English
新闻公告
More
化学进展 2022, Vol. 34 Issue (8): 1706-1722 DOI: 10.7536/PC210827 前一篇   后一篇

• 综述 •

钙钛矿光伏电池的非辐射复合损耗及调控策略

唐森林, 高欢, 彭颖, 李明光*(), 陈润锋*(), 黄维   

  1. 南京邮电大学有机电子与信息显示国家重点实验室 江苏省生物传感材料与技术重点实验室 信息材料与纳米技术研究院 江苏先进生物与化学制造协同创新中心 南京 210023
  • 收稿日期:2021-08-20 修回日期:2021-11-07 出版日期:2022-08-20 发布日期:2021-12-02
  • 通讯作者: 李明光, 陈润锋
  • 基金资助:
    国家自然科学基金项目(61704089); 中国博士后科学基金面上资助(2019M661899); 江苏省博士后科研资助计划(2019K140)

Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells

Senlin Tang, Huan Gao, Ying Peng, Mingguang Li(), Runfeng Chen(), Wei Huang   

  1. State Key Laboratory of Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
  • Received:2021-08-20 Revised:2021-11-07 Online:2022-08-20 Published:2021-12-02
  • Contact: Mingguang Li, Runfeng Chen
  • Supported by:
    This study was supported in part by the National Natural Science Foundation of China(61704089); China Postdoctoral Science Foundation(2019M661899); Jiangsu Planned Projects for Postdoctoral Research Funds(2019K140)

基于金属卤化物的钙钛矿光伏电池(PSCs)具有较大的光吸收系数、长的载流子扩散距离以及较低的制备成本等优势,在过去十几年来得到了研究者的广泛关注,目前最高光电转换效率(PCE)已经达到25.5%。然而,由于载流子运输过程中存在各类非辐射复合损耗,器件的PCE仍然低于肖克利-奎伊瑟理论极限。本文围绕PSCs的结构与工作原理,着重综述了器件工作过程中常见的非辐射复合方式,具体包括缺陷辅助复合、界面诱导复合、俄歇复合和带尾复合等,这些复合方式作为影响器件效率与工作稳定性的重要因素,受到研究者的广泛关注。结合最新的研究进展,从减小钙钛矿晶体缺陷、钝化晶界缺陷、钝化表面缺陷、优化能级结构等四个方面总结概括了降低非辐射复合的常用措施和策略。最后,对PSCs的非辐射复合调控前景进行了展望。

Over the past decades, metal-halide perovskite solar cells (PSCs) have seen rapid development and gained extensive attention because of their excellent advantages of high light absorption coefficient, longer carrier diffusion distance, lower preparation cost, etc. By now, the champion power conversion efficiency (PCE) has reached 25.5% within a few decades. However, the PCE of the device is still lower than the Shockley-Queisser (S-Q) theoretical limit due to the fact that various non-radiative recombination losses usually take place during carrier transport process. In this review, we first introduce the device structure and working principle of PSCs, and then summarize common non-radiative recombination loss pathways, including defect-assisted Shockley-Read-Hall (SRH) recombination, interface-induced recombination, Auger recombination, band-tail recombination processes, etc. These recombination modes are the main reasons leading to low efficiency and poor stability of PSCs, and thus have drawn considerable attention among researchers. Based on the latest research works, we summarize the general regulation strategies to reduce the undesired non-radiative recombination processes for the construction of high-efficiency and stable PSCs. These efficient regulation strategies mainly include reduction of perovskite crystal defects, passivation of grain boundary defects, passivation of interface defects and optimization of energy level structure. Finally, the opportunities and challenges for the development prospects of non-radiative recombination regulation are discussed.

