English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1369-1383 DOI: 10.7536/PC210733 前一篇   后一篇

• 综述与评论 •

“蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用

李芳远1, 李俊豪1, 吴钰洁1, 石凯祥1, 刘全兵1,*(), 彭翃杰2,*()   

  1. 1 广东工业大学轻工化工学院 广州 510006
    2 电子科技大学 成都 611731
  • 收稿日期:2021-07-26 修回日期:2021-09-23 出版日期:2021-12-02 发布日期:2021-12-02
  • 通讯作者: 刘全兵, 彭翃杰
  • 基金资助:
    国家自然科学基金项目(21975056); 国家自然科学基金项目(U1801257); 国家自然科学基金项目(52002079)

Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries

Fangyuan Li1, Junhao Li1, Yujie Wu1, Kaixiang Shi1, Quanbing Liu1(), Hongjie Peng2()   

  1. 1 School of Chemical Engineering and Light Industry, Guangdong University of Technology,Guangzhou 510006, China
    2 University of Electronic Science and Technology of China, Chengdu 611731, China
  • Received:2021-07-26 Revised:2021-09-23 Online:2021-12-02 Published:2021-12-02
  • Contact: Quanbing Liu, Hongjie Peng
  • Supported by:
    National Natural Science Foundation of China(21975056); National Natural Science Foundation of China(U1801257); National Natural Science Foundation of China(52002079)

“蛋黄蛋壳”结构纳米材料,具有易于调控的“蛋黄”、“蛋壳”和“空腔”结构,可视作“纳米反应器”,在催化、储能等领域表现出显著的应用潜力。尤其在电化学能源存储和转换方面,该结构纳米电极具有大的比表面积和独特的核壳结构,在充放电过程中可缓解电极的体积变化,提供快速的离子/电子输运通道,强化中间产物的吸附和提升转换反应效率等,能显著提高电极稳定性、倍率性能和循环性能,是一类较为理想的电极材料。本文针对“蛋黄蛋壳”结构纳米电极在锂/钠离子电池、锂硫电池等新兴二次电池领域的实际应用,总结了具有该结构纳米电极的设计与合成策略,包括:模板法、奥斯特瓦尔德熟化、电化学置换、克肯达尔效应等,评述了各种策略的优缺点以及电极材料的应用进展,最后对该类材料在锂/钠体系及锂硫电池二次电池方面的研究与应用前景进行了展望。

“Yolk-shell” nanomaterials with adjustable “yolk”, "shell" and "cavity" structures are regarded as "nanoreactors" and have outstanding performance in the application fields of catalysis and energy storage. Especially for electrochemical energy storage and conversion, this type of material has a considerable specific surface area and a special core-shell structure, which could alleviate the volume change of the electrode, provide fast ions/electron transport channels, enhance the adsorption of intermediates, and strengthen the conversion reactions during the charge/discharge process. It can significantly improve electrode stability, rate and cycling performance, which is a relatively ideal electrode material. This article focuses on the application of “yolk-shell” nanostructured electrodes in the field of secondary batteries including lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries and summarizes the design and synthesis strategies of this type of nanostructured electrodes, including template method, Ostwald ripening, Galvanic replacement, and Kirkendall effect, presents the advantages and disadvantages of various methods for electrochemical applications, and finally discusses prospects of yolk-shell structure in research and applications of lithium/sodium-based and lithium-sulfur secondary batteries.

