English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1321-1336 DOI: 10.7536/PC210724 前一篇   后一篇

• 综述与评论 •

仿生定向液体输送的功能材料表面设计与应用

彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊*(), 孟国哲*()   

  1. 中山大学化学工程与技术学院 珠海 519000
  • 收稿日期:2021-07-20 修回日期:2021-10-22 出版日期:2021-12-02 发布日期:2021-12-02
  • 通讯作者: 郭宏磊, 孟国哲
  • 基金资助:
    政府间国际科技创新合作/港澳台科技创新合作重点专项(2019YFE0111000); 国家自然科学基金青年基金项目(51903257)

Design and Application of Bionic Surface for Directional Liquid Transportation

Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo(), Guozhe Meng()   

  1. School of Chemical Engineering and Technology, Sun Yat-sen University,Zhuhai 519000, China
  • Received:2021-07-20 Revised:2021-10-22 Online:2021-12-02 Published:2021-12-02
  • Contact: Honglei Guo, Guozhe Meng
  • Supported by:
    National Key Research and Development Program of China(2019YFE0111000); National Natural Science Foundation of China(51903257)

无外界能量输入及设备辅助的情况下,在基底表面上控制液体自发输送在微流控和流体低能耗运输中具有重要意义。然而,液体的自发输送会被接触角滞后效应及摩擦阻力所阻碍。自然界中的生物(如蝴蝶翅膀、仙人掌、猪笼草、蜘蛛丝和沙漠甲虫)特殊的表面形貌结构能够将收集到的水分自发输送。受此启发,通过表面调控等方法人工合成材料的仿生表界面也可以自发运输液体。近十余年,仿生表面的液体定向输送得到了广泛关注和深入研究,预期在定向集水、宏观液体输送、油水分离、微流控系统等领域具有广泛的应用前景。本综述系统地介绍了定向运输液体功能材料的原理、合成方法及其应用,深入解析了制约其应用的主要因素,并总结和展望了定向运输液体的功能材料在未来发展中所面对的机遇与挑战。

The biological surfaces in nature can transport liquids in a given direction without any external energy or additional setup. Inspired by the natural surface, the liquid can be successfully transported by artificial surfaces. In recent years, liquid directional transportation has received extensive attention and in-depth research, and it is expected to have prospects in the fields of directional water collection, macroscopic liquid transportation, oil-water separation, microfluidic systems, etc. This review systematically introduces the principle of liquid transport, processing methods and potential application of biomimetic surfaces. Additionally, the limitations, challenges and future opportunities of liquid transportation are also scoped in this review.