Contents

1 Introduction

2 Non-radiative recombination mechanisms

2.1 Carrier generation and recombination

2.2 Defect-assisted recombination

2.3 Interface-induced recombination

2.4 Other non-radiative recombination

3 Regulation strategies to reduce non-radiative recombination

3.1 Reduction of perovskite crystal defects

3.2 Passivation of grain boundary defects

3.3 Passivation of interface defects

3.4 Optimization of energy level structure

4 Conclusion and outlook

()
图1 (a) 金属卤化PVK的晶体结构,(b) PSCs工作原理[23]
Fig. 1 (a) Crystal structure of metal halide perovskites. (b) Working principle of PSCs[23]
图2 (a) 辐射复合,(b)缺陷辅助复合,EC 和 EV分别为导带(CB)最小值和价带(VB)最大值,(c)界面诱导复合损失的方式。蓝色箭头代表复合过程,红色箭头代表载流子反向转移过程。HOMO代表最高占据分子轨道,LUMO代表最低空置分子轨道
Fig. 2 (a) Radiative recombination. (b) Defect-assisted recombination. EC and EV are the conduction band minimum and valence band maximum, respectively. (c) Diagrams showing the origins of interface-induced recombination losses. The blue arrows represent recombination processes and the red arrows represent charge-carrier back-transfer processes. HOMO is short for highest occupied molecular orbital; LUMO is short for lowest unoccupied molecular orbital
图3 PVK晶体晶格中的各类缺陷(黄色、蓝色和紫色分别代表A、B、X位离子):(a) 理想晶格,(b) 空位,(c) 插入,(d) 反位取代,(e) 弗兰克尔缺陷,(f) 肖特基缺陷,(g) 杂质取代,(h) 间隙杂质,(i) 位错,(j) 晶界,(k) 沉淀
Fig. 3 Illustration of various defects in a PVK crystal lattice (yellow, blue, and purple dots represent the A-, B-, and X-site ions, respectively): (a) perfect lattice, (b) vacancy, (c) interstitial, (d) anti-site substitution, (e) Frenkel defect, (f) Schottky defect, (g) substitutional impurity, (h) interstitial impurity, (i) edge dislocation, (j) grain boundary, (k) precipitate
图4 (a) 直接和间接俄歇复合,(b) 带尾复合。Ea为捕获电子的活化能
Fig. 4 (a) Direct and indirect Auger recombination. (b) Band-tail recombination. Ea is the activation energy of the trapped electron
图5 (a) PVK薄膜制备流程示意图,X表示路易斯碱,(b) DMSO和(c) NMP的分子结构图与相应制备的PVK薄膜SEM图[52]
Fig. 5 (a) A schematic process for formation of perovskite films where X indicates Lewis bases. Molecular structure of (b) DMSO and (c) NMP, and corresponding SEM images of resulting perovskite films[52]
图6 从前驱体溶液到形成完整PVK晶粒的反应示意图[65]
Fig. 6 Schematic reaction process from the precursor to monolithic PVK grains[65]
图7 (a) 甲胺(CH3NH2)诱导MAPbI3薄膜缺陷修复机制示意图,(b) MAPbI3薄膜的原位光致发光图,从左至右依次为原始MAPbI3薄膜、MAPbI3·xCH3NH2中间相膜、部分脱气膜、愈合膜[73]
Fig. 7 (a) Schematic illustration of the mechanisms for methylamine(CH3NH2) induced defect-healing strategy. (b) In situ photoluminescence maps of a MAPbI3 film, including raw film, MAPbI3·xCH3NH2 intermediate film, partially degassed film, and healed film[73]
图8 (a) 单晶PVK薄膜生长机制,(b) MAPbI3单晶薄膜照片,(c) 不同厚度MAPbI3 单晶的SEM截面图[81]
Fig. 8 (a) Growth mechanism of PVK thin single crystals. (b) Photographs of a MAPbI3 thin single crystal. (c) Cross-sectional SEM images of the MAPbI3 thin single crystals[81]
图9 (a) PbI2和PVK的能带排列,(b) PbI2调控PVK/HTL界面[90],(c) 使用添加剂HPbI3的PVK薄膜制备示意图[93],(d) Rh3+诱导PVK结晶机理示意图[96]
Fig. 9 (a) The band alignments of PbI2 and PVK. (b) The interface of PVK/HTL regulated by PbI2[90]. (c) Schematic illustration of the fabrication process of PVK films with additive HPbI3[93]. (d) Schematic plot of mechanism for Rh3+-induced PVK crystallization[96]
图10 (a) PBTI钝化PVK薄膜缺陷示意图,(b)氯苯处理和PBTI处理的PVK/NiOx/ITO样品的荧光寿命曲线[113],(c) 未配位Pb2+与DMAP相互作用示意图,(d) 未处理、DMAP处理的PVK和DMAP粉末的傅里叶变换红外(FTIR)光谱,(e) 原始PVK和15 mmol/L DMAP处理的PVK的X射线光电子能谱(XPS)光谱[116],(f) 2-氨基对苯二甲酸实现晶界缺陷钝化的示意图,(g) 惰性气体环境下未封装器件PCE随时间的变化曲线以及原始和交联PVK膜的接触角照片[117]
Fig. 10 (a) Poly(bithiophene imide)(PBTI) treated PVK films and the corresponding defects. (b) Time-resolved photoluminescence (TRPL) spectra for chlorobenzene- and PBTI polymer-treated PVK films prepared on NiOx/ITO substrates[113]. (c) Schematic illustration of the interaction between uncoordinated Pb2+ and 4-dimethylaminopyridine (DMAP). (d) Fourier-transform infrared spectroscopy (FTIR) spectra of bare PVK, DMAP-treated PVK, and DMAP powder. (e) X-ray photoelectron spectroscopy (XPS) spectra of bare and 15 mmol/L DMAP-treated PVK[116]. (f) Illustration of the grains and defects passivation by 2-aminoterephthalic acid. (g) Evolution of PCE for unencapsulated devices stored in glove box filled with N2 and the images of contact angles of water droplets on surfaces of pristine and cross-linked PVK films[117]
图11 (a) PSCs 的器件结构与界面钝化机理示意图,(b) 稳态输出电流密度和效率测试[118],(c) 器件SEM截面图,(d) PVK, ETL/PVK, ETL/PMMA:PCBM/PVK以及ETL/PMMA:PCBM/PVK/PMMA样品的荧光寿命测试,(e) PVK, PVK/HTL 与 PVK/PMMA/HTL的荧光寿命测试[123],(f) PEAMAPI在PVK薄膜表面堆积示意图[126],(g)二维-三维PVK薄膜的晶体结构和器件结构示意图[127]J
Fig. 11 (a) Device structure of the PSCs and schematic diagram of the interface passivation mechanism. (b) Stable output current density and PCE measurements[118]. (c) SEM cross-sectional image of the PVK cell. (d) TRPL measurements of PVK, ETL/PVK, ETL/PMMA:PCBM/PVK and ETL/PMMA:PCBM/PVK/PMMA. (e) TRPL measurements of PVK, PVK/HTL and PVK/PMMA/HTL[123]. (f) Schematic interpretation of the surface reorganization of PVK films upon PEAMAPI formation[126]. (g) Schematic illustrations of the crystal structure of 2D-3D PVK films and the device architecture[127]
图12 (a) 器件不同功能层的能级排列,VL为真空能级[36],(b) 基于介孔TiO2、介孔TiO2/SnO2纳米晶和介孔TiO2/非晶态SnO2层的器件能带排列示意图[141]
Fig. 12 (a) Schematic energy-level diagram of the different layers, VL refers to vacuum level[36]. (b) Schematics of band alignment for devices based on mesoporous-TiO2 (mp-TiO2), mp-TiO2/SnO2-nanocrystalline, and mp-TiO2/amorphous-SnO2[141]
[1]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r     URL    
[2]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2(1): 591.

