English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1191-1202 DOI: 10.7536/PC210728 前一篇   后一篇

• 综述 •

提高非均相芬顿催化活性策略、研究进展及启示

高文艳1, 赵玄1, 周曦琳1, 宋雅然1, 张庆瑞1,2,*()   

  1. 1.燕山大学 河北省水体重金属深度修复与资源利用重点实验室 秦皇岛 066004
    2.燕山大学亚稳材料制备科学与技术国家重点实验室 秦皇岛 066004
  • 收稿日期:2021-07-22 修回日期:2021-11-05 出版日期:2022-05-24 发布日期:2021-12-02
  • 通讯作者: 张庆瑞
  • 基金资助:
    国家自然科学基金项目(21876145); 河北省高等学校百名优秀创新人才支持计划(SLRC2019041)

Strategies, Research Progress and Enlightenment of Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Critical Review

Wenyan Gao1, Xuan Zhao1, Xilin Zhou1, Yaran Song1, Qingrui Zhang1,2()   

  1. 1. Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University,Qinhuangdao 066004, China
    2. State Key Laboratory of Metastable Science and Technology, Yanshan University, Qinhuangdao 066004, China
  • Received:2021-07-22 Revised:2021-11-05 Online:2022-05-24 Published:2021-12-02
  • Contact: Qingrui Zhang
  • Supported by:
    National Natural Science Foundation of China(21876145); Support Program for One Hundred Outstanding Innovative Talents in Higher Education Institutions in Hebei Province(SLRC2019041)

非均相芬顿反应由于固体芬顿催化剂与H2O2反应生成高活性羟基自由基,在去除难降解有机物方面得到了广泛的关注。与均相芬顿相比,其具有pH响应范围广、催化剂稳定性和可重复使用性好以及产泥量少等优点。然而,非均相芬顿反应仍存在一些缺陷,如金属离子析出、H2O2有效利用率低和Fe(Ⅱ)生成速率慢等,阻碍了非均相芬顿在实际废水处理中的应用。为解决这些问题研究者做了大量的工作,本文综述了非均相芬顿反应机制,总结了加速Fe(Ⅱ)生成和促进H2O2分解的策略,以期为开展非均相芬顿催化剂的研究提供技术支持。

Heterogeneous Fenton reactions have attracted tremendous attention for recalcitrant organic contaminants removal, as the reaction between solid Fenton catalysts and H2O2 can generate highly reactive hydroxyl radicals. Additionally, compared to the homogeneous Fenton reaction, it has the advantages of wide pH response range, good catalyst stability and reusability, as well as less-production of iron sludge. However, some defects of heterogeneous Fenton reaction, such as metal ion precipitation, low effective utilization of H2O2 and slow formation rate of Fe(Ⅱ), limiting its application in real wastewater treatment. Therefore, numbers of research have introduced numerous techniques to overcome these drawbacks. In the present review, we summarize the mechanism of homogeneous and heterogeneous Fenton reaction. We also elucidate the strategies for accelerating the formation of Fe(Ⅱ) and promoting the decomposition of H2O2. We believe this review will provide a new insight into the future direction research in the heterogeneous Fenton catalyst.