Contents

1 Introduction

2 The principles of directional liquid transport

2.1 Theory of roughness gradient surface

2.2 Theory of chemical gradient surface

2.3 Theory of hierarchical structure

3 Biological surface for directional transport of liquids

3.1 Cactus

3.2 Spider silk

3.3 Namib Desert beetle

3.4 Nepenthes

4 Types of biomimetic surfaces

4.1 Surfaces of chemical gradient

4.2 Surfaces of roughness gradient

4.3 Surfaces of hierarchical structure

5 Application of biomimetic surfaces

5.1 Collection of water

5.2 Transportation of liquid

5.3 Microfluidics

5.4 Oil-water separation

6 Conclusion and prospect

()
图1 三种水输运机制,即物理梯度、化学梯度和微尺度结构:(a) 物理梯度:物理粗糙梯度导致表面能梯度的产生;(b) 化学梯度:化学成分梯度导致表面能梯度的产生[23]; (c1) 微尺度结构(钉扎):微纳米的锋利边缘构成阻碍液滴运动的能量壁垒;(c2) 微尺度结构(锥形结构):锥形结构表面的半径差导致驱动液滴运动的拉普拉斯压差形成
Fig. 1 Three water transport mechanisms, physical gradient, chemical gradient and hierarchical structure. (a) Physical gradient: a surface energy gradient is generated by physical surface roughness, by which a droplet is promoted to move forward to a coarser and hydrophilic region. (b) Chemical gradient: the asymmetry surface tension generated by chemical gradient drives the droplet to high surface energy region[23]; (c1) Hierarchical structure: the hierarchically maro/nano edge on the substrate generates an energy barrier that inhibits the movement of water to the direction of high energy barrier region, the water would move in a given direction. (c2) The difference in the radius on both sides of the cone will induce the droplet to move
图2 仙人掌表面定向水滴运输的机理:(a) 仙人掌植物茎的光学图像;(b)、(c) 单一刺簇及其表面上毛状体的放大图像;(d)、(e) 单个仙人掌刺及其尖端的 SEM 图像;(f)、(g) 仙人掌刺底部和尖端区域的放大图像,靠近底部的微槽比靠近尖端的微槽更稀疏[40]; (h)仙人掌倒刺SEM图像;(i) 仙人掌表面液滴运输的截面示意图[51]; (j) 仙人掌刺(锥形结构)表面具备密集凹槽[40,51]。 比例尺为a: 5 cm, b,c: 500 μm, d: 100 μm, e~g: 20 μm, and h: 2 μm
Fig. 2 Mechanism of directional water transport in cactus. (a) Optical image of a plant of Opuntia microdasys stem covered with well-distributed clusters of spines and trichomes. (b,c) Magnified optical images of a single cluster with spines growing from the trichomes. (d,e) SEM image of a single spine. (f,g) Magnified images of regions near the base and tip of the cactus spine, respectively. The microgrooves near the base are wider and sparser than those near the tip. (h) Magnified image of a single barb[40]. (i) Cross-sectional schematics of liquid drops[51]. (j) In addition to the conical shape, the surface of the spine was covered with multi-level grooves[40,51].Scale bars, a: 5 cm, b,c: 500 μm, d: 100 μm, e~g: 20 μm, and h: 2 μm
图3 蜘蛛丝表面定向水滴运输的机制:(a) 蜘蛛丝的光学图像;(b)蜘蛛丝的周期性纺锤结的SEM图像;(c)、(d)蜘蛛丝纺锤结及其内部杂乱排布的纳米微纤维SEM图像;(e)、(f) 蜘蛛丝接头及其局部放大的整齐排布纳米微纤维SEM图像;(g) 蜘蛛丝表面液滴运输的截面示意图,蜘蛛丝纺锤结具有比接头更高的表面能[31]
Fig. 3 Mechanism of directional water transport in spider silk. (a) Macroscopic photos of spider silk. (b) Environmental SEM images of periodic spindle-knots linking with slender joints. (c,d) Low-magnification and zoomed images show that the spindle-knot is randomly interweaved by nanofibrils. (e,f) Low-magnification and high-magnification images of the joint, which is composed of nanofibrils aligned relatively parallel to the silk axis. (g). Surface structural anisotropy generates a surface energy gradient so that spindle-knots possess higher apparent surface energy than joints[31]
图4 沙漠甲虫背部表面定向水滴运输的机制:(a) 用苏丹Ⅲ染色处理,检查具有雾收集功能的甲虫背部亲水区域是否存在,苏丹Ⅲ染色使蜡覆盖的疏水区域发亮,放大图片显示甲虫背部凸起为发亮的疏水区域;(b) 沙漠甲虫背部的SEM图像[61]; (c)、(d) 使用COMSOL对背部微米级凸起周围的蒸气扩散通量进行数值模拟[1]
Fig. 4 Mechanism of directional water transport in Namib desert beetle. (a) Hydrophobic dorsal surface of Physasterna cribripes. An example of a Physasterna cribripes treated with Sudan Ⅲ staining in order to examine if the beetles have hydrophilic zones that could facilitate the collection of water from fog. The Sudan Ⅲ staining makes wax covered i.e. hydrophobic areas shiny. The magnification shows the shining hydrophobic peaks of the bumps on the elytra. (b) Scanning Electron Microscope images of the apex of the elytra. Scale bar = 1 mm[61].(c,d) Numerically calculated intensity profile of diffusion flux (COMSOL-Multiphysics)[1]
