English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1308-1320 DOI: 10.7536/PC210838 前一篇   后一篇

• 综述与评论 •

MOF-COF框架杂化材料

王杰1, 冯亚青1,2,3, 张宝1,2,3,*()   

  1. 1 天津大学化工学院 天津 300350
    2 天津化学化工协同创新中心 天津 300072
    3 化学与精细化工广东省实验室揭阳分中心 揭阳 522000
  • 收稿日期:2021-08-23 修回日期:2021-09-21 出版日期:2022-04-01 发布日期:2021-12-02
  • 通讯作者: 张宝
  • 基金资助:
    国家自然科学基金项目(22078241); 中央高校基本科研业务费专项资金资助

MOF-COF Hybrid Frameworks Materials

Jie Wang1, Yaqing Feng1,2,3, Bao Zhang1,2,3()   

  1. 1 School of Chemical Engineering and Technology, Tianjin University,Tianjin 300350, China
    2 Collaborative Innovation Center of Chemical Science and Engineering,Tianjin 300072, China
    3 Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center,Jieyang 522000, China
  • Received:2021-08-23 Revised:2021-09-21 Online:2022-04-01 Published:2021-12-02
  • Contact: Bao Zhang
  • Supported by:
    National Natural Science Foundation of China(22078241); Fundamental Research Funds for the Central Universities.

金属有机框架(MOF)和共价有机框架(COF)材料是两种多孔的晶态材料,具备较大的比表面积、高的孔隙率,结构合成修饰方法丰富,因此在析氢、析氧、CO2还原、有机物降解、气体分离等多个方面都有应用前景。但MOF、COF自身仍有许多缺点,如MOF在水溶液中不稳定,结构易塌陷,COF无金属节点,功能较简单,催化性能有待进一步提高等。近年来,MOF-COF核壳杂化材料结合两种材料的优势解决各自的一些缺陷,有广泛的应用潜力,作为新的发展方向受到了关注。本文从MOF-COF杂化材料的类型、合成方法、应用等三个方面综述了近些年来MOF-COF材料的发展状况,并做出了展望。

Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are two porous crystalline materials, which have a large specific surface area, and high porosity and can be synthesized and modified via various methods. Therefore, they have found potential applications in hydrogen evolution, oxygen evolution, CO2 reduction, organic pollution degradation, gas separation and so on. However, MOF and COF still have many defects themselves. For example, most MOFs are unstable in the aqueous solution due to the collapse of the structures; and COFs with no metals involved are poor in catalytic performance. Furthermore, COFs normally lack certain functions. As a new area, MOF-COF hybrid materials have been explored in recent years. They can combine the characteristics of the two materials to solve some of their own defects, and have a wide range of application prospects. Herein, this article summarizes the development of MOF-COF materials in recent years from three aspects: the types, synthetic methods and applications of MOF-COF hybrid materials. A prospect is also proposed.

