English
新闻公告
More
化学进展 2011, Vol. 23 Issue (01): 53-64 前一篇   后一篇

• 特约稿 •

富勒烯合成化学研究进展

邓顺柳1, 谢素原1,2   

  1. 1. 厦门大学化学化工学院化学系 厦门 361005;
    2. 厦门大学固体表面物理化学国家重点实验室 厦门 361005
  • 收稿日期:2010-09-01 修回日期:2010-10-01 出版日期:2011-01-20 发布日期:2011-09-02
  • 作者简介:e-mail:sldeng@xmu.edu.cn

Synthetic Chemistry of Fullerenes

Deng Shunliu1, Xie Suyuan1,2   

  1. 1. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
    2. State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
  • Received:2010-09-01 Revised:2010-10-01 Online:2011-01-20 Published:2011-09-02

富勒烯是一类由12个五元环和若干六元环组成的笼状分子, 自20世纪80年代中期被发现以来就以其独特的结构和新奇的性质而成为科学界研究的热点, 25年来, 无论在基础研究还是在实际应用领域都有了长足的进步, 人们在发展富勒烯合成新方法和寻找富勒烯新结构方面做了大量的工作。本文对富勒烯的各种宏量合成方法进行了回顾, 并概述了迄今已发表的60余种富勒烯新结构,包括各种富勒烯空笼、内嵌富勒烯、富勒烯笼外修饰衍生物及氮杂富勒烯等结构。

Fullerenes are a class of cage-like molecules made of hexagons and exactly twelve pentagons. Since the discovery of fullerene in the middle of 1980’s, the chemistry of fullerenes has become a flourishing field as a result of their unique structures and remarkable properties. In the past twenty-five years, significant progress has been achieved in both fundamental and practical fields. Efforts have been made to improve synthetic efficiency and to synthesize new species of fullerene cage. Herein we review the methods for fullerene synthesis and the novel cage geometries (more than 60 fullerene structures) that have been retrieved and characterized to date. Advances in the production, separation and characterization of various fullerenes are presented, including hollow fullerenes, endohedral fullerenes, exohedral derivatives of fullerenes and azafullerenes.

中图分类号: 

()