图5 猪笼草表面定向水滴运输的机制:(a) 猪笼草的光学图像;(b)、(c) 高速摄像机拍摄的猪笼草表面上连续输送液体的流动图像;(d) 猪笼草的微尺度结构表面上水滴在微腔中运动机理图[42]。水层Ⅲ填满底部微腔(黄色箭头)并上溢形成水层Ⅱ,在中部微腔被完全填充前,水层Ⅱ上溢形成水层Ⅰ,填充顶部微腔。相反方向的运输不会发生,水被锋锐边缘所钉扎
Fig. 5 Mechanism of directional water transport in Nepenthes. (a) Optical images of a pitcher of Nepenthes. (b) High-speed digital images showing how the starting boundary of a water droplet (dashed lines) changes after the droplet is deposited on the peristome surface. (c) High-speed digital images of the continuous water-transport process between overlapping duck-billed microcavities. (d) Three-dimensional illustration of the water-transport process. The lower water layer, layer Ⅲ, fills up a single microcavity (yellow arrows) and overflows to generate the upper water layer, layer Ⅱ. Before the second microcavity is completely filled, the upper water layer (brown arrows) becomes the top water layer, layer Ⅰ (green arrows), filling the third microcavity. Transport in the reverse direction does not occur because the water is pinned in place, with the water boundary coinciding with the sharp edge[42]
表1 制造定向输送液体表面的各种方法
Table 1 Various methods of fabricated surfaces for directional transport liquid
图6 人工构造化学梯度、物理梯度和微尺度结构的方法:(a) 有机硅烷的溶液扩散法;(b)有机硅烷的气相扩散法;(c)射频辉光等离子体处理制造表面能梯度;(d)激光烧蚀产生表面微结构;(e)非对称机械拉伸带沟槽的有机凝胶表面[12]; (f)3D打印制备模板,使用凝胶复制出具有微尺度结构的毛细管[16]
Fig. 6 Various methods of creating chemical gradients, physical gradients and hierarchical structure. (a) Liquid diffusion of organosilanes. (b) Vapor diffusion of organosilanes. (c) Producing a gradient with radio frequency plasma discharge. (d) The scan head delivers the laser beam on the sample surface to produce microstructures[12].(e) Asymmetrically stretching the micro-grooved organogel surfaces. (f) Fabrication of inner microstructured capillary tubes through replication[16]
图7 用于定向水输送的化学梯度人工表面;(a)在氯硅烷蒸气作用下,气相扩散法在硅片上构造化学梯度,其能驱动液滴上坡运动[6]; (b)使用气相扩散法在硅片上构造化学梯度,其能够收集冷凝水[7];(c)将亲水云母图案化到疏水石蜡上,从而在表面形成表面能梯度,不平衡的表面张力能驱动液滴上坡运动[72]
Fig. 7 Artificial surfaces of chemical gradient for directional water transport. (a) The surface of a silicon wafer reacts with vapors of a volatile alkylchlorosilane by using a diffusion-controlled process[6]. The type of drop motion is a consequence of chemical gradient. (b) The surface of a silicon wafer has a radially outward gradient of chemical composition that was prepared by diffusion-controlled silanization[7]. (c) Patterning the shape-gradient hydrophilic material to the hydrophobic matrix. The surface has a spatial gradient in the surface free energy, the unbalanced Young’s force drives water uphill[72]
图8 用于定向水输送的物理梯度人工表面;(a)对带有沟槽的有机凝胶不对称机械拉伸,其表面能够控制液滴运动方向[14]; (b)对ETFE基板热压印,构造出带有聚合物刷的结构表面[33] ;(c)在抛光的硅片上利用激光调控表面粗糙度,构造出超疏水到疏水的表面梯度,其能够定向运输液体[73]
Fig. 8 Artificial surfaces of physical roughness for directional water transport. (a) The unidirectional sliding of water droplets is controlled by asymmetrically stretching the surface of the microgrooved organogel[14]. (b) Microstructures composed of grooves or squares are produced via hot embossing of poly(ethylene-alt-tetrafluoroethylene) (ETFE) substrates. Modify the structure substrate with a polymer brush to change its surface function and wettability[33]. (c) Using an excimer laser to generate surface roughness gradient on a polished silicon wafer, a surface wettability gradient from superhydrophobicity to hydrophobicity can be generated[73]
图9 具有仿生微尺度结构的表面:(a)仿猪笼草雾收集器示意图[78];(b)、(c) 仿生雾收集器的集水速率和集水过程;(d)能够定向运输液体的仿猪笼草表面[15];(e)、(f)仿猪笼草微尺度结构诱导液滴表观接触角的不对称性;(g)、(h) 仿南洋杉表面结构能够调控不同比例的乙醇-水混合液体的移动方向,低表面能液体向左运输,高表面能液体向右运输[74]