Contents

1 Introduction

1.1 MOF materials

1.2 COF materials

1.3 MOF-COF hybrid materials

2 Synthesis

2.1 MOF-on-COF

2.2 COF-on-MOF

3 Applications

3.1 Catalysis

3.2 Absorption and separation

3.3 Sensing

3.4 Others

4 Conclusion and outlook

()
图1 MOF的构筑单元及多孔结构
Fig. 1 Construction units and porous structure of MOF
图2 硼酸自缩合形成COFs
Fig. 2 Self-condensation of boric acid to form COFs
图3 组合可逆与不可逆反应合成TpPa-1
Fig. 3 Synthesis of TpPa-1 by combined reversible and irreversible reactions
图4 COF-MOF复合膜制备[40]
Fig. 4 Preparation of COF-MOF composite membrane[40]. Copyright 2016, American Chemical Society
图5 NH2-UiO-66/TpPa-1-COF杂化材料合成[36]
Fig. 5 Synthesis of NH2-UiO-66/TpPa-1-COF[36]. Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图6 (a) 有机化学中的模块化合成策略;(b) 框架化学中模块化合成策略用于构筑多组分框架;(c) 通过模块化合成构筑复杂结构[43]
Fig. 6 (a) Modular synthesis strategy in organic chemistry; (b) Construction of multicomponent frameworks through modular synthesis strategy in reticular chemistry; (c) Construction of complex structures by modular synthesis strategy[43]. Copyright 2020, American Chemical Society
图7 (COF-303@PCN-160(Zr))@MOF-5三模分层结构的构建[43]
Fig. 7 Construction of (COF-303@PCN-160(Zr))@MOF-5 three-mode hierarchical structure[43]. Copyright 2020, American Chemical Society
图8 NH2-MIL-68@TPA-COF杂化材料合成[46]
Fig. 8 Synthesis of NH2-MIL-68@TPA-COF[46]. Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图9 aza-MOF@COF制备过程[55]
Fig. 9 Preparation process of aza-MOF@COF[55]. Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图10 (a) COF/Mn-MOF杂化材料的生长过程及相应的SEM; (b) Mn-MOF的3D结构; (c) Mn-N相互作用的COF和Mn-MOF单元; (d) COF/Mn-MOF杂化层的侧面图[37]
Fig. 10 (a) The growth process of COF/Mn-MOF hybrid and SEM images; (b) The 3D structure of Mn-MOF; (c) The interlinked COF and Mn-MOF units based on the Mn-N interaction; (d) Side views of the COF/Mn-MOF hybrid[37]. Copyright 2019, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
表1 MOF-COF杂化框架应用
Table 1 Applications of MOF-COF hybrid framework
图11 COF-300@ZIF-8杂化膜材料[40]
Fig. 11 The Hybrid membrane material COF-300@ZIF-8[40]. Copyright 2016, American Chemical Society
[1]
Zhou H C, Kitagawa S. Chem. Soc. Rev., 2014, 43(16): 5415.

doi: 10.1039/C4CS90059F     URL    
[2]
Dhakshinamoorthy A, Asiri A M, García H. Angew. Chem. Int. Ed., 2016, 55(18): 5414.

doi: 10.1002/anie.201505581     pmid: 26970539
[3]
Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S T,Yazaydın A Ö Hupp J T. J. Am. Chem. Soc., 2012, 134(36): 15016.

doi: 10.1021/ja3055639     pmid: 22906112
[4]
Huang S M, Kou X X, Shen J, Chen G S, Ouyang G F. Angew. Chem. Int. Ed., 2020, 59(23): 8786.

doi: 10.1002/anie.201916474     URL    
[5]
Rasheed T, Hassan A A, Bilal M, Hussain T, Rizwan K. Chemosphere, 2020, 259: 127369.

doi: 10.1016/j.chemosphere.2020.127369     URL    
[6]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444     URL    
[7]
Roy A S, Mondal J, Banerjee B, Mondal P, Bhaumik A, Islam S M. Appl. Catal. A Gen., 2014, 469: 320.

doi: 10.1016/j.apcata.2013.10.017     URL    
[8]
Subudhi S, Mansingh S, Tripathy S P, Mohanty A, Mohapatra P, Rath D, Parida K. Catal. Sci. Technol., 2019, 9(23): 6585.

doi: 10.1039/C9CY01431D     URL    
[9]
Kuila A, Surib N A, Mishra N S, Nawaz A, Leong K H, Sim L C, Saravanan P, Ibrahim S. ChemistrySelect, 2017, 2(21): 6163.

doi: 10.1002/slct.201700998     URL    
[10]
Zhu B J, Zou R Q, Xu Q. Adv. Energy Mater., 2018, 8(24): 1801193.

doi: 10.1002/aenm.201801193     URL    
[11]
Shrestha N K, Patil S A, Cho S, Jo Y, Kim H, Im H. J. Mater. Chem. A, 2020, 8(46): 24408.

doi: 10.1039/D0TA07716J     URL    
[12]
Zhu W, Zhang C F, Li Q, Xiong L K, Chen R X, Wan X B, Wang Z, Chen W, Deng Z, Peng Y. Appl. Catal. B Environ., 2018, 238: 339.