[1] Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985, 318(6042): 162—163
[2] Kratschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Nature, 1990, 347(6291): 354—358
[3] Haufler R E, Conceicao J, Chibante L P F, Chai Y, Byrne N E, Flanagan S, Haley M M, O'Brien S C, Smalley R E, Pan C, et al. J. Phys. Chem., 1990, 94(24): 8634—8636
[4] Tohji K, Paul A, Moro L, Malhotra R, Lorents D C, Ruoff R S. J. Phys. Chem., 1995, 99(50): 17785—17788
[5] Chai Y, Guo T, Jin C, Haufler R E, Chibante L P F, Fure J, Wang L, Alford J M, Smalley R E. J. Phys. Chem., 1991, 95(20): 7564—7568
[6] Xie S Y, Huang R B, Ding J, Yu L J, Wang Y H, Zheng L S. J. Phys. Chem. A, 2000, 104(31): 7161—7164
[7] Chibante L P F, Thess A, Alford J M, Diener M D, Smalley R E. J. Phys. Chem., 1993, 97(34): 8696—8700
[8] Fields C L, Pitts J R, Hale M J, Bingham C, Lewandowski A, King D E. J. Phys. Chem., 1993, 97(34): 8701—8702
[9] Laplaze D, Bernier P, Flamant G, Lebrun M, Brunelle A, Della-Negra S. Synth. Met., 1996, 77(1/3): 67—71
[10] Gerhardt P, Loeffler S, Homann K H. Chem. Phys. Lett., 1987, 137(4): 306—310
[11] Howard J B, McKinnon J T, Makarovsky Y, Lafleur A L, Johnson M E. Nature, 1991, 352(6331): 139—141
[12] Gao Z Y, Jiang W S, Sun D, Xie S Y, Huang R B, Zheng L S. Combust. Flame, 2010, 157(5): 966—969
[13] Murayama H, Tomonoh S, Alford J M, Karpuk M E. Fullerenes, Nanotubes, Carbon Nanostruct., 2004, 12(1 & 2): 1—9
[14] Chang T M, Naim A, Ahmed S N, Goodloe G, Shevlin P B. J. Am. Chem. Soc., 1992, 114(19): 7603—7604
[15] Taylor R, Langley G J, Kroto H W, Walton D R M. Nature, 1993, 366(6457): 728—731
[16] Xie S Y, Huang R B, Yu L J, Ding J, Zheng L S. Appl. Phys. Lett., 1999, 75(18): 2764—2766
[17] Xie S Y, Huang R B, Deng S L, Yu L J, Zheng L S. J. Phys. Chem. B, 2001, 105(9): 1734—1738
[18] Rubin Y, Parker T C, Khan S I, Holliman C L, McElvany S W. J. Am. Chem. Soc., 1996, 118(22): 5308—5309
[19] Tobe Y, Nakagawa N, Naemura K, Wakabayashi T, Shida T, Achiba Y. J. Am. Chem. Soc., 1998, 120(18): 4544—4545
[20] Tobe Y, Nakagawa N, Kishi J Y, Sonoda M, Naemura K, Wakabayashi T, Shida T, Achiba Y. Tetrahedron, 2001, 57(17): 3629—3636
[21] Scott L T, Boorum M M, McMahon B J, Hagen S, Mack J, Blank J, Wegner H, de Meijere A. Science, 2002, 295(5559): 1500—1503
[22] Amsharov K Y, Jansen M. J. Org. Chem., 2008, 73(7): 2931—2934
[23] Amsharov K, Jansen M. Chem. Commun., 2009, 2691—2693
[24] Otero G, Biddau G, Sanchez-Sanchez C, Caillard R, Lopez M F, Rogero C, Palomares F J, Cabello N, Basanta M A, Ortega J, Mendez J, Echavarren A M, Perez R, Gomez-Lor B, Martin-Gago J A. Nature, 2008, 454(7206): 865—868
[25] Kroto H W. Nature, 1987, 329(6139): 529—531
[26] Rohlfing E A, Cox D M, Kaldor A. J. Chem. Phys., 1984, 81(7): 3322—3330
[27] Smalley R E. Acc. Chem. Res., 1992, 25(3): 98—105
[28] Ewels C P. Nano Lett., 2006, 6(5): 890—895
[29] Heath J R, O'Brien S C, Zhang Q, Liu Y, Curl R F, Tittel F K, Smalley R E. J. Am. Chem. Soc., 1985, 107(25): 7779—7780
[30] Paquette L A, Ternansky R J, Balogh D W. J. Am. Chem. Soc., 1982, 104(16): 4502—4503
[31] Ternansky R J, Balogh D W, Paquette L A. J. Am. Chem. Soc., 1982, 104(16): 4503—4504
[32] Prinzbach H, Weller A, Landenberger P, Wahl F, Worth J, Scott L T, Gelmont M, Olevano D, von Issendorff B. Nature, 2000, 407(6800): 60—63
[33] Wahl F, Weiler A, Landenberger P, Sackers E, Voss T, Haas A, Lieb M, Hunkler D, Woerth J, Knothe L, Prinzbach H. Chem. Eur. J., 2006, 12(24): 6255—6267
[34] Piskoti C, Yarger J, Zettl A. Nature, 1998, 393(6687): 771—774
