English
新闻公告
More
化学进展 2011, Vol. 23 Issue (8): 1769-1781 前一篇   后一篇

• 综述与评论 •

环境中典型人工纳米颗粒物毒性效应

蒋国翔, 沈珍瑶, 牛军峰*, 庄玲萍, 何天德   

  1. 北京师范大学环境学院 水环境模拟国家重点实验室 北京 100875
  • 收稿日期:2010-10-01 修回日期:2010-12-01 出版日期:2011-08-24 发布日期:2011-07-25
  • 通讯作者: 牛军峰 E-mail:junfengn@bnu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2010CB429003)、国家自然科学基金项目(No.21077010)、教育部科学技术研究重点项目(No.109026)和教育部"新世纪优秀人才支持计划"项目(No.NCET-08-0058)资助

Nanotoxicity of Engineered Nanomaterials in the Environment

Jiang Guoxiang, Shen Zhenyao, Niu Junfeng*, Zhuang Lingping, He Tiande   

  1. State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
  • Received:2010-10-01 Revised:2010-12-01 Online:2011-08-24 Published:2011-07-25

随着纳米技术和纳米材料在工业和生活中的大规模应用,大量的人工纳米颗粒物将不可避免地释放到环境介质(如水体、土壤、沉积物等)中。纳米颗粒物所具有的独特性质已引发人们对它们可能造成的健康风险和环境危害的关注和讨论。本文对目前环境中存在的几种主要典型人工纳米颗粒物的性质、来源、纳米毒性及影响纳米毒性的因素进行详细介绍,阐述了纳米颗粒物对生物的可能致毒机理。在分析纳米颗粒物毒性影响因素过程中,提出了纳米材料在环境中相关毒性研究展望。最后文中总结目前纳米材料在环境中的行为和毒性研究中所存在和面临的问题,并在此基础上提出将来纳米材料毒性的研究方向(如纳米材料的定量结构-活性关系,纳米材料表征技术及慢性毒性研究等)及需要改进的相关建议。

As the technological benefits of nanotechnology begin to rapidly move from laboratory to large-scale industrial application, release of nanomaterials to the environment including water, soil, sediment, and biosolids is inevitable. Concerns have been raised that the special properties of nanostructured materials that make them so attractive could potentially lead to unforeseen health risk or environmental hazards. The progress on the sources of nanoparticles, physicochemical properties and environmental or health risk is critically reviewed in this work. The environmental behavior of nanoparticles is analyzed when they are released into the aqueous environment. Toxicological effects of typical nanoparticles on bacteria, aquatic organisms, soil animals and mammalian cells are summarized. The possible toxicological mechanisms on these model microbes are then discussed. Furthermore, the relationships between toxicological effects of nanoparticles on model microbe and self-physicochemical/environmental factors are critically analyzed. The challenges and existing problems of nanotoxicity research are listed. Moreover, we also highlight the future research fields (such as quantitative structure activity relationship, QSAR) need regarding nanoparticles in the environment. It has been point out that more studies are urgently needed to scrutinize the characteristic methods of nanoscale materials and long-term research on the behavior and toxicity of nanoparticles in microbial community.

Contents
1 Introduction
2 Properties, sources and toxicity of nanomaterials
2.1 Properties
2.2 Sources
2.3 Environmental behaviors
2.4 Toxicological effects
3 Toxicity mechanisms of nanomaterials
3.1 Effects of size-dependent
3.2 Effects of generated ROS oxidation damage and oxidative stress
3.3 Effects of dissolved metal ions
4 Influence factors
4.1 Characteristics
4.2 Environmental factors
5 Existing problems and prospect

中图分类号: 

()