doi: 10.1038/srep00591     URL    
[3]
Yoo J J, Seo G, Chua M R, Park T G, Lu Y L, Rotermund F, Kim Y K, Moon C S, Jeon N J, Correa-Baena J P, Bulović V, Shin S S, Bawendi M G, Seo J. Nature, 2021, 590(7847): 587.

doi: 10.1038/s41586-021-03285-w     URL    
[4]
Nishimura T, Toki S, Sugiura H, Nakada K, Yamada A. Prog. Photovolt.: Res. Appl., 2018, 26(4): 291.

doi: 10.1002/pip.2972     URL    
[5]
Dai Z H, Yadavalli S K, Chen M, Abbaspourtamijani A, Qi Y, Padture N P. Science, 2021, 372(6542): 618.

doi: 10.1126/science.abf5602     URL    
[6]
Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X J. Prog. Photovolt.: Res. Appl., 2021, 29: 657.

doi: 10.1002/pip.3444     URL    
[7]
Shockley W, Queisser H J. J. Appl. Phys., 1961, 32(3): 510.

doi: 10.1063/1.1736034     URL    
[8]
Sutanto A, Caprioglio P, Drigo N, Hofstetter Y, Garcia-Benito I, Queloz V, Neher D, Nazeeruddin M, Stolterfoht M, Vaynzof Y, Grancini G. Chem, 2021, 7: 1903.

doi: 10.1016/j.chempr.2021.04.002     URL    
[9]
Lin D X, Xu X, Zhang T K, Pang N N, Wang J M, Li H Y, Shi T T, Chen K, Zhou Y, Wang X, Xu J B, Liu P Y, Xie W G. Nano Energy, 2021, 84: 105893.
[10]
Fu W F, Liu H B, Shi X L, Zuo L J, Li X S, Jen A K Y. Adv. Funct. Mater., 2019, 29(25): 1900221.
[11]
Fan J D, Ma Y P, Zhang C L, Liu C, Li W Z, Schropp R E I, Mai Y H. Adv. Energy Mater., 2018, 8(16): 1703421.
[12]
Koh T M, Shanmugam V, Guo X T, Lim S S, Filonik O, Herzig E M, Müller-Buschbaum P, Swamy V, Chien S T, Mhaisalkar S G, Mathews N. J. Mater. Chem. A, 2018, 6(5): 2122.

doi: 10.1039/C7TA09657G     URL    
[13]
Kuo M Y, Spitha N, Hautzinger M P, Hsieh P L, Li J, Pan D X, Zhao Y Z, Chen L J, Huang M H, Jin S, Hsu Y J, Wright J C. J. Am. Chem. Soc., 2021, 143(13): 4969.

doi: 10.1021/jacs.0c10000     URL    
[14]
Jeong J, Kim M, Seo J, Lu H Z, Ahlawat P, Mishra A, Yang Y G, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y. Nature, 2021, 592(7854): 381.

doi: 10.1038/s41586-021-03406-5     URL    
[15]
Sarritzu V, Sestu N, Marongiu D, Chang X Q, Masi S, Rizzo A, Colella S, Quochi F, Saba M, Mura A, Bongiovanni G. Sci. Rep., 2017, 7(1): 1900221.
[16]
Tang A L, Song W, Xiao B, Guo J, Min J, Ge Z Y, Zhang J Q, Wei Z X, Zhou E J. Chem. Mater., 2019, 31(11): 3941.

doi: 10.1021/acs.chemmater.8b05316     URL    
[17]
An N, Cai Y H, Wu H B, Tang A L, Zhang K N, Hao X T, Ma Z F, Guo Q, Ryu H S, Woo H Y, Sun Y M, Zhou E J. Adv. Mater., 2020, 32(39): 2002122.
[18]
Wang B, Li H, Dai Q Q, Zhang M, Zou Z G, Brédas J L, Lin Z Q. Angew. Chem. Int. Ed., 2021, 60(32): 17664.
[19]
Chen J Z, Park N G. Adv. Mater., 2019, 31(47): 1803019.
[20]
de Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C. J. Phys. Chem. Lett., 2014, 5(6): 1035.

doi: 10.1021/jz500279b     URL    
[21]
Hutter E M, Gélvez-Rueda M C, Osherov A, Bulović V, Grozema F C, Stranks S D, Savenije T J. Nat. Mater., 2017, 16(1): 115.

doi: 10.1038/nmat4765     pmid: 27698354
[22]
Wang T Y, Daiber B, Frost J M, Mann S A, Garnett E C, Walsh A, Ehrler B. Energy Environ. Sci., 2017, 10(2): 509.