doi: 10.1016/j.apcatb.2018.07.024     URL    
[13]
Lawson H D, Walton S P, Chan C. ACS Appl. Mater. Interfaces, 2021, 13(6): 7004.

doi: 10.1021/acsami.1c01089     URL    
[14]
Chen B L, Eddaoudi M, Reineke T M, Kampf J W, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2000, 122(46): 11559.

doi: 10.1021/ja003159k     URL    
[15]
Cavka J H, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud K P. J. Am. Chem. Soc., 2008, 130(42): 13850.

doi: 10.1021/ja8057953     URL    
[16]
DeCoste J B, Peterson G W, Schindler B J, Killops K L, Browe M A, Mahle J J. J. Mater. Chem. A, 2013, 1(38): 11922.

doi: 10.1039/c3ta12497e     URL    
[17]
DeCoste J B, Peterson G W, Jasuja H, Glover T G, Huang Y G, Walton K S. J. Mater. Chem. A, 2013, 1(18): 5642.

doi: 10.1039/c3ta10662d     URL    
[18]
Feng L, Wang K Y, Day G S, Ryder M R, Zhou H C. Chem. Rev., 2020, 120(23): 13087.

doi: 10.1021/acs.chemrev.0c00722     URL    
[19]
Nasalevich M A, van der Veen M, Kapteijn F, Gascon J. CrystEngComm, 2014, 16(23): 4919.

doi: 10.1039/C4CE00032C     URL    
[20]
Liu Y, Zhou W Q, Teo W L, Wang K, Zhang L Y, Zeng Y F, Zhao Y L. Chem, 2020, 6(12): 3172.

doi: 10.1016/j.chempr.2020.08.021     URL    
[21]
Waller P J, Gándara F, Yaghi O M. Acc. Chem. Res., 2015, 48(12): 3053.

doi: 10.1021/acs.accounts.5b00369     URL    
[22]
Geng K Y, Arumugam V, Xu H J, Gao Y N, Jiang D L. Prog. Polym. Sci., 2020, 108: 101288.

doi: 10.1016/j.progpolymsci.2020.101288     URL    
[23]
Yang Q, Luo M L, Liu K W, Cao H M, Yan H J. Appl. Catal. B Environ., 2020, 276: 119174.

doi: 10.1016/j.apcatb.2020.119174     URL    
[24]
Chen M H, Li H R, Liu C X, Liu J Y, Feng Y Q, Wee A G H, Zhang B. Coord. Chem. Rev., 2021, 435: 213778.

doi: 10.1016/j.ccr.2021.213778     URL    
[25]
Guo J, Xu Y H, Jin S B, Chen L, Kaji T, Honsho Y, Addicoat M A, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D L. Nat. Commun., 2013, 4: 2736.

doi: 10.1038/ncomms3736     pmid: 24220603
[26]
Kaur P, Hupp J T, Nguyen S T. ACS Catal., 2011, 1(7): 819.

doi: 10.1021/cs200131g     URL    
[27]
Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Angew. Chem. Int. Ed., 2020, 59(33): 13722.

doi: 10.1002/anie.202004796     URL    
[28]
Guan X Y, Li H, Ma Y C, Xue M, Fang Q R, Yan Y S, Valtchev V, Qiu S L. Nat. Chem., 2019, 11(6): 587.

doi: 10.1038/s41557-019-0238-5     URL    
[29]
Kandambeth S, Dey K, Banerjee R. J. Am. Chem. Soc., 2019, 141(5): 1807.

doi: 10.1021/jacs.8b10334     pmid: 30485740
[30]
Tripathy S P, Subudhi S, Parida K. Coord. Chem. Rev., 2021, 434: 213786.

doi: 10.1016/j.ccr.2021.213786     URL    
[31]
Li Y, Yang C X, Yan X P. Chem. Commun., 2017, 53(16): 2511.