Contents

1 Introduction

2 Template methods

2.1 SiO2 as a hard template

2.2 Metal oxide as a hard template

2.3 Carbon as a hard template

2.4 Soft templates

3 Self-assemble methods

3.1 Ostwald ripening to synthesis of yolk-shell structure

3.2 Galvanic replacement to the synthesis of yolk-shell structure

3.3 Kirkendall effect on synthesis of yolk-shell structure

4 The applications of yolk-shell structure in batteries

4.1 Yolk-shell in lithium-ion batteries

4.2 Yolk-shell in sodium-ion batteries

4.3 Yolk-shell in lithium-sulfur batteries

5 Conclusion and outlook

()
图1 SiO2作硬模板YS结构制备流程图[21]
Fig. 1 Schematic of the preparation of yolk-shell structure using SiO2 as the hard template[21]. Copyright 2017, Elsevier
图2 部分刻蚀SiO2 YS结构制备流程图[34]
Fig. 2 Schematic of the preparation of yolk-shell structure via partially etched SiO2 template[34]. Copyright 2020, RSC
图3 聚苯乙烯作热解模板制备YS结构纳米电极流程图[18]
Fig. 3 Schematic of the preparation of yolk-shell structure using polystyrene as pyrolysis template[18]. Copyright 2018, RSC
图4 蛋黄壳锡@空腔@碳微球形成机理示意图[42]
Fig. 4 Schematic diagram of the formation mechanism of yolk-shell Sn@Void@C microspheres[42]. Copyright 2015, Wiley
图5 奥斯特瓦尔德熟化合成YS结构[43]
Fig. 5 Schematic of the preparation of yolk-shell structure via Ostwald ripening[43]. Copyright 2015, ACS
图6 电化学置换合成YS结构[49]
Fig. 6 Schematic of the preparation of yolk-shell structure via galvanic replacement[49]. Copyright 2017, ACS
图7 克肯达尔效应在纳米纤维中形成中空SnO2纳米球的机理及其在球体表面区域的化学转化过程[52]
Fig. 7 Formation mechanism of a hollow SnO2 nanosphere in the nanofiber by the nanoscale Kirkendall effect and its chemical conversion process in the surface region of a sphere[52]. Copyright 2015, Wiley
表1 模板法及自模板法的合成优势及缺点
Table 1 Synthesis advantages and disadvantages of template method and self-template method
图8 可控的YS结构作为锂离子电池负极材料的应用及电化学性能[74]。(A)为材料合成图;(B)为CV图;(C)为充放电性能图;(D)为循环性能图;(E)为倍率性能图
Fig. 8 Highly monodisperse dumbbell-like yolk-shell MnO/carbon microspheres for lithium storage and their lithiation evolution[74]. (A) schematic of the fabrication procedure; (B) the cyclic voltammetry curve; (C) the charge discharge voltage profiles at 0.26 C; (D) the cycling performance at 1.32 C and (E) the rate performance. Copyright 2020, Elsevier
图9 可控的YS结构作为钠离子电池负极材料的应用及电化学性能[82]:(a)为材料合成图;(b)为CV图;(c)为充放电性能图;(d)为循环性能图;(e)为倍率性能图
Fig. 9 Optimizing the void size of yolk-shell Bi@void@C nanospheres for high-power-density sodium-ion Batterie[82]. (a) Schematic illustration of the synthesis process; (b) cyclic voltammetry curves; (c) charge/discharge curves; (d) cycling stability at 1 A·g-1; (e) rate performance. Copyright 2020, ACS
图10 具有可控的蛋黄和空隙体积以及壳厚度的YS碳微球及其在锂硫电池正极材料和电化学性能中的应用及电化学性能[7]:(a)为材料合成图;(b)为充放电性能图;(c)为循环性能图;(d)为倍率性能图
Fig. 10 Yolk-shell carbon microspheres with controlled yolk and void volumes and shell thickness and their application as a cathode material for Li-S batteries and electrochemical performance[7]. (a) Schematic illustration of the synthesis process; (b) charge/discharge curves, (c) cycling stability, (d) rate performance. Copyright 2017, RSC
[1]
Liu J, Qiao S Z, Chen J S, (David) Lou X W, Xing X R, (Max) Lu G Q. Chem. Commun., 2011, 47(47): 12578.

doi: 10.1039/c1cc13658e     URL    
[2]
Zhou W D, Yu Y C, Chen H, DiSalvo F J, Abruña H D. J. Am. Chem. Soc., 2013, 135(44): 16736.

doi: 10.1021/ja409508q     URL    
[3]
Liu J, Qiao S Z, Budi Hartono S, Lu G Q. Angew. Chem. Int. Edit., 2010, 49(29): 4981.