doi: 10.1039/C6EE03474H     URL    
[23]
Gao F, Zhao Y, Zhang X W, You J B. Adv. Energy Mater., 2020, 10(13): 1902650.
[24]
Wei Q, Yin J, Bakr O M, Wang Z, Wang C H, Mohammed O F, Li M J, Xing G C. Angew. Chem. Int. Ed., 2021, 60(19): 10957.
[25]
Tress W, Marinova N, Inganäs O, Nazeeruddin M K, Zakeeruddin S M, Graetzel M. Adv. Energy Mater., 2015, 5(3): 1400812.
[26]
Luo D Y, Su R, Zhang W, Gong Q H, Zhu R. Nat. Rev. Mater., 2020, 5(1): 44.

doi: 10.1038/s41578-019-0151-y     URL    
[27]
Ball J M, Petrozza A. Nat. Energy, 2016, 1(11): 1.

doi: 10.1038/ng0492-1     URL    
[28]
Jones T, Osherov A, Alsari M, Sponseller M, Duck B, Jung Y, Settens C, Niroui F, Brenes R, Stan C. Energy Environ. Sci., 2019, 12: 596.

doi: 10.1039/C8EE02751J     URL    
[29]
Yang X Y, Ni Y, Zhang Y Z, Wang Y J, Yang W Q, Luo D Y, Tu Y G, Gong Q H, Yu H F, Zhu R. ACS Energy Lett., 2021, 6(7): 2404.

doi: 10.1021/acsenergylett.1c01039     URL    
[30]
Moia D, Maier J. ACS Energy Lett., 2021, 6 (4): 1566.

doi: 10.1021/acsenergylett.1c00227     URL    
[31]
Yin W J, Shi T T, Yan Y F. Adv. Mater., 2014, 26(27): 4653.

doi: 10.1002/adma.201306281     URL    
[32]
Wu N, Wu Y, Shen H, Walter D, Duong T, Grant D, Barugkin C, Fu X, Peng J, Mulmudi H. Energy Technol., 2017, 5: 1827.

doi: 10.1002/ente.201700374     URL    
[33]
Shao Y C, Xiao Z G, Bi C, Yuan Y B, Huang J S. Nat. Commun., 2014, 5(1): 5784.

doi: 10.1038/ncomms6784     URL    
[34]
Luo D Y, Li X Y, Dumont A, Yu H Y, Lu Z H. Adv. Mater., 2021, 33(30): 2006004.
[35]
Wang Z Y, Zhu X J, Feng J S, Wang C Y, Zhang C, Ren X D, Priya S, Liu S F, Yang D. Adv. Sci., 2021, 8(13): 2002860.
[36]
Wolff C M, Zu F S, Paulke A, Toro L P, Koch N, Neher D. Adv. Mater., 2017, 29(28): 1700159.
[37]
Wolff C M, Caprioglio P, Stolterfoht M, Neher D. Adv. Mater., 2019, 31(52): 1902762.
[38]
Pazos-Outón L M, Xiao T P, Yablonovitch E. J. Phys. Chem. Lett., 2018, 9(7): 1703.

doi: 10.1021/acs.jpclett.7b03054     pmid: 29537271
[39]
Dequilettes D, Vorpahl S, Stranks S, Nagaoka H, Ginger D. Science, 2015, 348: 683.

doi: 10.1126/science.aaa5333     URL    
[40]
Leijtens T, Eperon G E, Barker A J, Grancini G, Zhang W, Ball J M, Kandada A R S, Snaith H J, Petrozza A. Energy Environ. Sci., 2016, 9(11): 3472.

doi: 10.1039/C6EE01729K     URL    
[41]
Srimath Kandada A R, Neutzner S, D’Innocenzo V, Tassone F, Gandini M, Akkerman Q A, Prato M, Manna L, Petrozza A, Lanzani G. J. Am. Chem. Soc., 2016, 138(41): 13604.
[42]
Cava R J, Santoro A, Johnson D W, Rhodes W W. Phys. Rev. B, 1987, 35(13): 6716.

pmid: 9940920
[43]
Wright A D, Milot R L, Eperon G E, Snaith H J, Johnston M B, Herz L M. Adv. Funct. Mater., 2017, 27(29): 1700860.
[44]
Rosen M D, Hagelstein P L, Matthews D L, Campbell E M, Hazi A U, Whitten B L, MacGowan B, Turner R E, Lee R W, Charatis G, Busch G E, Shepard C L, Rockett P D, Johnson R R. Phys. Rev. Lett., 1985, 54(8): 853.
[45]
Guo Z, Wu X X, Zhu T, Zhu X Y, Huang L B. ACS Nano, 2016, 10(11): 9992.

doi: 10.1021/acsnano.6b04265     URL    
[46]
Motta C, Sanvito S. J. Phys. Chem. C, 2018, 122(2): 1361.

doi: 10.1021/acs.jpcc.7b10163     URL    
[47]
Zhang F, Lu H P, Larson B W, Xiao C X, Dunfield S P, Reid O G, Chen X H, Yang M J, Berry J J, Beard M C, Zhu K. Chem, 2021, 7(3): 774.

doi: 10.1016/j.chempr.2020.12.023     URL    
[48]
An Q Z, Paulus F, Becker-Koch D, Cho C, Sun Q, Weu A, Bitton S, Tessler N, Vaynzof Y. Matter, 2021, 4(5): 1683.