Fig. 9 The bionic surface with hierarchical structures. (a)Schematic diagram of the artificial peristome harvestor. (b) Time-sequence images of the water condensation and transport process on the artificial peristome harvestor. (c)The water droplet with a diameter d1 condensate at the cone side transports along the wet surface to the container side[78].(d) From S1 to S2, upper liquid exceeds and overflows around the sharp overhang as well as fills up the upper microcavity. The liquid-solid contact line pins in place and follows the outline of the microcavities. (e,f)Side view e and cross-section view f of the advancing and receding contact angles of the liquid on the surface, respectively[15]. (g,h) Transport of water-ethanol mixtures[74]. The liquid of low surface energy displays forward transport, whereas liquid of high surface energy displays backward transport
图10 定向集水的仿生表面:(a)~(d)在疏水表面上构造图案化的亲水通道[17] ;(e)、(f)在疏水基底上构造超亲水的聚多巴胺区域。水收集过程中,小液滴优先向超亲水区域移动,然后聚集形成大液滴。区域1和2是由聚多巴胺组成的超亲水区域[80]; (g)、(h) 冷凝表面处于Cassie-Baxter状态,冷凝表面的微柱间距60 μm,高60 μm,半径20 μm,控制微柱参数,能够改变水滴凝结行为[81]
Fig. 10 The artificial surface which can collect water. (a~d) Patterns of distinct hydrophobic and hydrophilic regions on the 25.4 mm condensation surface[17].(e, f) Water collection processes on micropatterned surfaces, these droplets preferentially moved toward the polydopamine-modified superhydrophilic regions and subsequently coalesced into bigger droplets in these regions. Areas 1 and 2 are super-hydrophilic regions composed of polydopamine[80].(g,h) Time-lapse images of the water condensation. The condensed surface is in the Cassie-Baxter state, and the distance of the micro-pillars on the condensation surface is 60 microns, the height is 60 microns, and the radius is 20 microns[81]
图11 仿猪笼草毛细管中毛细上升过程的定性与定量分析:(a)毛细上升实际图像;(b)毛细上升示意图;(c)、(d)前体和主体管的水位变化区别;(e)、(f)不同毛细上升实验中,毛细上升过程中的实际与理论水位变化,f中插图为0.3~2 s时间范围内的放大图[16]
Fig. 11 Capillary uplift dynamics and quantification. (a)Image of water capillary rise inside tubes. (b) Schematic of water capillary rise. (c,d)Variations in the precursor and bulk water elevation heights. (e,f) Comparison of experimental elevation heights and elevating velocities (colored open triangles), H and v, respectively, and theoretical elevation heights and elevating velocities (colored lines) as a function of time, t. (f, Inset) Enlarged diagram within the time range from 0.3 to 2.0 s[16]
图12 精准操控微流体的仿生表面:(a)微流控通道设计,设计能够用于微流控通道、自发驱动液滴的表面[90]; (b)锋锐边缘形成限制微流体的“虚拟壁”,无外加驱动力的情况下,液体在设计通道中扩散[20]; (c) 不同化学成分的交界处形成控制微流体的“微阀”[11]
Fig. 12 Designed surface controls microfulid and confines the liquid flow along the undesired directions. (a)Schematic illustration of the view of the surface which is designed for microfluidic channels and the surface can guide the droplets[90]. (b)Microstructures with sharpen edge is designed in the surface. The liquid spread without external actuation after initial dispensing[20]. (c)Water is controlled in microfluidic systems, the patterned surface acts as microvalve for the microfluidic system[11]
图13 油水分离的凝胶表面:(a)、(c)液体输送的实验示意图;(b)油环境中定向运输水的图像;(d)水环境中定向运输油的图像;(e)油、水定向输送的距离-时间图;(f)凝胶表面仿猪笼草结构的三维图[18]
Fig. 13 Artificial surface can transport water directionally under oil and transport oil directionally under water. (a,c) Schematic of the experimental setup. (b)Time-lapse images of the water transporting process from the top view.(d) Time-lapse images of the oil transporting process from the top view. (e) Time sequences of the unidirectional transporting distances of the water in oil and the oil in water.(f) 3D presentations of sample structures using 3D X-ray microscopy[18]
[1]
Park K C, Kim P, Grinthal A, He N, Fox D, Weaver J C, Aizenberg J. Nature, 2016, 531(7592): 78.