doi: 10.1002/anie.201001252     URL    
[4]
Yang J P, Wang Y X, Chou S L, Zhang R Y, Xu Y F, Fan J W, Zhang W X, Liu H K, Zhao D Y, Dou S X. Nano Energy, 2015, 18: 133.

doi: 10.1016/j.nanoen.2015.09.016     URL    
[5]
Yu L, Guan B Y, Xiao W, Lou X W D. Adv. Energy Mater., 2015, 5(21): 1500981.

doi: 10.1002/aenm.201500981     URL    
[6]
Pan Y M, Zhang J J, Lu H B. Chem. Eur. J., 2017, 23(41): 9937.

doi: 10.1002/chem.201701691     URL    
[7]
Hong Y J, Lee J K, Kang Y C. J. Mater. Chem. A, 2017, 5(3): 988.

doi: 10.1039/C6TA08328E     URL    
[8]
Zhang W C, Yang C, Ding B C, Peng J, Xu F, Zheng M T, Hu H, Xiao Y, Liu Y L, Liang Y R. Chem. Commun., 2020, 56(8): 1215.

doi: 10.1039/C9CC07625E     URL    
[9]
Wang S H, Teng J, Xie Y Y, Wei Z W, Fan Y N, Jiang J J, Wang H P, Liu H G, Wang D W, Su C Y. J. Mater. Chem. A, 2019, 7(8): 4036.

doi: 10.1039/C8TA11007G     URL    
[10]
Lou X W D, Archer L A, Yang Z C. Adv. Mater., 2008, 20(21): 3987.

doi: 10.1002/adma.200800854     URL    
[11]
Wang X J, Feng J, Bai Y C, Zhang Q, Yin Y D. Chem. Rev., 2016, 116(18): 10983.

doi: 10.1021/acs.chemrev.5b00731     URL    
[12]
Ren X C, Zhai Y J, Zhu L, He Y Y, Li A H, Guo C L, Xu L Q. ACS Appl. Mater. Inter., 2016, 8(27): 17205.

doi: 10.1021/acsami.6b03257     URL    
[13]
Zhao Y C, Li X, Liu J D, Wang C G, Zhao Y Y, Yue G H. ACS Appl. Mater. Inter., 2016, 8(10): 6472.

doi: 10.1021/acsami.5b12562     URL    
[14]
Dai R L, Sun W W, Lv L P, Wu M H, Liu H, Wang G X, Wang Y. Small, 2017, 13(27): 1700521.

doi: 10.1002/smll.201700521     URL    
[15]
Zhang Q, Wang W S, Goebl J, Yin Y D. Nano Today, 2009, 4(6): 494.

doi: 10.1016/j.nantod.2009.10.008     URL    
[16]
Ding Y B, Tang Y H, Yang L M, Zeng Y X, Yuan J L, Liu T, Zhang S Q, Liu C B, Luo S L. J. Mater. Chem. A, 2016, 4(37): 14307.

doi: 10.1039/C6TA05267C     URL    
[17]
Li Q D, Li L, Wu P J, Xu N, Wang L, Li M, Dai A, Amine K, Mai L Q, Lu J. Adv. Energy Mater., 2019, 9(43): 1901153.

doi: 10.1002/aenm.201901153     URL    
[18]
Huang X K, Sui X Y, Yang H, Ren R, Wu Y P, Guo X R, Chen J H. J. Mater. Chem. A, 2018, 6(6): 2593.

doi: 10.1039/C7TA08283E     URL    
[19]
Xiang Y, Chen Z, Chen C M, Wang T H, Zhang M. J. Alloys Compd., 2017, 724: 406.

doi: 10.1016/j.jallcom.2017.07.052     URL    
[20]
Stöber W, Fink A, Bohn E. J. Colloid Inter. Sci., 1968, 26(1): 62.

doi: 10.1016/0021-9797(68)90272-5     URL    
[21]
Xie J, Tong L, Su L W, Xu Y W, Wang L B, Wang Y H. J. Power Sources, 2017, 342: 529.