[35] Koshio A, Inakuma M, Sugai T, Shinohara H. J. Am. Chem. Soc., 2000, 122(2): 398—399
[36] Koshio A, Inakuma M, Wang Z W, Sugai T, Shinohara H. J. Phys. Chem. B, 2000, 104(33): 7908—7913
[37] Xie S Y, Gao F, Lu X, Huang R B, Wang C R, Zhang X, Liu M L, Deng S L, Zheng L S. Science, 2004, 304(5671): 699
[38] Tan Y Z, Li J, Zhu F, Han X, Jiang W S, Huang R B, Zheng Z, Qian Z Z, Chen R T, Liao Z J, Xie S Y, Lu X, Zheng L S. Nat. Chem., 2010, 2(4): 269—273
[39] Tan Y Z, Han X, Wu X, Meng Y Y, Zhu F, Qian Z Z, Liao Z J, Chen M H, Lu X, Xie S Y, Huang R B, Zheng L S. J. Am. Chem. Soc., 2008, 130(46): 15240—15241
[40] Troshin P A, Avent A G, Darwish A D, Martsinovich N, Abdul-Sada A K, Street J M, Taylor R. Science, 2005, 309(5732): 278—281
[41] Hummelen J C, Knight B, Pavlovich J, Gonzalez R, Wudl F. Science, 1995, 269(5230): 1554—1556
[42] Zhang G, Huang S, Xiao Z, Chen Q, Gan L, Wang Z. J. Am. Chem. Soc., 2008, 130(38): 12614—12615
[43] Tan Y Z, Liao Z J, Qian Z Z, Chen R T, Wu X, Liang H, Han X, Zhu F, Zhou S J, Zheng Z, Lu X, Xie S Y, Huang R B, Zheng L S. Nat. Mater., 2008, 7(10): 790—794
[44] Qian W, Bartberger M D, Pastor S J, Houk K N, Wilkins C L, Rubin Y. J. Am. Chem. Soc., 2000, 122(34): 8333—8334
[45] Qian W, Chuang S C, Amador R B, Jarrosson T, Sander M, Pieniazek S, Khan S I, Rubin Y. J. Am. Chem. Soc., 2003, 125(8): 2066—2067
[46] Wang C R, Shi Z Q, Wan L J, Lu X, Dunsch L, Shu C Y, Tang Y L, Shinohara H. J. Am. Chem. Soc., 2006, 128(20): 6605—6610
[47] Han X, Zhou S J, Tan Y Z, Wu X, Gao F, Liao Z J, Huang R B, Feng Y Q, Lu X, Xie S Y, Zheng L S. Angew. Chem. Int. Ed., 2008, 47(29): 5340—5343
[48] Wang C R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H. Nature, 2000, 408(6811): 426—427
[49] Stevenson S, Fowler P W, Heine T, Duchamp J C, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn H C. Nature, 2000, 408(6811): 427—428
[50] Olmstead M M, Lee H M, Duchamp J C, Stevenson S, Marciu D, Dorn H C, Balch A L. Angew. Chem. Int. Ed., 2003, 42(8): 900—903
[51] Shi Z Q, Wu X, Wang C-R, Lu X, Shinohara H. Angew. Chem. Int. Ed., 2006, 45(13): 2107—2111
[52] Yang S, Popov A A, Dunsch L. Angew. Chem., Int. Ed. 2007, 46(8): 1256—1259
[53] Kato H, Taninaka A, Sugai T, Shinohara H. J. Am. Chem. Soc., 2003, 125(26): 7782—7783
[54] Lu X, Nikawa H, Nakahodo T, Tsuchiya T, Ishitsuka M O, Maeda Y, Akasaka T, Toki M, Sawa H, Slanina Z, Mizorogi N, Nagase S. J. Am. Chem. Soc., 2008, 130(28): 9129—9136
[55] Lu X, Nikawa H, Tsuchiya T, Maeda Y, Ishitsuka M O, Akasaka T, Toki M, Sawa H, Slanina Z, Mizorogi N, Nagase S. Angew. Chem. Int. Ed., 2008, 47(45): 8642—8645
[56] Wakahara T, Nikawa H, Kikuchi T, Nakahodo T, Rahman G M A, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Yamamoto K, Mizorogi N, Slanina Z, Nagase S. J. Am. Chem. Soc., 2006, 128(44): 14228—14229
[57] Diener M D, Alford J M. Nature, 1998, 393(6686): 668—671
[58] Ettl R, Chao I, Diederich F, Whetten R L. Nature, 1991, 353(6340): 149—153
[59] Shustova N B, Kuvychko I V, Bolskar R D, Seppelt K, Strauss S H, Popov A A, Boltalina O V. J. Am. Chem. Soc., 2006, 128(49): 15793—15798
[60] Ioffe I N, Goryunkov A A, Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I. Angew. Chem. Int. Ed., 2009, 48(32): 5904—5907
[61] Yang S, Popov A A, Dunsch L. J. Phys. Chem. B, 2007, 111(49): 13659—13663
[62] Diederich F, Whetten R L, Thilgen C, Ettl R, Chao I, Alvarez M M. Science, 1991, 254(5039): 1768—1770
[63] Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y. Nature, 1992, 357(6374): 142—145