doi: 10.1016/j.matt.2021.02.020     URL    
[49]
Wang M, Cao F R, Deng K M, Li L. Nano Energy, 2019, 63: 103867.
[50]
Zuo C T, Ding L M. Angew. Chem. Int. Ed., 2021, 60(20): 11242.
[51]
Zhao Y P, Zhu P C, Wang M H, Huang S, Zhao Z P, Tan S, Han T H, Lee J W, Huang T Y, Wang R, Xue J J, Meng D, Huang Y, Marian J, Zhu J, Yang Y. Adv. Mater., 2020, 32(17): 1907769.
[52]
Lee J W, Dai Z H, Lee C, Lee H M, Han T H, de Marco N, Lin O, Choi C S, Dunn B, Koh J, di Carlo D, Ko J H, Maynard H D, Yang Y. J. Am. Chem. Soc., 2018, 140(20): 6317.

doi: 10.1021/jacs.8b01037     URL    
[53]
Li L, Chen Y, Fan R, Wang X, Zhou H. Adv. Mater., 2016, 28: 9862.

doi: 10.1002/adma.201603021    
[54]
Xu C Y, Liu Z H, Lee E C. J. Mater. Chem. C, 2020, 8(44): 15860.
[55]
Hui W, Chao L F, Lu H, Xia F, Wei Q, Su Z H, Niu T T, Tao L, Du B, Li D L, Wang Y, Dong H, Zuo S W, Li B X, Shi W, Ran X Q, Li P, Zhang H, Wu Z B, Ran C X, Song L, Xing G C, Gao X Y, Zhang J, Xia Y D, Chen Y H, Huang W. Science, 2021, 371(6536): 1359.

doi: 10.1126/science.abf7652     pmid: 33766883
[56]
Wang X J, Ran X Q, Liu X T, Gu H, Zuo S W, Hui W, Lu H, Sun B, Gao X Y, Zhang J, Xia Y D, Chen Y H, Huang W. Angew. Chem. Int. Ed., 2020, 59(32): 13354.
[57]
Haque M A, Troughton J, Baran D. Adv. Energy Mater., 2020, 10(13): 1902762.
[58]
Abdi-Jalebi M, Andaji-Garmaroudi Z, Pearson A, Divitini G, Stranks S. ACS Energy Lett., 2018, 3: 9862.
[59]
Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, Correa-Baena J P, Tress W R, Abate A, Hagfeldt A, Grätzel M. Science, 2016, 354(6309): 206.

doi: 10.1126/science.aah5557     URL    
[60]
Zhang M M, Zhou W R, Hu W P, Li B R, Qiao Q Q, Yang S F. ACS Appl. Mater. Interfaces, 2020, 12(11): 12696.
[61]
Cao H Q, Dong Z, Qiu Y, Li J Z, Wang Y J, Li Z Y, Yang L Y, Yin S G. ACS Appl. Mater. Interfaces, 2020, 12(37): 41303.
[62]
Kim M, Kim G, Lee T, Choi I, Kim D. Joule, 2019, 3: 2179.

doi: 10.1016/j.joule.2019.06.014     URL    
[63]
Qin C J, Matsushima T, Fujihara T, Adachi C. Adv. Mater., 2017, 29(4): 1603808.
[64]
Li H, Wu G, Li W, Zhang Y, Liu S. Adv. Sci., 2019, 6: 1901241.
[65]
Yang Y, Peng H R, Liu C, Arain Z, Ding Y, Ma S, Liu X L, Hayat T, Alsaedi A, Dai S Y. J. Mater. Chem. A, 2019, 7(11): 6450.

doi: 10.1039/c8ta11925b    
[66]
Zhu W, Kang L, Yu T, Lv B, Zou Z. ACS Appl. Mater. Interfaces, 2017, 9: 6104.

doi: 10.1021/acsami.6b15563     URL    
[67]
Wang Y, Li J W, Li Q, Zhu W D, Yu T, Chen X Y, Yin L A, Zhou Y, Wang X Y, Zou Z G. Chem. Commun., 2017, 53(36): 5032.

doi: 10.1039/C7CC01573A     URL    
[68]
Cao X B, Zhi L L, Li Y H, Cui X, Ci L J, Ding K X, Wei J Q. RSC Adv., 2017, 7(77): 49144.
[69]
Cao X B, Zhi L L, Li Y H, Fang F, Cui X, Ci L J, Ding K X, Wei J Q. ACS Appl. Energy Mater., 2018, 1(2): 868.

doi: 10.1021/acsaem.7b00300     URL    
[70]
Zhi L L, Li Y Q, Cao X B, Li Y H, Cui X, Ci L J, Wei J Q. J. Energy Chem., 2019, 30: 78.

doi: 10.1016/j.jechem.2018.03.017     URL    
[71]
Wang T, Lian G, Huang L P, Zhu F, Cui D L, Wang Q L, Meng Q B, Jiang H H, Zhou G J, Wong C P. Nano Energy, 2019, 64: 103914.
[72]
Fu X W, Dong N, Lian G, Lv S, Zhao T, Wang Q L, Cui D L, Wong C P. Nano Lett., 2018, 18(2): 1213.

doi: 10.1021/acs.nanolett.7b04809     URL    
[73]
Fan H C, Li F Z, Wang P C, Gu Z K, Huang J H, Jiang K J, Guan B, Yang L M, Zhou X Q, Song Y L. Nat. Commun., 2020, 11(1): 5402.