Contents

1 Introduction

2 Homogeneous and heterogeneous Fenton reaction mechanism

2.1 Homogeneous Fenton reaction mechanism

2.2 Heterogeneous Fenton reaction mechanism

3 Development of heterogeneous Fenton catalysts

3.1 Zero valent metal catalyst system

3.2 In situ doping catalysis system of metal ions

3.3 Cocatalyst

3.4 Two center catalytic system

4 Physical field assisted heterogeneous Fenton reaction

5 Conclusion and outlook

()
图1 均相Fenton氧化有机物的反应机理[21]
Fig. 1 Reaction mechanism for the Fenton process[21].Copyright 2019, ELSEVIER
图2 铁系非均相Fenton氧化的界面机理催化剂:①浸出铁的均相反应和②非均相反应在催化剂的表面[19]
Fig.2 Interfacial mechanisms of heterogeneous Fenton oxidation using iron-basedcatalyst:① homogeneous reaction through the leached iron and ②heterogeneous reaction at the surface of the catalyst[19]. Copyright 2016, ELSEVIER
图3 (a)完全被H原子覆盖的FeOCl(100)表面的结构和H原子还原 Fe c u s 3 +示意图;(b)H原子和质子(H+)部分覆盖的FeOCl(100)表面结构[31]
Fig.3 (a) Structure of FeOCl(100) surface fully covered by H atoms and schematic illustration of H atom reduction effect for surface Fe c u s 3 + sites. (b) structure of FeOCl(100) surface with H atom and proton (H+) co-covered, illustrating formation of active [ Fe c u s 2 +- Fe c u s 3 +] unit[31].Copyright 2019, SCI
图4 H原子覆盖FeOCl(100)表面Fenton反应机理示意图:(a)H2O2脱氢和·OOH脱附为[ Fe c u s 2 +- Fe c u s 3 +]单元;(b)[ Fe c u s 2 +- Fe c u 3 + s]单元共催化H2O2吸附和分解,包括在H质子或表面吸附的H偶联作用下·OH在 Fe c u 3 + s上解吸和OH-在 Fe c u 2 + s上中和[31]
Fig.4 Schematic illustration of Fenton reaction mechanism on proton pre-covered FeOCl(100) surface: (a) formation of [ Fe c u s 2 + - Fe c u s 3 +] unit as aresult of H2O2 dehydrogenation and ·OOH desorption process. (b) H2O2 adsorption and decomposition co-catalyzed by [ Fe c u s 2 +- Fe c u 3 + s] unit, as well as OH desorption into radicals on Fe c u s 3 + site and OH- neutralization reaction on Fe c u s 2 + site by coupling with proton or surface-adsorbed H[31]. Copyright 2019, SCI
图5 非均相Fenton催化体系降解苯酚可能存在的反应机制[32]
Fig.5 Possible heterogeneous Fenton reaction mechanism during phenol degradation[32]. Copyright 2015, SCI
图6 纳米Fe@Fe2O3催化Fenton氧化原理[37]
Fig. 6 Possible molecular oxygen activation pathway over the Fe@Fe2O3 nanowires[37]. Copyright 2013, ACS
图7 纳米Fe@Fe2O3催化Fenton去除Cr(Ⅵ)机理[38]
Fig. 7 Illustration of the anoxic Cr(Ⅵ) removal by core-shell Fe@Fe2O3 nanowires[38]. Copyright 2015, ACS
图8 Cu掺杂Fe3O4@γ-Al2O3催化Fenton降解Ni-EDTA机制[40]
Fig. 8 Mechanism of Fenton degradation of Ni-EDTA catalyzed by Cu doped Fe3O4@γ-Al2O3[40]. Copyright 2019, ELSEVISR
图9 Fe@Fe2O3/H2O2/HA体系降解有机物机理[45]
Fig. 9 Schematic illustration for the degradation mechanisms in the Fe@Fe2O3/H2O2/HA system[45].Copyright 2019, ELSEVIER
图10 MoS2助Fenton催化反应杀菌机理[46]
Fig. 10 The proposed bactericidal mechanism of the MoS2 co-catalytic Fenton reaction[46]. Copyright 2018, ELSEVIER
图11 C@M与MIL-88B-Fe反应机制[47]
Fig. 11 The comparison chart of reaction mechanism for C@M and MIL-88B-Fe[47]. Copyright 2019, SCI
图12 磷酸盐促核壳纳米Fe@Fe2O3生成H2O2的示意图[48]
Fig. 12 Schematic illustration for enhanced H2O2 generation with Fe@Fe2O3 core-shell nanowires in the presence of phosphate[48]. Copyright 2017, ACS
图13 d-TiCuAl-SiO2Ns表面类原电池双反应中心Fenton催化反应机制[49]
Fig. 13 The Fenton-like reaction mechanism on the surface galv-anic-like cells of d-TiCuAl-SiO2Ns[49]. Copyright 2017, RSC
图14 CN-Cu(Ⅱ)-CuAlO2类原电池双反应中心Fenton催化反应机制[50]
Fig. 14 Fenton catalytic reaction mechanism of CN-Cu(Ⅱ)-CuAlO2 type primary battery double reaction center[50]. Copyright 2018, ACS
图15 可见光驱动TiO2/Fe2TiO5/Fe2O3去除不同有机污染物的PFR机理[55]
Fig. 15 Visible-light-driven PFR mechanism of TiO2/Fe2TiO5/Fe2O3 for the removal of different organic pollutants[55]. Copyright 2017, SCI
[1]
Bury N A, Mumford K A, Stevens G W. J. Hazard. Mater., 2021, 416: 125792.