[64] Shustova N B, Newell B S, Miller S M, Anderson O P, Bolskar R D, Seppelt K, Popov A A, Boltalina O V, Strauss S H. Angew. Chem. Int. Ed., 2007, 46(22): 4111—4114
[65] Tan Y Z, Li J, Zhou T, Feng Y Q, Lin S C, Lu X, Zhan Z P, Xie S Y, Huang R B, Zheng L S. J. Am. Chem. Soc., 2010, 132(36): 12648—12652
[66] Popov A A, Krause M, Yang S, Wong J, Dunsch L. J. Phys. Chem. B, 2007, 111(13): 3363—3369
[67] Beavers C M, Chaur M N, Olmstead M M, Echegoyen L, Balch A L. J. Am. Chem. Soc., 2009, 131(32): 11519—11524
[68] Zuo T, Xu L, Beavers C M, Olmstead M M, Fu W, Crawford T D, Balch A L, Dorn H C. J. Am. Chem. Soc., 2008, 130(39): 12992—12997
[69] Wang C R, Sugai T, Kai T, Tomiyama T, Shinohara H. Chem. Commun., 2000, 557—558
[70] Stevenson S, Rice G, Glass T, Harlch K, Cromer F, Jordan M R, Craft J, Hadju E, Bible R, Olmstead M M, Maltra K, Fisher A J, Balch A L, Dorn H C. Nature, 1999, 401(6748): 55—57
[71] Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu M T H, Mizorogi N, Kobayashi K, Nagase S. J. Am. Chem. Soc., 2005, 127(36): 12500—12501
[72] Zuo T, Olmstead M M, Beavers C M, Balch A L, Wang G, Yee G T, Shu C, Xu L, Elliott B, Echegoyen L, Duchamp J C, Dorn H C. Inorg. Chem., 2008, 47(12): 5234—5244
[73] Nikawa H, Yamada T, Cao B, Mizorogi N, Slanina Z, Tsuchiya T, Akasaka T, Yoza K, Nagase S. J. Am. Chem. Soc., 2009, 131(31): 10950—10954
[74] Akasaka T, Wakahara T, Nagase S, Kobayashi K, Waelchli M, Yamamoto K, Kondo M, Shirakura S, Okubo S, Maeda Y, Kato T, Kako M, Nakadaira Y, Nagahata R, Gao X, van Caemelbecke E, Kadish K M. J. Am. Chem. Soc., 2000, 122(38): 9316—9317
[75] Feng L, Tsuchiya T, Wakahara T, Nakahodo T, Piao Q, Maeda Y, Akasaka T, Kato T, Yoza K, Horn E, Mizorogi N, Nagase S. J. Am. Chem. Soc., 2006, 128(18): 5990—5991
[76] Akasaka T, Wakahara T, Nagase S, Kobayashi K, Waelchli M, Yamamoto K, Kondo M, Shirakura S, Maeda Y, Kato T, Kako M, Nakadaira Y, Gao X, van Caemelbecke E, Kadish K M. J. Phys. Chem. B, 2001, 105(15): 2971—2974
[77] Olmstead M M, de Bettencourt-Dias A, Stevenson S, Dorn H C, Balch A L. J. Am. Chem. Soc., 2002, 124(16): 4172—4173
[78] Olmstead M M, Lee H M, Stevenson S, Dorn H C, Balch A L. Chem. Commun., 2002, 2688—2689
[79] Mercado B Q, Beavers C M, Olmstead M M, Chaur M N, Walker K, Holloway B C, Echegoyen L, Balch A L. J. Am. Chem. Soc., 2008, 130(25): 7854—7855
[80] Tagmatarchis N, Avent A G, Prassides K, Dennis T J S, Shinohara H. Chem. Commun., 1999, 1023—1024
[81] Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I. Chem. Eur. J., 2009, 15(40): 10486—10492
[82] Wang C—R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H. Angew. Chem. Int. Ed., 2001, 40(2): 397—399
[83] Dennis T J S, Kai T, Tomiyama T, Shinohara H. Chem. Commun., 1998, 619—620
[84] Ioffe I N, Chen C, Yang S, Sidorov L N, Kemnitz E, Troyanov S I. Angew. Chem. Int. Ed., 2010, 49(28): 4784—4787
[85] Beavers C M, Zuo T, Duchamp J C, Harich K, Dorn H C, Olmstead M M, Balch A L. J. Am. Chem. Soc., 2006, 128(35): 11352—11353
[86] Zuo T, Walker K, Olmstead M M, Melin F, Holloway B C, Echegoyen L, Dorn H C, Chaur M N, Chancellor C J, Beavers C M, Balch A L, Athans A J. Chem. Commun., 2008, 1067—1069
[87] Sun G, Kertesz M. Chem. Phys., 2002, 276(2): 107—114
[88] Zuo T, Beavers C M, Duchamp J C, Campbell A, Dorn H C, Olmstead M M, Balch A L. J. Am. Chem. Soc., 2007, 129(7): 2035—2043
[89] Troyanov S I, Tamm N B. Chem. Commun., 2009, 6035—6037
[90] Yang H, Beavers C M, Wang Z, Jiang A, Liu Z, Jin H, Mercado B Q, Olmstead M M, Balch A L. Angew. Chem. Int. Ed., 2010, 49(5): 886—890