[1] Klaine S, Alvarez P, Batley G, Fernandes T, Handy R, Lyon D, Mahendra S, McLaughlin M, Lead J. Environ. Toxicol. Chem., 2008, 27(9): 1825-1851
[2] Nel A, Xia T, Madler L, Li N. Science, 2006, 311(5761): 622-627
[3] Handy R D, von der Kammer F, Lead J R, Hassellov M, Owen R, Crane M. Ecotoxicology, 2008, 17(4): 287-314
[4] Colvin V. Nat. Biotechnol., 2003, 21(10): 1166-1170
[5] 代云容(Dai Y R), 牛军峰(Niu J F), 殷立峰(Yin L F), 刘佳(Liu J), 蒋国翔(Jiang G X).化学进展(Progress in Chemistry), 2010, 22(9): 1808-1818
[6] Jemec A, Drobne D, Remskar M, Sepcic K, Tisler T. Environ. Toxicol. Chem., 2008, 27(9): 1904-1914
[7] Navarro E, Baun A, Behra R, Hartmann N B, Filser J, Miao A J, Quigg A, Santschi P H, Sigg L. Ecotoxicology, 2008, 17(5): 372-386
[8] Maynard A, Aitken R, Butz T, Colvin V, Donaldson K, Oberdrster G, Philbert M, Ryan J, Seaton A, Stone V. Nature, 2006, 444(7117): 267-269
[9] Adams L K, Lyon D Y, Alvarez P J. Water Res., 2006, 40(19): 3527-3532
[10] Adams L K, Lyon D Y, McIntosh A, Alvarez P J. Water Sci. Technol., 2006, 54(11/12): 327-334
[11] Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti M F, Fievet F. Nano Lett., 2006, 6(4): 866-870
[12] Huang Z, Zheng X, Yan D, Yin G, Liao X, Kang Y, Yao Y, Huang D, Hao B. Langmuir, 2008, 24(8): 4140-4144
[13] Simon-Deckers A, Loo S, Mayne-L'hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M. Environ. Sci. Technol., 2009, 43(21): 8423-8429
[14] Long T C, Saleh N, Tilton R D, Lowry G V, Veronesi B. Environ. Sci. Technol., 2006, 40(14): 4346-4352
[15] Worle-Knirsch J M, Kern K, Schleh C, Adelhelm C, Feldmann C, Krug H F. Environ. Sci. Technol., 2007, 41(1): 331-336
[16] Jiang W, Kim B Y, Rutka J T, Chan W C. Nat. Nanotechnol., 2008, 3(3): 145-150
[17] 李炜(Li W), 赵峰(Zhao F), 陈春英(Chen C Y), 赵宇亮(Zhao Y L). 化学进展(Progress in Chemistry), 2009, 21(2/3): 430-435
[18] 李鸿程(Li H C), 周群芳(Zhou Q F), 刘伟(Liu W), 闫兵(Yan B), 赵一兵(Zhao Y B), 江桂斌(Jiang G B). 中国科学B辑(Science in China: B), 2008, 38(5): 396-403
[19] 王震宇 (Wang Z Y),赵健(Zhao J),李娜(Li N),李锋民(Li F M),邢宝山(Xing B S). 环境科学(Environmental Science), 2010, 31 (6): 1409-1418
[20] Buzea C, Pacheco, II, Robbie K. Biointerphases, 2007, 2(4): art. no. MR17
[21] Nowack B, Bucheli T D. Environ. Pollut., 2007, 150(1): 5-22
[22] Stern S T, McNeil S E. Toxicol. Sci., 2008, 101(1): 4-21
[23] Lewinski N, Colvin V, Drezek R. Small, 2008, 4(1): 26-49
[24] Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y, Ohta T, Yasuhara M, Suzuki K, Yamamoto K. Nano Lett., 2004, 4(11): 2163-2169
[25] Zhang H, Gilbert B, Huang F, Banfield J F. Nature, 2003, 424(6952): 1025-1029
[26] Lee J, Cho M, Fortner J D, Hughes J B, Kim J H. Environ. Sci. Technol., 2009, 43(13): 4878-4883
[27] Lee I, Mackeyev Y, Cho M, Li D, Kim J H, Wilson L J, Alvarez P J. Environ. Sci. Technol., 2009, 43(17): 6604-6610
[28] Oberdorster G, Oberdorster E, Oberdorster J. Environ. Health Persp., 2005, 113: 823-829
[29] Oberdorster G, Ferin J, Lehnert B E. Environ. Health Persp.,1994, 102(S5): 173-179
[30] Leeuw T K, Reith R M, Simonette R A, Harden M E, Cherukuri P, Tsyboulski D A, Beckingham K M, Weisman R B. Nano Lett., 2007, 7(9): 2650-2654
[31] Kang S, Mauter M S, Elimelech M. Environ. Sci. Technol., 2008, 42(19): 7528-7534
[32] Helland A, Wick P, Koehler A, Schmid K, Som C. Environ. Health Persp., 2007, 115(8): 1125-1131
[33] Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank A M. Environ. Sci. Technol., 2006, 40(19): 6151-6156
[34] Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A. Environ. Pollut., 2010, 158(1): 41-47
[35] Chithrani B D, Ghazani A A, Chan W C. Nano Lett., 2006, 6(4): 662-668
[36] Kirschling T L, Gregory K B, Minkley E G, Lowry G V, Tilton R D. Environ. Sci. Technol., 2010, 44(9): 3474-3480
[37] Xiu Z M, Jin Z H, Li T L, Mahendra S, Lowry G V, Alvarez P J. Bioresour. Technol., 2010, 101(4): 1141-1146