doi: 10.1039/C6CC10188G     URL    
[32]
Zhang L, Wang J, Ren X Y, Zhang W T, Zhang T S, Liu X N, Du T, Li T, Wang J L. J. Mater. Chem. A, 2018, 6(42): 21029.

doi: 10.1039/C8TA07349J     URL    
[33]
Shan Y Y, Chen L Y, Pang H, Xu Q. Small Struct., 2021, 2(2): 2000078.

doi: 10.1002/sstr.202000078     URL    
[34]
Cheng Y D, Ying Y P, Zhai L Z, Liu G L, Dong J Q, Wang Y X, Christopher M P, Long S C, Wang Y X, Zhao D. J. Membr. Sci., 2019, 573: 97.

doi: 10.1016/j.memsci.2018.11.060     URL    
[35]
Li F, Wang D K, Xing Q J, Zhou G, Liu S S, Li Y, Zheng L L, Ye P, Zou J P. Appl. Catal. B Environ., 2019, 243: 621.

doi: 10.1016/j.apcatb.2018.10.043     URL    
[36]
Zhang F M, Sheng J L, Yang Z D, Sun X J, Tang H L, Lu M, Dong H, Shen F C, Liu J, Lan Y Q. Angew. Chem. Int. Ed., 2018, 57(37): 12106.

doi: 10.1002/anie.201806862     URL    
[37]
Sun W W, Tang X X, Yang Q S, Xu Y, Wu F, Guo S Y, Zhang Y F, Wu M H, Wang Y. Adv. Mater., 2019, 31(37): 1903176.

doi: 10.1002/adma.201903176     URL    
[38]
Zhuang G L, Gao Y F, Zhou X, Tao X Y, Luo J M, Gao Y J, Yan Y L, Gao P Y, Zhong X, Wang J G. Chem. Eng. J., 2017, 330: 1255.

doi: 10.1016/j.cej.2017.08.076     URL    
[39]
Gao M L, Qi M H, Liu L, Han Z B. Chem. Commun., 2019, 55(45): 6377.

doi: 10.1039/C9CC02174D     URL    
[40]
Fu J R, Das S, Xing G L, Ben T, Valtchev V, Qiu S L. J. Am. Chem. Soc., 2016, 138(24): 7673.

doi: 10.1021/jacs.6b03348     URL    
[41]
Firoozi M, Rafiee Z, Dashtian K. ACS Omega, 2020, 5(16): 9420.

doi: 10.1021/acsomega.0c00539     pmid: 32363294
[42]
Jiang H L, Fu Q B, Wang M L, Lin J M, Zhao R S. Food Chem., 2021, 345: 128841.

doi: 10.1016/j.foodchem.2020.128841     URL    
[43]
Feng L, Wang K Y, Lv X L, Yan T H, Li J R, Zhou H C. J. Am. Chem. Soc., 2020, 142(6): 3069.

doi: 10.1021/jacs.9b12408     URL    
[44]
Huang A S, Bux H, Steinbach F, Caro J. Angew. Chemi. Int. Ed., 2010, 49(29): 4958.
[45]
Yuan Y C, Sun B, Cao A M, Wang D, Wan L J. Chem. Commun., 2018, 54(47): 5976.

doi: 10.1039/C8CC02381F     URL    
[46]
Peng Y W, Zhao M T, Chen B, Zhang Z C, Huang Y, Dai F N, Lai Z C, Cui X Y, Tan C L, Zhang H. Adv. Mater., 2018, 30(3): 1705454.

doi: 10.1002/adma.201705454     URL    
[47]
Sun D R, Jang S, Yim S J, Ye L, Kim D P. Adv. Funct. Mater., 2018, 28(13): 1707110.

doi: 10.1002/adfm.201707110     URL    
[48]
Lu G L, Huang X B, Li Y, Zhao G X, Pang G S, Wang G. J. Energy Chem., 2020, 43: 8.