[91] Kareev I E, Popov A A, Kuvychko I V, Shustova N B, Lebedkin S F, Bubnov V P, Anderson O P, Seppelt K, Strauss S H, Boltalina O V. J. Am. Chem. Soc., 2008, 130(40): 13471—13489
[92] Kemnitz E, Troyanov S I. Angew. Chem. Int. Ed., 2009, 48(14): 2584—2587
[93] Tagmatarchis N, Arcon D, Prato M, Shinohara H. Chem. Commun., 2002, 2992—2993
[94] Yang H, Lu C, Liu Z, Jin H, Che Y, Olmstead M M, Balch A L. J. Am. Chem. Soc., 2008, 130(51): 17296—17300
[95] Che Y, Yang H, Wang Z, Jin H, Liu Z, Lu C, Zuo T, Dorn H C, Beavers C M, Olmstead M M, Balch A L. Inorg. Chem., 2009, 48(13): 6004—6010
[96] Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I. Angew. Chem. Int. Ed., 2009, 48(48): 9102—9104
[97] Mercado B Q, Jiang A, Yang H, Wang Z, Jin H, Liu Z, Olmstead M M, Balch A L. Angew. Chem. Int. Ed., 2009, 48(48): 9114—9116
[98] Akasaka T, Nagase S, Kobayashi K, Walchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T. Angew. Chem., Int. Ed. Engl., 1997, 36(15): 1643—1645
[99] Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H. Nat. Chem., 2010, 2(8): 678—683
[100] Nikawa H, Kikuchi T, Wakahara T, Nakahodo T, Tsuchiya T, Rahman G M A, Akasaka T, Maeda Y, Yoza K, Horn E, Yamamoto K, Mizorogi N, Nagase S. J. Am. Chem. Soc., 2005, 127(27): 9684—9685
[101] Wang C R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H. Nature, 2000, 408(6811): 426—427
[102] Yang S, Dunsch L. J. Phys. Chem. B, 2005, 109(25): 12320—12328
[103] Yang S, Dunsch L. Chem. Eur. J., 2006, 12(2): 413—419
[104] Yang S, Troyanov S I, Popov A A, Krause M, Dunsch L. J. Am. Chem. Soc., 2006, 128(51): 16733—16739
[105] Wang T S, Chen N, Xiang J F, Li B, Wu J Y, Xu W, Jiang L, Tan K, Shu C Y, Lu X, Wang C R. J. Am. Chem. Soc., 2009, 131(46): 16646—16647
[106] Iiduka Y, Wakahara T, Nakajima K, Tsuchiya T, Nakahodo T, Maeda Y, Akasaka T, Mizorogi N, Nagase S. Chem. Commun., 2006, 19): 2057—2059
[107] Inoue T, Tomiyama T, Sugai T, Okazaki T, Suematsu T, Fujii N, Utsumi H, Nojima K, Shinohara H. J. Phys. Chem. B, 2004, 108(23): 7573—7579
[108] Shinohara H, Inakuma M, Hayashi N, Sato H, Saito Y, Kato T, Bandow S. J. Phys. Chem., 1994, 98(35): 8597—8599
[109] Stevenson S, Mackey M A, Stuart M A, Phillips J P, Easterling M L, Chancellor C J, Olmstead M M, Balch A L. J. Am. Chem. Soc., 2008, 130(36): 11844—11845
[110] Mercado B Q, Olmstead M M, Beavers C M, Easterling M L, Stevenson S, Mackey M A, Coumbe C E, Phillips J D, Phillips J P, Poblet J M, Balch A L. Chem. Commun., 2010, 279—281
[111] Krause M, Ziegs F, Popov A A, Dunsch L. ChemPhysChem, 2007, 8(4): 537—540
[112] Dunsch L, Yang S, Zhang L, Svitova A, Oswald S, Popov A A. J. Am. Chem. Soc., 2010, 132(15): 5413—5421
[113] Chen N, Chaur M N, Moore C, Pinzon J R, Valencia R, Rodriguez-Fortea A, Poblet J M, Echegoyen L. Chem. Commun., 2010, 4818—4820
[114] Yang S, Chen C, Popov A A, Zhang W, Liu F, Dunsch L. Chem. Commun., 2009, 6391—6393
[115] Weng Q H, He Q, Liu T, Huang H Y, Chen J H, Gao Z Y, Xie S Y, Lu X, Huang R B, Zheng L S. J. Am. Chem. Soc., 2010, ASAP
[116] Pradeep T, Vijayakrishnan V, Santra A K, Rao C N R. J. Phys. Chem., 1991, 95(26): 10564—10565
[117] Averdung J, Luftmann H, Schlachter I, Mattay J. Tetrahedron, 1995, 51(25): 6977—6982
[118] Lamparth I, Nuber B, Schick G, Skiebe A, Groesser T, Hirsch A. Angew. Chem. Int. Ed. Engl., 1995, 34(20): 2257—2259
[119] Hasharoni K, Bellavia-Lund C, KeshavarzK M, Srdanov G, Wudl F. J. Am. Chem. Soc., 1997, 119(45): 11128—11129
[120] Nuber B, Hirsch A. Chem. Commun., 1996, 1421—1422
[121] Tagmatarchis N, Okada K, Tomiyama T, Shinohara H. Synlett., 2000, 1761—1764 Science, 1995, 269(5230): 1554—1556