[38] Clarke S, Hollmann C, Zhang Z, Suffern D, Bradforth S, Dimitrijevic N, Minarik W, Nadeau J. Nat. Mater., 2006, 5(5): 409-417
[39] Delehanty J, Mattoussi H, Medintz I. Anal. Bioanal. Chem., 2009, 393(4): 1091-1105
[40] Lead J, Wilkinson K. Environ. Chem., 2006, 3(3): 159-171
[41] Domingos R F, Tufenkji N, Wilkinson K I. Environ. Sci. Technol., 2009, 43(5): 1282-1286
[42] Domingos R F, Baalousha M A, Ju-Nam Y, Reid M M, Tufenkji N, Lead J R, Leppard G G, Wilkinson K J. Environ. Sci. Technol., 2009, 43(19): 7277-7284
[43] Battin T J, Kammer F V, Weilhartner A, Ottofuelling S, Hofmann T. Environ. Sci. Technol., 2009, 43(21): 8098-8104
[44] Holbrook R D, Murphy K E, Morrow J B, Cole K D. Nat. Nanotechnol., 2008, 3(6): 352-355
[45] Petersen E J, Akkanen J, Kukkonen J V, Weber W J, Jr. Environ. Sci. Technol., 2009, 43(8): 2969-2975
[46] Zhu X, Chang Y, Chen Y. Chemosphere, 2010, 78(3): 209-215
[47] Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q. Chemosphere, 2008, 73(7): 1121-1128
[48] Franklin N M, Rogers N J, Apte S C, Batley G E, Gadd G E, Casey P S. Environ. Sci. Technol., 2007, 41(24): 8484-8490
[49] Wang H, Wick R L, Xing B S. Environ. Pollut., 2009, 157(4): 1171-1177
[50] Lynch I, Cedervall T, Lundqvist M, Cabaleiro-Lago C, Linse S, Dawson K A. Adv. Colloid Interface Sci., 2007, 134/135: 167-174
[51] Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi M A, Cingolani R, Pompa P P. ACS Nano, 2010, 4(12): 7481-7491
[52] Dhawan A, Taurozzi J S, Pandey A K, Shan W, Miller S M, Hashsham S A, Tarabara V V. Environ. Sci. Technol., 2006, 40(23): 7394-7401
[53] Hussain S, Javorina A, Schrand A, Duhart H, Ali S, Schlager J. Toxicol. Sci., 2006, 92(2): 456-463
[54] Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh J I, Zink J I, Nel A E. ACS Nano, 2008, 2(10): 2121-2134
[55] Hussain S, Hess K, Gearhart J, Geiss K, Schlager J. Toxicol. in Vitro, 2005, 19(7): 975-983
[56] Witzmann F A, Monteiro-Riviere N A. Nanomedicine, 2006, 2(3): 158-168
[57] Gogoi S K, Gopinath P, Paul A, Ramesh A, Ghosh S S, Chattopadhyay A. Langmuir, 2006, 22: 9322-9328
[58] Braydich-Stolle L K, Speshock J L, Castle A, Smith M, Murdock R C, Hussain S M. ACS Nano, 2010, 4(7): 3661-3670
[59] Oh W K, Kim S, Choi M, Kim C, Jeong Y S, Cho B R, Hahn J S, Jang J. ACS Nano, 2010, 4(9): 5301-5313
[60] Lubick N. Environ. Sci. Technol., 2008, 42(23): 8617-8617
[61] Tong Z, Bischoff M, Nies L, Applegate B, Turco R F. Environ. Sci. Technol., 2007, 41(8): 2985-2991
[62] Nyberg L, Turco R F, Nies L. Environ. Sci. Technol., 2008, 42(6): 1938-1943
[63] Bradford A, Handy R D, Readman J W, Atfield A, Muhling M. Environ. Sci. Technol., 2009, 43(12): 4530-4536
[64] Shah V, Belozerova I. Water, Air, & Soil Pollution, 2009, 197(1): 143-148
[65] Wang S, Chang L, Wang Y, Wang Q, Yang C, Mei R. FEMS Microbiol. Ecol., 2009, 68(2): 182-191
[66] Karlsson H L, Cronholm P, Gustafsson J, Moller L. Chem. Res. Toxicol., 2008, 21(9): 1726-1732
[67] Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X. Environ. Sci. Technol., 2005, 39(5): 1378-1383
[68] Liu X, Vinson D, Abt D, Hurt R H, Rand D M. Environ. Sci. Technol., 2009, 43(16): 6357-6363
[69] Ringwood A H, Levi-Polyachenko N, Carroll D L. Environ. Sci. Technol., 2009, 43(18): 7136-7141
[70] Lyon D Y, Brunet L, Hinkal G W, Wiesner M R, Alvarez P J. Nano Lett., 2008, 8(5): 1539-1543
[71] Liu J, Aruguete D M, Murayama M, Hochella M F, Environ. Sci. Technol., 2009, 43(21): 8178-8183
[72] Wiench K, Wohlleben W, Hisgen V, Radke K, Salinas E, Zok S, Landsiedel R. Chemosphere, 2009, 76(10): 1356-1365
[73] Jiang W, Mashayekhi H, Xing B S. Environ. Pollut., 2009, 157(5): 1619-1625
[74] Reddy K M, Feris K, Bell J, Wingett D G, Hanley C, Punnoose A. Appl. Phys. Lett., 2007, 90: 2139021-2139023