doi: 10.1016/j.jechem.2019.07.014     URL    
[49]
Cai M K, Li Y L, Liu Q L, Xue Z Q, Wang H P, Fan Y N, Zhu K L, Ke Z F, Su C Y, Li G Q. Adv. Sci., 2019, 6(8): 1802365.

doi: 10.1002/advs.201802365     URL    
[50]
GarzÓn-Tovar L, PÉrez-Carvajal J, Yazdi A, Hernández-Muñoz J, Tarazona P, Imaz I, Zamora F, Maspoch D. Angew. Chem. Int. Ed., 2019, 58(28): 9512.

doi: 10.1002/anie.201904766     URL    
[51]
Zhang L, Liu Z W, Deng Q Q, Sang Y J, Dong K, Ren J S, Qu X G. Angew. Chem. Int. Ed., 2021, 60(7): 3469.

doi: 10.1002/anie.202012487     pmid: 33118263
[52]
Yola M L, Atar N. Nanoscale, 2020, 12(38): 19824.

doi: 10.1039/D0NR05614F     URL    
[53]
Wang X Y, Yin H Q, Yin X B. ACS Appl. Mater. Interfaces, 2020, 12(18): 20973.

doi: 10.1021/acsami.0c04147     URL    
[54]
Rahmati E, Rafiee Z. J. Porous Mater., 2021, 28(1): 19.

doi: 10.1007/s10934-020-00965-2     URL    
[55]
Peng H J, Raya J, Richard F, Baaziz W, Ersen O, Ciesielski A, Samorì P. Angew. Chem. Int. Ed., 2020, 59(44): 19602.

doi: 10.1002/anie.202008408     URL    
[56]
Zhang H W, Zhu Q Q, Yuan R R, He H M. Sens. Actuat. B Chem., 2021, 329: 129144.

doi: 10.1016/j.snb.2020.129144     URL    
[57]
Li W T, Shi W, Hu Z J, Yang T, Chen M L, Zhao B, Wang J H. Appl. Surf. Sci., 2020, 530: 147254.

doi: 10.1016/j.apsusc.2020.147254     URL    
[58]
Chen Z P, He Z L, Luo X G, Wu F S, Tang S, Zhang J. Food Anal. Methods, 2020, 13(6): 1346.

doi: 10.1007/s12161-020-01750-2     URL    
[59]
Lin G Q, Ding H M, Yuan D Q, Wang B S, Wang C. J. Am. Chem. Soc., 2016, 138(10): 3302.

doi: 10.1021/jacs.6b00652     URL    
[60]
Chen L Y, Luque R, Li Y W. Dalton Trans., 2018, 47(11): 3663.

doi: 10.1039/C8DT00092A     URL    
[61]
Jiang X, Li S W, He S S, Bai Y P, Shao L. J. Mater. Chem. A, 2018, 6(31): 15064.

doi: 10.1039/C8TA03872D     URL    
[62]
Liu X K, Hu M Y, Wang M H, Song Y P, Zhou N, He L H, Zhang Z H. Biosens. Bioelectron., 2019, 123: 59.

doi: 10.1016/j.bios.2018.09.089     URL    
[1] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[2] 李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
[3] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[4] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[5] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[6] 姚臻, 王祖飞, 于云飞, 杨文龙, 曹堃*. 聚双环戊二烯基多孔材料的制备及性能[J]. 化学进展, 2017, 29(5): 524-529.
[7] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[8] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[9] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[10] 付艳艳, 严秀平*. 金属-有机骨架复合材料[J]. 化学进展, 2013, 25(0203): 221-232.
[11] 杨勇 沈泓滢 邢航 潘毅 白俊峰 . 微孔配位聚合物作为新型储氢材料的研究[J]. 化学进展, 2006, 18(05): 648-656.
[12] 魏文英,方键,孔海宁,韩金玉,常贺英. 金属有机骨架材料的合成及应用[J]. 化学进展, 2005, 17(06): 1110-1115.
阅读次数
全文


摘要

MOF-COF框架杂化材料