doi: 10.1038/s41467-020-19199-6     URL    
[74]
Zhou Z M, Wang Z W, Zhou Y Y, Pang S P, Wang D, Xu H X, Liu Z H, Padture N P, Cui G L. Angew. Chem., 2015, 127(33): 9841.

doi: 10.1002/ange.201504379     URL    
[75]
Dong Q F, Fang Y J, Shao Y C, Mulligan P, Qiu J, Cao L, Huang J S. Science, 2015, 347(6225): 967.

doi: 10.1126/science.aaa5760     URL    
[76]
Liu Y, Dong Q F, Fang Y J, Lin Y Z, Deng Y H, Huang J S. Adv. Funct. Mater., 2019, 29(47): 1807707.
[77]
Gao J, Liang Q B, Li G H, Ji T, Liu Y C, Fan M M, Hao Y Y, Liu S F, Wu Y C, Cui Y X. J. Mater. Chem. C, 2019, 7(27): 8357.

doi: 10.1039/C9TC01309A     URL    
[78]
Gong J D, Yu H Y, Zhou X, Wei H H, Ma M X, Han H, Zhang S, Ni Y, Li Y L, Xu W T. Adv. Funct. Mater., 2020, 30(46): 2005413.
[79]
Gong X W, Huang Z R, Sabatini R, Tan C S, Bappi G, Walters G, Proppe A, Saidaminov M I, Voznyy O, Kelley S O, Sargent E H. Nat. Commun., 2019, 10(1): 1591.

doi: 10.1038/s41467-019-09538-7     URL    
[80]
Liu Y C, Zhang Y X, Yang Z, Yang D, Ren X D, Pang L Q, Liu S F. Adv. Mater., 2016, 28(41): 9203.

doi: 10.1002/adma.201670290     URL    
[81]
Chen Z L, Dong Q F, Liu Y, Bao C X, Fang Y J, Lin Y, Tang S, Wang Q, Xiao X, Bai Y, Deng Y H, Huang J S. Nat. Commun., 2017, 8(1): 1890.

doi: 10.1038/s41467-017-02039-5     URL    
[82]
Chen Z L, Turedi B, Alsalloum A Y, Yang C, Zheng X P, Gereige I, AlSaggaf A, Mohammed O F, Bakr O M. ACS Energy Lett., 2019, 4(6): 1258.

doi: 10.1021/acsenergylett.9b00847     URL    
[83]
Alsalloum A Y, Turedi B, Zheng X P, Mitra S, Zhumekenov A A, Lee K J, Maity P, Gereige I, AlSaggaf A, Roqan I S, Mohammed O F, Bakr O M. ACS Energy Lett., 2020, 5(2): 657.

doi: 10.1021/acsenergylett.9b02787     URL    
[84]
Yue H L, Sung H H, Chen F C. Adv. Electron. Mater., 2018, 4(7): 1700655.
[85]
Park J S, Walsh A. Annu. Rev. Condens. Matter Phys., 2021, 12(1): 95.

doi: 10.1146/annurev-conmatphys-042020-025347     URL    
[86]
Ochoa-Martinez E, Ochoa M, Ortuso R D, Ferdowsi P, Carron R, Tiwari A N, Steiner U, Saliba M. ACS Energy Lett., 2021, 6(7): 2626.

doi: 10.1021/acsenergylett.1c01187     URL    
[87]
Wang J T, Jin G Y, Zhen Q Z, He C Y, Duan Y. Adv. Mater. Interfaces, 2021, 8(9): 2002078.
[88]
Shi B, Xin Y, Hou F, Sheng G, Li Y, Wei C, Yi D, Li Y, Ying Z, Zhang X. J. Phys. Chem. C, 2018, 122: 21269.
[89]
Hoque M N F, He R, Warzywoda J, Fan Z Y. ACS Appl. Mater. Interfaces, 2018, 10(36): 30322.
[90]
Chen Q, Zhou H P, Song T B, Luo S, Hong Z R, Duan H S, Dou L T, Liu Y S, Yang Y. Nano Lett., 2014, 14(7): 4158.

doi: 10.1021/nl501838y     pmid: 24960309
[91]
Emrul K, Hossain C, Kiyoto M, Ryuji K, Said K, Jae-Joon L, Takeshi N, Ashraful I. ACS Energy Lett., 2018, 3: 1584.

doi: 10.1021/acsenergylett.8b00645     URL    
[92]
Jacobsson T J, Correa-Baena J P, Halvani Anaraki E, Philippe B, Stranks S D, Bouduban M E F, Tress W, Schenk K, Teuscher J, Moser J E, Rensmo H, Hagfeldt A. J. Am. Chem. Soc., 2016, 138(32): 10331.
[93]
He Y T, Wang W H, Qi L M. ACS Appl. Mater. Interfaces, 2018, 10(45): 38985.
[94]
Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, Shin H, Ahn N, Choi M, Kim D, Park N G. Nat. Energy, 2016, 1(7): 16081.
[95]
Hawash Z, Raga S R, Son D Y, Ono L K, Park N G, Qi Y B. J. Phys. Chem. Lett., 2017, 8(17): 3947.

doi: 10.1021/acs.jpclett.7b01508     pmid: 28767259
[96]
Zhang Y, Zhang C C, Gao C H, Li M, Ma X J, Wang Z K, Liao L S. Sol. RRL, 2019, 3(2): 1604153.
[97]
Zhao W G, Yao Z, Yu F Y, Yang D, Liu S F. Adv. Sci., 2018, 5(2): 1700131.
[98]
Lu J J, Chen S C, Zheng Q D. Sci. China Chem., 2019, 62(8): 1044.