[75] Keenan C R, Goth-Goldstein R, Lucas D, Sedlak D L. Environ. Sci. Technol., 2009, 43(12): 4555-4560
[76] Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W. Small, 2007, 3(11): 1941-1949
[77] Pal S, Tak Y K, Song J M. Appl. Environ. Microbiol., 2007, 73(6): 1712-1720
[78] Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R. Environ. Sci. Technol., 2008, 42(23): 8959-8964
[79] Kawata K, Osawa M, Okabe S. Environ. Sci. Technol., 2009, 43(15): 6046-6051
[80] Bar-Ilan O, Albrecht R, Fako V, Furgeson D. Small, 2009, 5(16): 1897-1910
[81] Li Z, Greden K, Alvarez P J, Gregory K B, Lowry G V. Environ. Sci. Technol., 2010, 44(9): 3462-3467
[82] Yoon K Y, Hoon Byeon J, Park J H, Hwang J. Sci. Total Environ., 2007, 373(2/3): 572-575
[83] Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K. Microbiol. Immunol., 2004, 48(9): 669-675
[84] Slaveykova V I, Startchev K, Roberts J. Environ. Sci. Technol., 2009, 43(13): 5117-5122
[85] Priester J, Stoimenov P, Mielke R, Webb S, Ehrhardt C, Zhang J, Stucky G, Holden P. Environ. Sci. Technol., 2009, 43(7): 2589-2594
[86] Wang J, Zhang X, Chen Y, Sommerfeld M, Hu Q. Chemosphere, 2008, 73(7): 1121-1128
[87] Jiang G X, Shen Z Y, Niu J F, Bao Y P, Chen J. He T D. J. Environ. Monitor., 2011, 13: 42-48
[88] Brunet L, Lyon D Y, Hotze E M, Alvarez P J, Wiesner M R. Environ. Sci. Technol., 2009, 43(12): 4355-4360
[89] Cho M, Fortner J D, Hughes J B, Kim J H. Environ. Sci. Technol., 2009, 43(19): 7410-7415
[90] Choi O, Hu Z. Environ. Sci. Technol., 2008, 42(12): 4583-4588
[91] Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh J I, Wiesner M R, Nel A E. Nano Lett., 2006, 6(8): 1794-1807
[92] Borm P J A, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E. Part. Fibre Toxicol., 2006, 3: art. no. 11
[93] Gurr J R, Wang A S, Chen C H, Jan K Y. Toxicology, 2005, 213(1/2): 66-73
[94] Brunner T J, Wick P, Manser P, Spohn P, Grass R N, Limbach L K, Bruinink A, Stark W J. Environ. Sci. Technol., 2006, 40(14): 4374-4381
[95] Limbach L K, Wick P, Manser P, Grass R N, Bruinink A, Stark W J. Environ. Sci. Technol., 2007, 41(11): 4158-4163
[96] Hyung H, Fortner J D, Hughes J B, Kim J H. Environ. Sci. Technol., 2007, 41(1): 179-184
[97] Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K. Occup. Environ. Med., 2007, 64(9): 609-615
[98] Thomas T, Bahadori T, Savage N, Thomas K. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2009, 1(4): 426-433
[99] Karlsson H, Gustafsson J, Cronholm P, Mller L. Toxicol. Lett., 2009, 188(2): 112-118
[100] Choi O, Deng K K, Kim N J, Ross L, Surampalli R Y, Hu Z. Water Res., 2008, 42(12): 3066-3074
[101] Kang S, Mauter M S, Elimelech M. Environ. Sci. Technol., 2009, 43(7): 2648-2653
[102] Goodman C, McCusker C, Yilmaz T, Rotello V. Bioconjugate Chem., 2004, 15(4): 897-900
[103] Asati A, Santra S, Kaittanis C, Perez J. ACS Nano, 2010, 4(9): 5321-5331
[104] Baalousha M. Sci. Total Environ., 2009, 407(6): 2093-2101
[105] Dunphy Guzman K A, Finnegan M P, Banfield J F. Environ. Sci. Technol., 2006, 40(24): 7688-7693
[106] Pettibone J M, Cwiertny D M, Scherer M, Grassian V H. Langmuir, 2008, 24(13): 6659-6667
[107] French R A, Jacobson A R, Kim B, Isley S L, Penn R L, Baveye P C. Environ. Sci. Technol., 2009, 43(5): 1354-1359
[108] Wilkinson K, Negre J C, Buffle J J. Contam. Hydrol., 1997, 26(1/4): 229-243
[109] Li Q, Xie B, Hwang Y S, Xu Y. Environ. Sci. Technol., 2009, 43(10): 3574-3579
[110] Hassett J P. Science, 2006, 311(5768): 1723-1724
[111] Ge L K, Chen J W, Qiao X L, Lin J, Cai X Y. Environ. Sci. Technol., 2009, 43(9): 3101-3107
[112] Liu J Z, Hopfinger A J. Chem. Res. Toxicol., 2008, 21(2): 459-466
[113] Puzyn T, Leszczynska D, Leszczynski J. Small, 2009, 5(22): 2494-2509
[114] Fourches D, Pu D, Tassa C, Weissleder R, Shaw S, Mumper R, Tropsha A. ACS Nano, 2010, 4(10): 5703-5712