[42] Zhang G, Huang S, Xiao Z, Chen Q, Gan L, Wang Z. J. Am. Chem. Soc., 2008, 130(38): 12614—12615

[43] Tan Y Z, Liao Z J, Qian Z Z, Chen R T, Wu X, Liang H, Han X, Zhu F, Zhou S J, Zheng Z, Lu X, Xie S Y, Huang R B, Zheng L S. Nat. Mater., 2008, 7(10): 790—794

[44] Qian W, Bartberger M D, Pastor S J, Houk K N, Wilkins C L, Rubin Y. J. Am. Chem. Soc., 2000, 122(34): 8333—8334

[45] Qian W, Chuang S C, Amador R B, Jarrosson T, Sander M, Pieniazek S, Khan S I, Rubin Y. J. Am. Chem. Soc., 2003, 125(8): 2066—2067

[46] Wang C R, Shi Z Q, Wan L J, Lu X, Dunsch L, Shu C Y, Tang Y L, Shinohara H. J. Am. Chem. Soc., 2006, 128(20): 6605—6610

[47] Han X, Zhou S J, Tan Y Z, Wu X, Gao F, Liao Z J, Huang R B, Feng Y Q, Lu X, Xie S Y, Zheng L S. Angew. Chem., Int. Ed., 2008, 47(29): 5340—5343

[48] Wang C R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H. Nature, 2000, 408(6811): 426—427

[49] Stevenson S, Fowler P W, Heine T, Duchamp J C, Rice G, Glass T, Harich K, Hajdu E, Bible R, Dorn H C. Nature, 2000, 408(6811): 427—428

[50] Olmstead M M, Lee H M, Duchamp J C, Stevenson S, Marciu D, Dorn H C, Balch A L. Angew. Chem. Int. Ed., 2003, 42(8): 900—903

[51] Shi Z Q, Wu X, Wang C-R, Lu X, Shinohara H. Angew. Chem., Int. Ed., 2006, 45(13): 2107—2111

[52] Yang S, Popov A A, Dunsch L. Angew. Chem., Int. Ed. 2007, 46(8): 1256—1259

[53] Kato H, Taninaka A, Sugai T, Shinohara H. J. Am. Chem. Soc., 2003, 125(26): 7782—7783

[54] Lu X, Nikawa H, Nakahodo T, Tsuchiya T, Ishitsuka M O, Maeda Y, Akasaka T, Toki M, Sawa H, Slanina Z, Mizorogi N, Nagase S. J. Am. Chem. Soc., 2008, 130(28): 9129—9136

[55] Lu X, Nikawa H, Tsuchiya T, Maeda Y, Ishitsuka M O, Akasaka T, Toki M, Sawa H, Slanina Z, Mizorogi N, Nagase S. Angew. Chem. Int. Ed., 2008, 47(45): 8642—8645

[56] Wakahara T, Nikawa H, Kikuchi T, Nakahodo T, Rahman G M A, Tsuchiya T, Maeda Y, Akasaka T, Yoza K, Horn E, Yamamoto K, Mizorogi N, Slanina Z, Nagase S. J. Am. Chem. Soc., 2006, 128(44): 14228—14229

[57] Diener M D, Alford J M. Nature, 1998, 393(6686): 668—671

[58] Ettl R, Chao I, Diederich F, Whetten R L. Nature, 1991, 353(6340): 149—153

[59] Shustova N B, Kuvychko I V, Bolskar R D, Seppelt K, Strauss S H, Popov A A, Boltalina O V. J. Am. Chem. Soc., 2006, 128(49): 15793—15798

[60] Ioffe I N, Goryunkov A A, Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I. Angew. Chem. Int. Ed., 2009, 48(32): 5904—5907

[61] Yang S, Popov A A, Dunsch L. J. Phys. Chem. B, 2007, 111(49): 13659—13663

[62] Diederich F, Whetten R L, Thilgen C, Ettl R, Chao I, Alvarez M M. Science, 1991, 254(5039): 1768—1770

[63] Kikuchi K, Nakahara N, Wakabayashi T, Suzuki S, Shiromaru H, Miyake Y, Saito K, Ikemoto I, Kainosho M, Achiba Y. Nature, 1992, 357(6374): 142—145

[64] Shustova N B, Newell B S, Miller S M, Anderson O P, Bolskar R D, Seppelt K, Popov A A, Boltalina O V, Strauss S H. Angew. Chem. Int. Ed., 2007, 46(22): 4111—4114

[65] Tan Y Z, Li J, Zhou T, Feng Y Q, Lin S C, Lu X, Zhan Z P, Xie S Y, Huang R B, Zheng L S. J. Am. Chem. Soc., 2010, 132(36): 12648—12652

[66] Popov A A, Krause M, Yang S, Wong J, Dunsch L. J. Phys. Chem. B, 2007, 111(13): 3363—3369

[67] Beavers C M, Chaur M N, Olmstead M M, Echegoyen L, Balch A L. J. Am. Chem. Soc., 2009, 131(32): 11519—11524

[68] Zuo T, Xu L, Beavers C M, Olmstead M M, Fu W, Crawford T D, Balch A L, Dorn H C. J. Am. Chem. Soc., 2008, 130(39): 12992—12997

[69] Wang C R, Sugai T, Kai T, Tomiyama T, Shinohara H. Chem. Commun., 2000, 557—558

[70] Stevenson S, Rice G, Glass T, Harlch K, Cromer F, Jordan M R, Craft J, Hadju E, Bible R, Olmstead M M, Maltra K, Fisher A J, Balch A L, Dorn H C. Nature, 1999, 401(6748): 55—57