doi: 10.1016/j.jhazmat.2021.125792     URL    
[2]
Lima M J, Silva C G, Silva A M T, Lopes J C B, Dias M M, Faria J L. Chem. Eng. J., 2017, 310: 342.

doi: 10.1016/j.cej.2016.04.032     URL    
[3]
Wang Y, Guo S P, Gu Z P, Zhang A P. Chemosphere, 2020, 242: 125139.

doi: 10.1016/j.chemosphere.2019.125139     URL    
[4]
Samira S F C, NakÉdia M F C. J. Environ. Manage., 2017, 187: 82.

doi: 10.1016/j.jenvman.2016.11.032     URL    
[5]
Nie G Z, Qiu S J, Wang X, Du Y, Zhang Q R, Zhang Y, Zhang H L. Chin. Chem. Lett., 2021, 32(7): 2342.

doi: 10.1016/j.cclet.2020.12.014     URL    
[6]
Zhang Q R, Li Y X, Chen H, Zhang S Q, Qiao L L. Journal of Yanshan University, 2018, 48(1): 1.
(张庆瑞, 李奕璇, 陈贺, 张帅其, 乔丽丽. 燕山大学学报, 2018, 48(1): 1.)
[7]
Razanajatovo M R, Gao W Y, Song Y R, Zhao X, Sun Q N, Zhang Q R. Chin. Chem. Lett., 2021, 32(9): 2637.

doi: 10.1016/j.cclet.2021.01.046     URL    
[8]
Cheng X M, Zhang Q R. Progress in Chemistry, 2021, 33(4): 678.
(程熙萌, 张庆瑞. 化学进展, 2021, 33(4): 678.)

doi: 10.7536/PC200695    
[9]
Luo Z Q. Doctoral Dissertation of Kunming University of Science and Technology, 2015.
(罗中秋. 昆明理工大学博士论文, 2015.).
[10]
Montserrat P M, Moisès G, Luis J V, Enric C, HÉctor D M. Catal. Today., 2007, 124(3/4): 163.

doi: 10.1016/j.cattod.2007.03.034     URL    
[11]
Ciggin A S, Sarica E S, Doğruel S, Orhon D. J. Clean. Prod., 2021, 313: 127948.

doi: 10.1016/j.jclepro.2021.127948     URL    
[12]
Rodríguez-Chueca J, Mediano A, Pueyo N, García-Suescun I, Mosteo R, Ormad M P. Chem. Eng. Sci., 2016, 156: 89.

doi: 10.1016/j.ces.2016.09.016     URL    
[13]
Wang X C, Zhuang Y, Zhang J, Song L Z, Shi B Y. Sci. Total. Environ., 2020, 714: 136436.

doi: 10.1016/j.scitotenv.2019.136436     URL    
[14]
Pan J S, Deng J Y, Zhang Q X, Yan Q S. Journal of Guangdong University of Technology, 2019, 36(2): 70.
(潘继生, 邓家云, 张棋翔, 阎秋生. 广东工业大学学报, 2019, 36(2): 70.)
[15]
Wu D L, Chen Y F, Zhang Y L, Feng Y, Shih K. Sep. Purif. Technol., 2015, 154: 60.