[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[3] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[4] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[5] 韩鹏博, 徐赫, 安众福, 蔡哲毅, 蔡政旭, 巢晖, 陈彪, 陈明, 陈禹, 池振国, 代淑婷, 丁丹, 董宇平, 高志远, 管伟江, 何自开, 胡晶晶, 胡蓉, 胡毅雄, 黄秋忆, 康苗苗, 李丹霞, 李济森, 李树珍, 李文朗, 李振, 林新霖, 刘骅莹, 刘佩颖, 娄筱叮, 吕超, 马东阁, 欧翰林, 欧阳娟, 彭谦, 钱骏, 秦安军, 屈佳敏, 石建兵, 帅志刚, 孙立和, 田锐, 田文晶, 佟斌, 汪辉亮, 王东, 王鹤, 王涛, 王晓, 王誉澄, 吴水珠, 夏帆, 谢育俊, 熊凯, 徐斌, 闫东鹏, 杨海波, 杨清正, 杨志涌, 袁丽珍, 袁望章, 臧双全, 曾钫, 曾嘉杰, 曾卓, 张国庆, 张晓燕, 张学鹏, 张艺, 张宇凡, 张志军, 赵娟, 赵征, 赵子豪, 赵祖金, 唐本忠. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.
[6] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[7] 余思妍, 郑龙, 孟鹏飞, 史修东, 廖世军. 金属有机化合物框架材料衍生M-N/C类氧还原电催化剂[J]. 化学进展, 2021, 33(10): 1693-1705.
[8] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[9] 张鹏, 郭心洁, 张倩, 丁彩凤. 有机染料聚集在光化学传感中的应用[J]. 化学进展, 2020, 32(2/3): 286-297.
[10] 赵剑曦, 顾攀攀, 曾慧, 邓生禄. 表面活性剂在非极性有机溶剂中的自组装[J]. 化学进展, 2019, 31(5): 643-653.
[11] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[12] 卢金荣, 巨勇. 基于三萜骨架的超分子凝胶体系[J]. 化学进展, 2016, 28(2/3): 260-268.
[13] 赵剑曦. 表面活性剂在非极性有机溶剂中的复杂反相聚集体[J]. 化学进展, 2015, 27(2/3): 168-173.
[14] 阴永光, 李雁宾, 马旭, 刘景富, 江桂斌. 天然有机质介导的汞生物地球化学循环:结合作用与分子转化[J]. 化学进展, 2013, 25(12): 2169-2177.
[15] 彭邦银, 许适当, 池振国, 张锡奇, 张艺, 许家瑞. 压致变色聚集诱导发光材料[J]. 化学进展, 2013, 25(11): 1805-1820.