doi: 10.1038/nature16956     URL    
[2]
Gong X J, Gao X F, Jiang L. Adv. Mater., 2017, 29(45): 1703002.

doi: 10.1002/adma.201703002     URL    
[3]
Liu M J, Wang S T, Jiang L. Nat. Rev. Mater., 2017, 2(7): 17036.

doi: 10.1038/natrevmats.2017.36     URL    
[4]
Zheng Y M, Gao X F, Jiang L. Soft Matter, 2007, 3(2): 178.

doi: 10.1039/B612667G     URL    
[5]
Chen H W, Ran T, Gan Y, Zhou J J, Zhang Y, Zhang L W, Zhang D Y, Jiang L. Nat. Mater., 2018, 17(10): 935.

doi: 10.1038/s41563-018-0171-9     URL    
[6]
Chaudhury M K, Whitesides G M. Science, 1992, 256(5063): 1539.

pmid: 17836321
[7]
Daniel S, Chaudhury M K, Chen J C. Science, 2001, 291(5504): 633.

pmid: 11158672
[8]
Gölander C G, Caldwell K, Lin Y S. Colloids Surf., 1989, 42(1): 165.

doi: 10.1016/0166-6622(89)80084-8     URL    
[9]
Elwing H, Welin S, Askendal A, Nilsson U, LundstrÖm I. J. Colloid Interface Sci., 1987, 119(1): 203.

doi: 10.1016/0021-9797(87)90260-8     URL    
[10]
Genzer J, Bhat R R. Langmuir, 2008, 24(6): 2294.

doi: 10.1021/la7033164     pmid: 18220435
[11]
Wang S L, Wang T Q, Ge P, Xue P H, Ye S S, Chen H X, Li Z B, Zhang J H, Yang B. Langmuir, 2015, 31(13): 4032.

doi: 10.1021/acs.langmuir.5b00328     URL    
[12]
Dunn A, Wasley T J, Li J. Appl. Surf. Sci., 2016, 371: 583.

doi: 10.1016/j.apsusc.2016.03.054     URL    
[13]
Pitt W G. J. Colloid Interface Sci., 1989, 133(1): 223.

doi: 10.1016/0021-9797(89)90295-6     URL    
[14]
Zhang P C, Liu H L, Meng J X, Yang G, Liu X L, Wang S T, Jiang L. Adv. Mater., 2014, 26(19): 3131.

doi: 10.1002/adma.201305914     URL    
[15]
Li C X, Li N, Zhang X S, Dong Z C, Chen H W, Jiang L. Angew. Chem. Int. Ed., 2016, 55(48): 14988.

