究进展 (蒋彬 谢代前) 计算光化学 (刘亚军) 物质材料的结构预测和光物理性能模拟 (林晨升 程文旦 张炜龙 张浩 何长振) 新一代密度泛函方法XYG3 (张颖 徐昕) 基于从头计算法的三维碳同素异形体结构设计 (吴梦昊 戴军 曾晓成) 增长法在离域体系纳米线中的应用 (青木百合子 顾凤龙) 分子模拟中的增强抽样方法 (杨立江 邵强 高毅勤) 基于量子波包方法的态-态分辨反应散射动力学计算的研究进展 (孙志刚 张东辉) 准确快速计算含多肽酰胺和核酸碱基的氢键复合物的氢键强度和氢键作用势能曲线 (黄翠英 李阳 王长生)
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[7] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[12] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[13] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[14] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[15] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
阅读次数
全文


摘要

锂离子电池有机硅电解液