[71] Iiduka Y, Wakahara T, Nakahodo T, Tsuchiya T, Sakuraba A, Maeda Y, Akasaka T, Yoza K, Horn E, Kato T, Liu M T H, Mizorogi N, Kobayashi K, Nagase S. J. Am. Chem. Soc., 2005, 127(36): 12500—12501

[72] Zuo T, Olmstead M M, Beavers C M, Balch A L, Wang G, Yee G T, Shu C, Xu L, Elliott B, Echegoyen L, Duchamp J C, Dorn H C. Inorg. Chem., 2008, 47(12): 5234—5244

[73] Nikawa H, Yamada T, Cao B, Mizorogi N, Slanina Z, Tsuchiya T, Akasaka T, Yoza K, Nagase S. J. Am. Chem. Soc., 2009, 131(31): 10950—10954

[74] Akasaka T, Wakahara T, Nagase S, Kobayashi K, Waelchli M, Yamamoto K, Kondo M, Shirakura S, Okubo S, Maeda Y, Kato T, Kako M, Nakadaira Y, Nagahata R, Gao X, van Caemelbecke E, Kadish K M. J. Am. Chem. Soc., 2000, 122(38): 9316—9317

[75] Feng L, Tsuchiya T, Wakahara T, Nakahodo T, Piao Q, Maeda Y, Akasaka T, Kato T, Yoza K, Horn E, Mizorogi N, Nagase S. J. Am. Chem. Soc., 2006, 128(18): 5990—5991

[76] Akasaka T, Wakahara T, Nagase S, Kobayashi K, Waelchli M, Yamamoto K, Kondo M, Shirakura S, Maeda Y, Kato T, Kako M, Nakadaira Y, Gao X, van Caemelbecke E, Kadish K M. J. Phys. Chem. B, 2001, 105(15): 2971—2974

[77] Olmstead M M, de Bettencourt-Dias A, Stevenson S, Dorn H C, Balch A L. J. Am. Chem. Soc., 2002, 124(16): 4172—4173

[78] Olmstead M M, Lee H M, Stevenson S, Dorn H C, Balch A L. Chem. Commun., 2002, 2688—2689

[79] Mercado B Q, Beavers C M, Olmstead M M, Chaur M N, Walker K, Holloway B C, Echegoyen L, Balch A L. J. Am. Chem. Soc., 2008, 130(25): 7854—7855

[80] Tagmatarchis N, Avent A G, Prassides K, Dennis T J S, Shinohara H. Chem. Commun., 1999, 1023—1024

[81] Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I. Chem. Eur. J., 2009, 15(40): 10486—10492

[82] Wang C—R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H. Angew. Chem. Int. Ed., 2001, 40(2): 397—399

[83] Dennis T J S, Kai T, Tomiyama T, Shinohara H. Chem. Commun., 1998, 619—620

[84] Ioffe I N, Chen C, Yang S, Sidorov L N, Kemnitz E, Troyanov S I. Angew. Chem. Int. Ed., 2010, 49(28): 4784—4787

[85] Beavers C M, Zuo T, Duchamp J C, Harich K, Dorn H C, Olmstead M M, Balch A L. J. Am. Chem. Soc., 2006, 128(35): 11352—11353

[86] Zuo T, Walker K, Olmstead M M, Melin F, Holloway B C, Echegoyen L, Dorn H C, Chaur M N, Chancellor C J, Beavers C M, Balch A L, Athans A J. Chem. Commun., 2008, 1067—1069

[87] Sun G, Kertesz M. Chem. Phys., 2002, 276(2): 107—114

[88] Zuo T, Beavers C M, Duchamp J C, Campbell A, Dorn H C, Olmstead M M, Balch A L. J. Am. Chem. Soc., 2007, 129(7): 2035—2043

[89] Troyanov S I, Tamm N B. Chem. Commun., 2009, 6035—6037

[90] Yang H, Beavers C M, Wang Z, Jiang A, Liu Z, Jin H, Mercado B Q, Olmstead M M, Balch A L. Angew. Chem. Int. Ed., 2010, 49(5): 886—890

[91] Kareev I E, Popov A A, Kuvychko I V, Shustova N B, Lebedkin S F, Bubnov V P, Anderson O P, Seppelt K, Strauss S H, Boltalina O V. J. Am. Chem. Soc., 2008, 130(40): 13471—13489

[92] Kemnitz E, Troyanov S I. Angew. Chem. Int. Ed., 2009, 48(14): 2584—2587

[93] Tagmatarchis N, Arcon D, Prato M, Shinohara H. Chem. Commun., 2002, 2992—2993

[94] Yang H, Lu C, Liu Z, Jin H, Che Y, Olmstead M M, Balch A L. J. Am. Chem. Soc., 2008, 130(51): 17296—17300

[95] Che Y, Yang H, Wang Z, Jin H, Liu Z, Lu C, Zuo T, Dorn H C, Beavers C M, Olmstead M M, Balch A L. Inorg. Chem., 2009, 48(13): 6004—6010