doi: 10.1016/j.seppur.2015.09.016     URL    
[16]
Lvy L, Hu C. Progress in Chemistry, 2017, 29(9): 981.
(吕来, 胡春. 化学进展, 2017, 29(9): 981.)

doi: 10.7536/PC170552    
[17]
Fubini B, Mollo L, Giamello E. Free. Radic. Res., 1995, 23(6): 593.

doi: 10.3109/10715769509065280     URL    
[18]
Xu T Y, Zhu R L, Zhu G Q, Zhu J X, Liang X L, Zhu Y P, He H P. Appl. Catal. B Environ., 2017, 212: 50.

doi: 10.1016/j.apcatb.2017.04.064     URL    
[19]
He J, Yang X F, Men B, Wang D S. J. Environ. Sci., 2016, 39: 97.

doi: 10.1016/j.jes.2015.12.003     URL    
[20]
Lado Ribeiro A R, Moreira N F F, Li Puma G, Silva A M T. Chem. Eng. J., 2019, 363: 155.

doi: 10.1016/j.cej.2019.01.080    
[21]
Zhang M H, Dong H, Zhao L, Wang D X, Meng D. Sci. Total. Environ., 2019, 670: 110.

doi: 10.1016/j.scitotenv.2019.03.180    
[22]
Jia L D, Zhang Q R. Progress in Chemistry, 2020, 32(7): 978.
(贾丽达, 张庆瑞. 化学进展, 2020, 32(7): 978.)

doi: 10.7536/PC200201    
[23]
Macarena M, Zahara M de P, Jose A C, Juan J R. Appl. Catal., B., 2015, 176/177: 249.

doi: 10.1016/j.apcatb.2015.04.003     URL    
[24]
Liu Y D, Zhou A G, Gan Y Q, Liu C F, Yu T T, Li X Q. J. Contam. Hydrol., 2013, 145: 37.

doi: 10.1016/j.jconhyd.2012.11.007     URL    
[25]
Mustapha M B, Abdul A A R, Anam A. Process Saf. Environ. Prot., 2019, 126: 119.

doi: 10.1016/j.psep.2019.03.028     URL    
[26]
Samakchi S, Chaibakhsh N, Moradi-Shoeili Z. J Photoch Photobio A, 2018, 367: 420.

doi: 10.1016/j.jphotochem.2018.09.003     URL    
[27]
Wai P K, Bettina M V. Environ. Sci. Technol., 2003, 37 (6): 1150.

doi: 10.1021/es020874g     URL    
[28]
Hsueh C L, Huang Y H, Wang C C, Chen C Y. Chemosphere, 2005, 58(10): 1409.

pmid: 15686759
[29]
Guo S, Yuan N, Zhang G K, Yu J C. Microporous Mesoporous Mater., 2017, 238: 62.

doi: 10.1016/j.micromeso.2016.02.033     URL    
[30]
Kakavandi B, Babaei A A. RSC Adv., 2016, 6(88): 84999.

doi: 10.1039/C6RA17624K     URL    
[31]
Ji X X, Wang H F, Hu P J. Rare Met., 2019, 38(8): 783.

doi: 10.1007/s12598-018-1140-9     URL    
[32]
Pliego G, Zazo J A, Garcia-Muñoz P, Munoz M, Casas J A, Rodriguez J J. Crit. Rev. Environ. Sci. Technol., 2015, 45(24): 2611.

doi: 10.1080/10643389.2015.1025646     URL    
[33]
Xia Q X, Jiang Z H, Wang J K, Yao Z P. Catal. Commun., 2017, 100: 57.

doi: 10.1016/j.catcom.2017.06.017     URL    
[34]
Navalon S, Martin R, Alvaro M, Garcia H. Angew. Chem. Int. Ed., 2010, 49(45): 8403.

doi: 10.1002/anie.201003216     pmid: 20878820
[35]
Li Z T, Wang L, Meng J, Liu X M, Xu J M, Wang F, Brookes P. J. Hazard. Mater., 2018, 344: 1.