doi: 10.1016/j.jpowsour.2016.12.094     URL    
[22]
Hu L, Luo B, Wu C H, Hu P F, Wang L Z, Zhang H J. J. Energy Chem., 2019, 32: 124.

doi: 10.1016/j.jechem.2018.07.008     URL    
[23]
Zhou Z W, Pan L, Liu Y T, Zhu X D, Xie X M. Chin. Chem. Lett., 2019, 30(3): 610.

doi: 10.1016/j.cclet.2018.08.018     URL    
[24]
Wang Y Q, Yin X, Shen H B, Jiang H, Yu J W, Zhang Y F, Li D W, Li W Z, Li J. Int. J. Hydrogen. Energ., 2018, 43(45): 20687.

doi: 10.1016/j.ijhydene.2018.09.140     URL    
[25]
Yang F H, Gao H, Hao J N, Zhang S L, Li P, Liu Y Q, Chen J, Guo Z P. Adv. Funct. Mater., 2019, 29(16): 1808291.

doi: 10.1002/adfm.201808291     URL    
[26]
Li S M, Li B, Zhong Y T, Pan Z H, Xu M Q, Qiu Y C, Huang Q M, Li W S. Mater. Chem. Phys., 2019, 222: 256.

doi: 10.1016/j.matchemphys.2018.10.015     URL    
[27]
Zhang H W, Zhou L, Noonan O, Martin D J, Whittaker A K, Yu C Z. Adv. Funct. Mater., 2014, 24(27): 4337.

doi: 10.1002/adfm.201400178     URL    
[28]
Li X F, Chi M F, Mahurin S M, Liu R, Chuang Y J, Dai S, Pan Z W. Carbon, 2016, 101: 57.

doi: 10.1016/j.carbon.2016.01.043     URL    
[29]
Liu N, Wu H, McDowell M T, Yao Y, Wang C M, Cui Y. Nano Lett., 2012, 12(6): 3315.

doi: 10.1021/nl3014814     URL    
[30]
Chen X, Chen C, Zhang Y, Zhang X F, Yang D, Dong A G. Nano Res., 2019, 12(3): 631.

doi: 10.1007/s12274-018-2270-y     URL    
[31]
Jiao Z, Gao Y, Liu S, Huang S H, Jiang Y, Chen Z W, Zhao B. Electrochim. Acta, 2018, 283: 1702.

doi: 10.1016/j.electacta.2018.07.143     URL    
[32]
Lu Y, Chang P, Wang L B, Nzabahimana J, Hu X L. Funct. Mater. Lett., 2019, 12(1): 1850094.

doi: 10.1142/S1793604718500947     URL    
[33]
Mo R W, Rooney D, Sun K N. iScience, 2018, 9: 521.

doi: 10.1016/j.isci.2018.11.013     URL    
[34]
Li X Q, Xing Y F, Xu J, Deng Q B, Shao L H. Chem. Commun., 2020, 56(3): 364.

doi: 10.1039/C9CC07997A     URL    
[35]
Pan L, Wang H B, Gao D C, Chen S Y, Tan L, Li L. Chem. Commun., 2014, 50(44): 5878.

doi: 10.1039/C4CC01728E     URL    
[36]
Yang T Y, Zhong Y J, Liang J, Rahman M M, Lei W W, Chen Y, Monteiro M J, Shao Z P, Liu J. Part. Part. Syst. Charact., 2017, 34(4): 1600281.

doi: 10.1002/ppsc.201600281     URL    
[37]
Mi H W, Yang X D, Li Y L, Zhang P X, Sun L N. Chem. Eng. J., 2018, 351: 103.

doi: 10.1016/j.cej.2018.06.065     URL    
[38]
Pang H C, Cheng P, Yang H B, Lu J L, Guo C X, Ning G L, Li C M. Chem. Commun., 2013, 49(15): 1536.

doi: 10.1039/c2cc38244j     URL    
[39]
Lim J, Um J H, Ahn J, Yu S H, Sung Y E, Lee J K. Chem. Eur. J., 2015, 21(21): 7954.