[96] Tamm N B, Sidorov L N, Kemnitz E, Troyanov S I. Angew. Chem. Int. Ed., 2009, 48(48): 9102—9104

[97] Mercado B Q, Jiang A, Yang H, Wang Z, Jin H, Liu Z, Olmstead M M, Balch A L. Angew. Chem. Int. Ed., 2009, 48(48): 9114—9116

[98] Akasaka T, Nagase S, Kobayashi K, Walchli M, Yamamoto K, Funasaka H, Kako M, Hoshino T, Erata T. Angew. Chem., Int. Ed. Engl., 1997, 36(15): 1643—1645

[99] Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H. Nat. Chem., 2010, 2(8): 678—683

[100] Nikawa H, Kikuchi T, Wakahara T, Nakahodo T, Tsuchiya T, Rahman G M A, Akasaka T, Maeda Y, Yoza K, Horn E, Yamamoto K, Mizorogi N, Nagase S. J. Am. Chem. Soc., 2005, 127(27): 9684—9685

[101] Wang C R, Kai T, Tomiyama T, Yoshida T, Kobayashi Y, Nishibori E, Takata M, Sakata M, Shinohara H. Nature, 2000, 408(6811): 426—427

[102] Yang S, Dunsch L. J. Phys. Chem. B, 2005, 109(25): 12320—12328

[103] Yang S, Dunsch L. Chem. Eur. J., 2006, 12(2): 413—419

[104] Yang S, Troyanov S I, Popov A A, Krause M, Dunsch L. J. Am. Chem. Soc., 2006, 128(51): 16733—16739

[105] Wang T S, Chen N, Xiang J F, Li B, Wu J Y, Xu W, Jiang L, Tan K, Shu C Y, Lu X, Wang C R. J. Am. Chem. Soc., 2009, 131(46): 16646—16647

[106] Iiduka Y, Wakahara T, Nakajima K, Tsuchiya T, Nakahodo T, Maeda Y, Akasaka T, Mizorogi N, Nagase S. Chem. Commun., 2006, 19): 2057—2059

[107] Inoue T, Tomiyama T, Sugai T, Okazaki T, Suematsu T, Fujii N, Utsumi H, Nojima K, Shinohara H. J. Phys. Chem. B, 2004, 108(23): 7573—7579

[108] Shinohara H, Inakuma M, Hayashi N, Sato H, Saito Y, Kato T, Bandow S. J. Phys. Chem., 1994, 98(35): 8597—8599

[109] Stevenson S, Mackey M A, Stuart M A, Phillips J P, Easterling M L, Chancellor C J, Olmstead M M, Balch A L. J. Am. Chem. Soc., 2008, 130(36): 11844—11845

[110] Mercado B Q, Olmstead M M, Beavers C M, Easterling M L, Stevenson S, Mackey M A, Coumbe C E, Phillips J D, Phillips J P, Poblet J M, Balch A L. Chem. Commun., 2010, 279—281

[111] Krause M, Ziegs F, Popov A A, Dunsch L. ChemPhysChem, 2007, 8(4): 537—540

[112] Dunsch L, Yang S, Zhang L, Svitova A, Oswald S, Popov A A. J. Am. Chem. Soc., 2010, 132(15): 5413—5421

[113] Chen N, Chaur M N, Moore C, Pinzon J R, Valencia R, Rodriguez-Fortea A, Poblet J M, Echegoyen L. Chem. Commun., 4818—4820

[114] Yang S, Chen C, Popov A A, Zhang W, Liu F, Dunsch L. Chem. Commun., 2009, 6391—6393

[115] Weng Q H, He Q, Liu T, Huang H Y, Chen J H, Gao Z Y, Xie S Y, Lu X, Huang R B, Zheng L S. J. Am. Chem. Soc., 2010, ASAP

[116] Pradeep T, Vijayakrishnan V, Santra A K, Rao C N R. J. Phys. Chem., 1991, 95(26): 10564—10565

[117] Averdung J, Luftmann H, Schlachter I, Mattay J. Tetrahedron, 1995, 51(25): 6977—6982

[118] Lamparth I, Nuber B, Schick G, Skiebe A, Groesser T, Hirsch A. Angew. Chem., Int. Ed. Engl., 1995, 34(20): 2257—2259

[119] Hasharoni K, Bellavia-Lund C, Keshavarz-K M, Srdanov G, Wudl F. J. Am. Chem. Soc., 1997, 119(45): 11128—11129

[120] Nuber B, Hirsch A. Chem. Commun., 1996, 1421—1422

[121] Tagmatarchis N, Okada K, Tomiyama T, Shinohara H. Synlett, 2000, 1761—1764

 

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[10] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[11] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[12] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[13] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[14] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[15] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
阅读次数
全文


摘要

富勒烯合成化学研究进展