doi: 10.1016/j.jhazmat.2017.09.036     URL    
[36]
Wang L, Cao M H, Ai Z H, Zhang L Z. Environ. Sci. Technol., 2014, 48(6): 3354.

doi: 10.1021/es404741x     pmid: 24527762
[37]
Ai Z H, Gao Z T, Zhang L Z, He W W, Yin J J. Environ. Sci. Technol., 2013, 47(10): 5344.

doi: 10.1021/es4005202     URL    
[38]
Mu Y, Ai Z H, Zhang L Z, Song F H. ACS Appl. Mater. Interfaces, 2015, 7(3): 1997.

doi: 10.1021/am507815t     URL    
[39]
Costa R C C, Lelis M F F, Oliveira L C A, Fabris J D, Ardisson J D, Rios R R V A, Silva C N, Lago R M. J. Hazard. Mater., 2006, 129(1/3): 171.

doi: 10.1016/j.jhazmat.2005.08.028     URL    
[40]
Xie W M, Zhou F P, Bi X L, Chen D D, Huang Z J, Li Y H, Sun S Y, Liu J Y. Chemosphere, 2019, 221: 563.

doi: 10.1016/j.chemosphere.2019.01.083     URL    
[41]
Huang X P, Hou X J, Jia F L, Song F H, Zhao J C, Zhang L Z. ACS Appl. Mater. Interfaces, 2017, 9(10): 8751.

doi: 10.1021/acsami.6b16600     URL    
[42]
Hou X J, Huang X P, Ai Z H, Zhao J C, Zhang L Z. J. Hazard. Mater., 2016, 310: 170.

doi: 10.1016/j.jhazmat.2016.01.020     URL    
[43]
Zhang Z S, Wang X M, Zhao M X, Qi H M. Carbohydr. Polym., 2014, 112: 578.

doi: 10.1016/j.carbpol.2014.06.030     URL    
[44]
Abida O, Kolar M, Jirkovsky J, Mailhot G. Photochem. Photobiol. Sci., 2012, 11(5): 794.

doi: 10.1039/c2pp05358f     URL    
[45]
Luo H W, Zhao Y Y, He D Q, Ji Q, Cheng Y, Zhang D Y, Pan X L. J. Mol. Liq., 2019, 282: 13.

doi: 10.1016/j.molliq.2019.02.136     URL    
[46]
Liu J, Dong C C, Deng Y X, Ji J H, Bao S Y, Chen C R, Shen B, Zhang J L, Xing M Y. Water Res., 2018, 145: 312.

doi: 10.1016/j.watres.2018.08.039     URL    
[47]
Zhang H, Chen S, Zhang H G, Fan X F, Gao C, Yu H T, Quan X. Front. Environ. Sci. Eng., 2019, 13(2): 18.

doi: 10.1007/s11783-019-1101-z     URL    
[48]
Mu Y, Ai Z H, Zhang L Z. Environ. Sci. Technol., 2017, 51(14): 8101.

doi: 10.1021/acs.est.7b01896     URL    
[49]
Lyu L, Zhang L L, Hu C. Environ. Sci.: Nano, 2016, 3(6): 1483.
[50]
Lyu L, Yu G F, Zhang L L, Hu C, Sun Y. Environ. Sci. Technol., 2018, 52(2): 747.

doi: 10.1021/acs.est.7b04865     URL    
[51]
Lyu L, Yan D B, Yu G F, Cao W R, Hu C. Environ. Sci. Technol., 2018, 52(7): 4294.

doi: 10.1021/acs.est.7b06545     URL    
[52]
Lyu L, Zhang L L, He G Z, He H, Hu C. J. Mater. Chem. A, 2017, 5(15): 7153.

doi: 10.1039/C7TA01583F     URL    
[53]
Xu S Q, Zhu H X, Cao W R, Wen Z B, Wang J N, François-Xavier C P, Wintgens T. Appl. Catal. B Environ., 2018, 234: 223.