doi: 10.1002/chem.201406667     URL    
[40]
Liu Z, Luo Y W, Zhou M J, Wang W Q, Gan N, Okada S, Yamaki J I. Electrochemistry, 2015, 83(12): 1067.

doi: 10.5796/electrochemistry.83.1067     URL    
[41]
Su X R, Huang J, Yan B Y, Hong Z P, Li S Y, Pang B C, Luo Y L, Feng L, Zhou M J, Xia Y Y. RSC Adv., 2018, 8(55): 31388.

doi: 10.1039/C8RA05871G     URL    
[42]
Hong Y J, Kang Y C. Small, 2015, 11(18): 2157.

doi: 10.1002/smll.201402994     URL    
[43]
Jiang L, Qu Y, Ren Z Y, Yu P, Zhao D D, Zhou W, Wang L, Fu H G. ACS Appl. Mater. Inter., 2015, 7(3): 1595.

doi: 10.1021/am5070393     URL    
[44]
Lou X W, Wang Y, Yuan C, Lee J Y, Archer L A. Adv. Mater., 2006, 18(17): 2325.

doi: 10.1002/adma.200600733     URL    
[45]
Feng Y F, Shao Y X, Chen X D, Zhang Y D, Liu Q B, He M Y, Li H. ACS Appl. Energy Mater., 2021, 4(1): 633.

doi: 10.1021/acsaem.0c02521     URL    
[46]
Qiu W D, Jiao J Q, Xia J, Zhong H M, Chen L P. Chem. Eur. J., 2015, 21(11): 4359.

doi: 10.1002/chem.201405821     URL    
[47]
Li J H, Li F Y, Liao J Y, Li H, Dang D, Liu Q B, Peng H J. Adv. Mater. Inter., 2020, 7(14): 2000667.

doi: 10.1002/admi.202000667     URL    
[48]
Zhang Z L, Ji Y J, Li J, Tan Q Q, Zhong Z Y, Su F B. ACS Appl. Mater. Inter., 2015, 7(11): 6300.

doi: 10.1021/acsami.5b00617     URL    
[49]
Liu J, Yu L T, Wu C, Wen Y R, Yin K B, Chiang F K, Hu R Z, Liu J W, Sun L T, Gu L, Maier J, Yu Y, Zhu M. Nano Lett., 2017, 17(3): 2034.

doi: 10.1021/acs.nanolett.7b00083     URL    
[50]
Skrabalak S E, Chen J Y, Sun Y G, Lu X M, Au L, Cobley C M, Xia Y N. Acc. Chem. Res., 2008, 41(12): 1587.

doi: 10.1021/ar800018v     URL    
[51]
Guo W X, Sun W W, Wang Y. ACS Nano, 2015, 9(11): 11462.

doi: 10.1021/acsnano.5b05610     URL    
[52]
Cho J S, Kang Y C. Small, 2015, 11(36): 4673.

doi: 10.1002/smll.201500940     URL    
[53]
Yin Y D, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Science, 2004, 304(5671): 711.

doi: 10.1126/science.1096566     URL    
[54]
Xie Q S, Lin L, Ma Y T, Zeng D Q, Yang J R, Huang J, Wang L S, Peng D L. Electrochim. Acta, 2017, 226: 79.

doi: 10.1016/j.electacta.2016.12.187     URL    
[55]
Yin J Z, Zhang Y, Lu Q Y, Wu X L, Jiang Z J, Dang L Y, Ma H F, Guo Y Y, Gao F, Yan Q Y. J. Mater. Chem. A, 2017, 5(25): 12757.

doi: 10.1039/C7TA03929H     URL    
[56]
Li J F, Wang J Z, Liang X, Zhang Z J, Liu H K, Qian Y T, Xiong S L. ACS Appl. Mater. Inter., 2014, 6(1): 24.

doi: 10.1021/am404841t     URL    
[57]
Lu D S, Li J H, Lin C H, Liao J Y, Feng Y F, Ding Z T, Li Z W, Liu Q B, Li H. Small, 2019, 15(10): 1805460.