doi: 10.1007/s11426-019-9486-0     URL    
[99]
Klug M T, Osherov A, Haghighirad A A, Stranks S D, Brown P R, Bai S, Wang J T W, Dang X N, Bulović V, Snaith H J, Belcher A M. Energy Environ. Sci., 2017, 10(1): 236.

doi: 10.1039/C6EE03201J     URL    
[100]
Gong X, Guan L, Pan H P, Sun Q, Zhao X J, Li H, Pan H, Shen Y, Shao Y, Sun L J, Cui Z F, Ding L M, Wang M K. Adv. Funct. Mater., 2018, 28(50): 1804286.
[101]
Xu W Z, Zheng L Y, Zhang X T, Cao Y, Meng T, Wu D Z, Liu L, Hu W P, Gong X. Adv. Energy Mater., 2018, 8(14): 1703178.
[102]
Zhang J, Chen R J, Wu Y Z, Shang M H, Zeng Z B, Zhang Y, Zhu Y J, Han L Y. Adv. Energy Mater., 2018, 8(5): 1701981.
[103]
Wang K, Zheng L Y, Zhu T, Yao X, Yi C, Zhang X T, Cao Y, Liu L, Hu W P, Gong X. Nano Energy, 2019, 61: 352.

doi: 10.1016/j.nanoen.2019.04.073    
[104]
Wang Z K, Li M, Yang Y G, Hu Y, Ma H, Gao X Y, Liao L S. Adv. Mater., 2016, 28(31): 6767.

doi: 10.1002/adma.201670217     URL    
[105]
Wang J T W, Wang Z P, Pathak S, Zhang W, de Quilettes D W, Wisnivesky-Rocca-rivarola F, Huang J, Nayak P K, Patel J B, Mohd Yusof H A, Vaynzof Y, Zhu R, Ramirez I, Zhang J, Ducati C, Grovenor C, Johnston M B, Ginger D S, Nicholas R J, Snaith H J. Energy Environ. Sci., 2016, 9(9): 2892.

doi: 10.1039/C6EE01969B     URL    
[106]
Liu W, Liu N J, Ji S L, Hua H F, Ma Y H, Hu R Y, Zhang J, Chu L, Li X A, Huang W. Nano Micro Lett., 2020, 12(1): 119.

doi: 10.1007/s40820-020-00457-7     URL    
[107]
Wang Z W, Tao J L, Shen J L, Kong W G, Yu Z H, Wang A Y, Fu G S, Yang S P. J. Power Sources, 2021, 488: 229449.
[108]
Bai Y, Dong Q F, Shao Y C, Deng Y H, Wang Q, Shen L, Wang D, Wei W, Huang J S. Nat. Commun., 2016, 7(1): 12806.
[109]
Wu Y Z, Yang X D, Chen W, Yue Y F, Cai M L, Xie F X, Bi E B, Islam A, Han L Y. Nat. Energy, 2016, 1(11): 16148.
[110]
Zhang F, Shi W, Luo J, Pellet N, Yi C, Li X, Zhao X, Dennis T, Li X, Wang S. Adv. Mater., 2017, 29: 1606806.
[111]
Wang R, Xue J, Meng L, Lee J, Yang Y. Joule, 2019, 3: 1464.

doi: 10.1016/j.joule.2019.04.005    
[112]
Wang R, Xue J, Wang K, Wang Z, Yang Y. Science, 2019, 366: 1509.

doi: 10.1126/science.aay9698     pmid: 31857483
[113]
Chen W, Wang Y F, Pang G T, Koh C W, Djurišić A B, Wu Y H, Tu B, Liu F Z, Chen R, Woo H Y, Guo X G, He Z B. Adv. Funct. Mater., 2019, 29: 1808855.
[114]
Yang S, Dai J, Yu Z H, Shao Y C, Zhou Y, Xiao X, Zeng X C, Huang J S. J. Am. Chem. Soc., 2019, 141(14): 5781.

doi: 10.1021/jacs.8b13091     URL    
[115]
Li M G, Yu L S, Zhang Y, Gao H, Li P, Chen R F, Huang W. Sol. RRL, 2020, 4(11): 2000481.
[116]
Song S, Park E Y, Ma B S, Kim D J, Park H H, Kim Y Y, Shin S S, Jeon N J, Kim T S, Seo J. Adv. Energy Mater., 2021, 11(10): 2003382.
[117]
Liu Z Z, Cao F R, Wang M, Wang M, Li L. Angew. Chem. Int. Ed., 2020, 59(10): 4161.

doi: 10.1002/anie.201915422     URL    
[118]
Wu X, Zhang L, Xu Z, Olthof S, Ren X D, Liu Y C, Yang D, Gao F, Liu S F. J. Mater. Chem. A, 2020, 8(17): 8313.

doi: 10.1039/D0TA02222E     URL    
[119]
Xiong J, Dai Z J, Zhan S P, Zhang X W, Xue X G, Liu W Z, Zhang Z L, Huang Y, Dai Q L, Zhang J. Nano Energy, 2021, 84: 105882.
[120]
Kang D H, Kim S Y, Lee J W, Park N G. J. Mater. Chem. A, 2021, 9(6): 3441.