doi: 10.1016/j.apcatb.2018.04.029     URL    
[54]
Zhu Y P, Zhu R L, Xi Y F, Zhu J X, Zhu G Q, He H P. Appl. Catal. B Environ., 2019, 255: 117739.

doi: 10.1016/j.apcatb.2019.05.041     URL    
[55]
Deng Y X, Xing M Y, Zhang J L. Appl. Catal. B Environ., 2017, 211: 157.

doi: 10.1016/j.apcatb.2017.04.037     URL    
[56]
Brillas E, SirÉs I, Oturan M A. Chem. Rev., 2009, 109(12): 6570.

doi: 10.1021/cr900136g     pmid: 19839579
[57]
Radwan M, Alalm M G, El-Etriby H K. J. Water Process Eng., 2019, 31: 100837.

doi: 10.1016/j.jwpe.2019.100837     URL    
[58]
Li H L, Lei H Y, Yu Q, Li Z, Feng X, Yang B J. Chem. Eng. J., 2010, 160(2): 417.

doi: 10.1016/j.cej.2010.03.027     URL    
[59]
Li X, Zhang Y K, Xie Y, Zeng Y, Li P Y, Xie T H, Wang Y B. J. Hazard. Mater., 2018, 344: 689.

doi: 10.1016/j.jhazmat.2017.11.019     URL    
[60]
Jannatul R, Mohamed C N, Rutely C B C, Anjan D, Mika S. Sci. Total Environ., 2018, 645: 573.

doi: 10.1016/j.scitotenv.2018.07.125     URL    
[61]
Wang W, Li Y C, Li Y W, Zhou M H, Arotiba O A. Chemosphere, 2020, 250: 126177.

doi: 10.1016/j.chemosphere.2020.126177     URL    
[1] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[2] 丁静静, 黄利利, 谢海燕. 基于纳米颗粒的化学发光技术在炎症及肿瘤诊疗中的应用[J]. 化学进展, 2020, 32(9): 1252-1263.
[3] 朱本占, 谢琳娜, 沈忱, 高慧颖, 朱丽雅, 毛莉. 卤代芳烃化学发光的结构效应、分子机制及其应用[J]. 化学进展, 2017, 29(9): 930-942.
[4] 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999.
[5] 林恒, 张晖. 电-Fenton及类电-Fenton技术处理水中有机污染物[J]. 化学进展, 2015, 27(8): 1123-1132.
[6] 张峰振, 吴超飞, 胡芸, 韦朝海. 卤代有机污染物的光化学降解[J]. 化学进展, 2014, 26(06): 1079-1098.
[7] 王彦斌, 赵红颖, 赵国华, 王宇晶, 杨修春. 基于铁化合物的异相Fenton催化氧化技术[J]. 化学进展, 2013, 25(08): 1246-1259.
[8] 张国富, 温馨, 王涌, 莫卫民, 丁成荣. 氧化脱肟研究新进展[J]. 化学进展, 2012, 24(0203): 361-369.
[9] 杨鑫 杨世迎 邵雪婷 王雷雷 牛瑞. 活性炭催化过氧化物高级氧化技术降解水中有机污染物*[J]. 化学进展, 2010, 22(10): 2071-2078.
[10] 李凤英,刘晔,王霞,贺小双,丁侠. 金属卟啉催化的过氧化氢选择氧化烃类反应机理研究[J]. 化学进展, 2008, 20(11): 1635-1641.
[11] 郎贤军,路瑞玲,李臻,夏春谷. 多金属氧酸盐催化的液相氧化反应*[J]. 化学进展, 2008, 20(04): 469-482.
[12] 张雄福. 苯直接一步氧化合成苯酚*[J]. 化学进展, 2008, 20(0203): 386-395.
[13] 陈杨英,韩秀文. 过氧化氢为氧源催化烯烃环氧化研究[J]. 化学进展, 2006, 18(04): 399-409.
[14] 任永利,王莅,张香文. 苯直接羟基化制苯酚研究进展*[J]. 化学进展, 2003, 15(05): 420-.