doi: 10.1002/smll.201805460     URL    
[58]
Bin D S, Xu Y S, Guo S J, Sun Y G, Cao A M, Wan L J. Acc. Chem. Res., 2021, 54(1): 221.

doi: 10.1021/acs.accounts.0c00613     URL    
[59]
Mo R W, Rooney D, Sun K N. iScience, 2018, 9: 521.

doi: 10.1016/j.isci.2018.11.013     URL    
[60]
He J R, Luo L, Chen Y F, Manthiram A. Adv. Mater., 2017, 29(34): 1702707.

doi: 10.1002/adma.201702707     URL    
[61]
Na Z L, Yao R F, Yan Q, Wang X R, Sun X D, Wang X X. Electrochim. Acta, 2021, 367: 137464.

doi: 10.1016/j.electacta.2020.137464     URL    
[62]
Lou Y, Di H F, Li C G, Liang C, Yu Y, Shi Z, Zhang D, Chen X B, Feng S H. Electrochim. Acta, 2019, 318: 542.

doi: 10.1016/j.electacta.2019.06.083     URL    
[63]
Jo M S, Ghosh S, Jeong S M, Kang Y C, Cho J S. Nano Micro Lett., 2019, 11(1): 1.
[64]
Leng J, Wang Z X, Li X H, Guo H J, Yan G C, Hu Q Y, Peng W J, Wang J X. J. Mater. Chem. A, 2019, 7(10): 5803.

doi: 10.1039/c8ta12399c    
[65]
Fu S D, Yu Q, Liu Z H, Hu P, Chen Q, Feng S H, Mai L Q, Zhou L. J. Mater. Chem. A, 2019, 7(18): 11234.

doi: 10.1039/C9TA02342A     URL    
[66]
Yuan H D, Nai J W, Fang Y J, Lu G X, Tao X Y, Lou X W D. Angew. Chem. Int. Ed., 2020, 59(37): 15839.

doi: 10.1002/anie.202001989     URL    
[67]
Wu X Y, Qian C, Wu H Y, Xu L, Bu L L, Piao Y Z, Diao G W, Chen M. Chem. Commun., 2020, 56(55): 7629.

doi: 10.1039/D0CC02443K     URL    
[68]
Zhou Z P, Chen F, Wu L, Kuang T R, Liu X H, Yang J T, Fan P, Fei Z D, Zhao Z P, Zhong M Q. Electrochim. Acta, 2020, 332: 135490.

doi: 10.1016/j.electacta.2019.135490     URL    
[69]
Ma X D, Fang K X, Yang X Y, Jiang J Y, Meng L K, Wu X H. J. Alloys Compd., 2020, 818: 152859.

doi: 10.1016/j.jallcom.2019.152859     URL    
[70]
Zhong D, Chen J W, Zhang J, Luo Y, Li Z J, Cheng L, Chen Y H, Wang G, Wang R L. Mater. Res. Express, 2019, 6(8): 085058.

doi: 10.1088/2053-1591/ab1f62     URL    
[71]
Fang R P, Zhao S Y, Sun Z H, Wang D W, Cheng H M, Li F. Adv. Mater., 2017, 29(48): 1606823.

doi: 10.1002/adma.201606823     URL    
[72]
Li Q D, Li L, Wu P J, Xu N, Wang L, Li M, Dai A, Amine K, Mai L Q, Lu J. Adv. Energy Mater., 2019, 9(43): 1901153.

doi: 10.1002/aenm.201901153     URL    
[73]
Zhang L, Wang C R, Dou Y H, Cheng N Y, Cui D D, Du Y, Liu P R, Al-Mamun M, Zhang S Q, Zhao H J. Angew. Chem. Int. Ed., 2019, 58(26): 8824.

doi: 10.1002/anie.201903709     pmid: 31050110
[74]
Chen J J, Yang K, Yu H Y, Shah T, Zhang Q Y, Zhang B L. Carbon, 2020, 170: 37.