doi: 10.1039/D0TA10581C     URL    
[121]
Zhang C C, Wang Z K, Yuan S, Wang R, Li M, Jimoh M F, Liao L S, Yang Y. Adv. Mater., 2019: 1902222.
[122]
Hu X F, Wang H X, Wang M, Zang Z G. Sol. Energy, 2020, 206: 816.

doi: 10.1016/j.solener.2020.06.057     URL    
[123]
Peng J, Khan J. Adv. Energy Mater., 2018, 8: 1801208.
[124]
Yoo J J, Wieghold S, Sponseller M C, Chua M R, Bertram S N, Hartono N T P, Tresback J S, Hansen E C, Correa-Baena J P, Bulović V, Buonassisi T, Shin S S, Bawendi M G. Energy Environ. Sci., 2019, 12(7): 2192.

doi: 10.1039/C9EE00751B     URL    
[125]
Li M H, Yeh H H, Chiang Y H, Jeng U S, Su C J, Shiu H W, Hsu Y J, Kosugi N, Ohigashi T, Chen Y A, Shen P S, Chen P, Guo T F. Adv. Mater., 2018, 30(30): 1801401.
[126]
Hu Y H, Schlipf J, Wussler M, Petrus M L, Jaegermann W, Bein T, Müller-Buschbaum P, Docampo P. ACS Nano, 2016, 10(6): 5999.

doi: 10.1021/acsnano.6b01535     URL    
[127]
Chen P, Bai Y, Wang S C, Lyu M Q, Yun J H, Wang L Z. Adv. Funct. Mater., 2018, 28(17): 1706923.
[128]
Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B. Nat. Photonics, 2019, 13(7): 460.

doi: 10.1038/s41566-019-0398-2    
[129]
Ahmad S, Fu P, Yu S W, Yang Q, Liu X, Wang X C, Wang X L, Guo X, Li C. Joule, 2019, 3(3): 794.

doi: 10.1016/j.joule.2018.11.026     URL    
[130]
Chen P, Bai Y, Lyu M Q, Yun J H, Hao M M, Wang L Z. Sol. RRL, 2018, 2(3): 1700186.
[131]
Stolterfoht M, Caprioglio P, Wolff C M, Márquez J A, Nordmann J, Zhang S S, Rothhardt D, Hörmann U, Amir Y, Redinger A, Kegelmann L, Zu F S, Albrecht S, Koch N, Kirchartz T, Saliba M, Unold T, Neher D. Energy Environ. Sci., 2019, 12(9): 2778.

doi: 10.1039/C9EE02020A     URL    
[132]
Chen P, Bai Y, Wang L Z. Small Struct., 2021, 2(1): 2000050.
[133]
Shao Y C, Yuan Y B, Huang J S. Nat. Energy, 2016, 1(1): 15001.
[134]
Younes E M, Gurung A, Bahrami B, El-Maghraby E M, Qiao Q. Carbon, 2021, 180: 226.

doi: 10.1016/j.carbon.2021.05.008     URL    
[135]
Seo J, Park S, Chan Kim Y, Jeon N J, Noh J H, Yoon S C, Seok S I. Energy Environ. Sci., 2014, 7(8): 2642.

doi: 10.1039/C4EE01216J     URL    
[136]
Ren G H, Han W B, Deng Y Y, Wu W, Li Z W, Guo J X, Bao H C, Liu C Y, Guo W B. J. Mater. Chem. A, 2021, 9(8): 4589.

doi: 10.1039/D0TA11564A     URL    
[137]
Jeon N, Na H, Jung E, Yang T, Seo J. Nat. Energy, 2018, 3: 682.

doi: 10.1038/s41560-018-0200-6     URL    
[138]
Singh T, Öz S, Sasinska A, Frohnhoven R, Mathur S, Miyasaka T. Adv. Funct. Mater., 2018, 28(14): 1706287.
[139]
Liu C, Yang Y, Ding Y, Xu J, Liu X L, Zhang B, Yao J X, Hayat T, Alsaedi A, Dai S Y. ChemSusChem, 2018, 11(7): 1232.

doi: 10.1002/cssc.201702248     URL    
[140]
Peng J, Duong T, Zhou X, Shen H, Wu Y, Mulmudi H, Wan Y, Zhong D, Li J, Tsuzuki T. Adv. Energy Mater., 2017, 7: 1601768.
[141]
Tavakoli M M, Giordano F, Zakeeruddin S M, Grätzel M. Nano Lett., 2018, 18(4): 2428.

doi: 10.1021/acs.nanolett.7b05469     URL    
[142]
Chavan R D, Yadav P, Tavakoli M M, Prochowicz D, Nimbalkar A, Bhoite S P, Bhosale P N, Hong C K. Sustain. Energy Fuels, 2020, 4(2): 843.
[143]
Zhou Y Q, Wu B S, Lin G H, Xing Z, Li S H, Deng L L, Chen D C, Yun D Q, Xie S Y. Adv. Energy Mater., 2018, 8(20): 1800399.
[144]
Belisle R A, Jain P, Prasanna R, Leijtens T, McGehee M D. ACS Energy Lett., 2016, 1(3): 556.

doi: 10.1021/acsenergylett.6b00270     URL    
[145]
Liang P W, Chueh C C, Williams S T, Jen A K Y. Adv. Energy Mater., 2015, 5(10): 1402321.
[1] 李娜, 许林, 孙志霞. 多酸促进半导体的光电转化及其在太阳能电池中的应用[J]. 化学进展, 2015, 27(8): 1065-1073.