doi: 10.1016/j.carbon.2020.08.005     URL    
[75]
Park J S, Hong Y J, Kim J H, Kang Y C. J. Power Sources, 2020, 461: 228115.

doi: 10.1016/j.jpowsour.2020.228115     URL    
[76]
Dahbi M, Yabuuchi N, Kubota K, Tokiwa K, Komaba S. Phys. Chem. Chem. Phys., 2014, 16(29): 15007.

doi: 10.1039/c4cp00826j     URL    
[77]
Liu Z M, Lu T C, Song T, Yu X Y, Lou X W D, Paik U. Energy Environ. Sci., 2017, 10(7): 1576.

doi: 10.1039/C7EE01100H     URL    
[78]
Man Z M, Li P, Zhou D, Wang Y Z, Liang X H, Zang R, Li P X, Zuo Y Q, Lam Y M, Wang G X. Nano Lett., 2020, 20(5): 3769.

doi: 10.1021/acs.nanolett.0c00789     URL    
[79]
Zhang Z Z, Du Y C, Wang Q C, Xu J Y, Zhou Y N, Bao J C, Shen J, Zhou X S. Angew. Chem. Int. Ed., 2020, 59(40): 17504.

doi: 10.1002/anie.202008318     URL    
[80]
Xiao S H, Li Z Z, Liu J T, Song Y S, Li T S, Xiang Y, Chen J S, Yan Q Y. Small, 2020, 16(41): 2002486.

doi: 10.1002/smll.202002486     URL    
[81]
Zhao W X, Wang X D, Ma X Q, Yue L C, Liu Q, Luo Y L, Liu Y, Asiri A M, Sun X P. J. Mater. Chem. A, 2021, 9(28): 15807.

doi: 10.1039/D1TA04386B     URL    
[82]
Yang H, Chen L W, He F X, Zhang J Q, Feng Y Z, Zhao L K, Wang B, He L X, Zhang Q B, Yu Y. Nano Lett., 2020, 20(1): 758.

doi: 10.1021/acs.nanolett.9b04829     pmid: 31868367
[83]
Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151(11): A1969.
[84]
Wang R X, Wang K L, Gao S, Jiang M, Zhou M, Cheng S J, Jiang K. Nanoscale, 2017, 9(39): 14881.

doi: 10.1039/C7NR04320A     URL    
[85]
Park G D, Hong J H, Lee J K, Kang Y C. Nanoscale, 2019, 11(2): 631.

doi: 10.1039/c8nr08638a     pmid: 30564807
[86]
Park S K, Lee J K, Kang Y C. Adv. Funct. Mater., 2018, 28(18): 1705264.

doi: 10.1002/adfm.201705264     URL    
[87]
Jin Z S, Liang Z M, Zhao M, Zhang Q, Liu B Q, Zhang L Y, Chen L H, Li L, Wang C G. Chem Eng J, 2020, 394: 124983.

doi: 10.1016/j.cej.2020.124983     URL    
[88]
Liu Y J, Wang W Q, Chen Q D, Xu C, Cai D P, Zhan H B. Inorg. Chem., 2019, 58(2): 1330.

doi: 10.1021/acs.inorgchem.8b02897     URL    
[89]
Sun W W, Liu C, Li Y J, Luo S Q, Liu S K, Hong X B, Xie K, Liu Y M, Tan X J, Zheng C M. ACS Nano, 2019, 13(10): 12137.

doi: 10.1021/acsnano.9b06629     URL    
[90]
Zhang X L, Zhang P, Zhang S J, Zhang Y S, Hou R H, Liu K L, Miao F J, Shao G S. J. Energy Chem., 2020, 51: 378.

doi: 10.1016/j.jechem.2020.03.065     URL    
[91]
Zhang R H, Wu M C, Fan X Z, Jiang H R, Zhao T S. J. Energy Chem., 2021, 55: 136.

doi: 10.1016/j.jechem.2020.06.039     URL    
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[8] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[9] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[10] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[11] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[12] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[13] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[14] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[15] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.