doi: 10.1002/anie.201607514     URL    
[16]
Li C X, Dai H, Gao C. P. Natl. Acad. Sci. USA, 2019, 116: 12704.

doi: 10.1073/pnas.1821493116     URL    
[17]
Chatterjee A, Derby M M, Peles Y, Jensen M K. Int. J. Heat Mass Transf., 2014, 71: 675.

doi: 10.1016/j.ijheatmasstransfer.2013.12.069     URL    
[18]
Zhou S, Yu C L, Li C X, Dong Z C, Jiang L. J. Mater. Chem. A, 2019, 7(31): 18244.

doi: 10.1039/C9TA04770K     URL    
[19]
Zhang Y X, Cao M Y, Peng Y, Jin X, Tian D L, Liu K S, Jiang L. Adv. Funct. Mater., 2018, 28(5): 1870032.

doi: 10.1002/adfm.201870032     URL    
[20]
Liimatainen V, Sariola V, Zhou Q. Adv. Mater., 2013, 25(16): 2275.

doi: 10.1002/adma.201204696     URL    
[21]
Gao L C, McCarthy T J. Langmuir, 2006, 22(14): 6234.

doi: 10.1021/la060254j     URL    
[22]
Brochard F. Langmuir, 1989, 5(2): 432.

doi: 10.1021/la00086a025     URL    
[23]
de Gennes P G, Brochard-Wyart F, QuÉrÉ D. New York, NY: Springer, 2004.
[24]
Zheng Y F, Cheng J, Zhou C L, Xing H T, Wen X F, Pi P H, Xu S P. Langmuir, 2017, 33(17): 4172.

doi: 10.1021/acs.langmuir.7b00227     URL    
[25]
Li C X, Yu C L, Hao D Z, Wu L, Dong Z C, Jiang L. Adv. Funct. Mater., 2018, 28(49): 1707490.

doi: 10.1002/adfm.201707490     URL    
[26]
Young T. Phil. Trans. R. Soc., 1805, 95: 65.

doi: 10.1098/rstl.1805.0005     URL    
[27]
Yang J T, Yang Z H, Chen C Y, Yao D J. Langmuir, 2008, 24(17): 9889.

doi: 10.1021/la8004695     URL    
[28]
Wenzel R N. Ind. Eng. Chem., 1936, 28(8): 988.

doi: 10.1021/ie50320a024     URL    
[29]
Feng L, Li S H, Li H J, Zhai J, Song Y L, Jiang L, Zhu D B. Angew. Chem. Int. Ed., 2002, 41(7): 1221.

doi: 10.1002/1521-3773(20020402)41:7【-逻*辑*与-】#x00026;lt;1221::AID-ANIE1221【-逻*辑*与-】#x00026;gt;3.0.CO;2-G     URL    
[30]
Jin X, Shi B R, Zheng L C, Pei X H, Zhang X Y, Sun Z Q, Du Y, Kim J H, Wang X L, Dou S X, Liu K S, Jiang L. Adv. Funct. Mater., 2014, 24(18): 2721.

doi: 10.1002/adfm.201304184     URL    
[31]
Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463(7281): 640.

doi: 10.1038/nature08729     URL    
[32]
Cassie A B D, Baxter S. Trans. Faraday Soc., 1944, 40: 546.

doi: 10.1039/tf9444000546     URL    
[33]
Neuhaus S, Spencer N D, Padeste C. ACS Appl. Mater. Interfaces, 2012, 4(1): 123.

doi: 10.1021/am201104q     URL    
[34]
Li J, Zhou X, Li J,. Sci. Adv., 2017, 3: 3530.
[35]
Li J Q, Song Y X, Zheng H X, Feng S L, Xu W H, Wang Z K. Soft Matter, 2019, 15(9): 1902.

doi: 10.1039/C9SM00072K     URL    
[36]
Wu D, Wang J N, Wu S Z. Adv. Funct. Mater., 2011, 21: 2927.

doi: 10.1002/adfm.201002733     URL    
[37]
Cai Y, Lin L, Xue Z X, Liu M J, Wang S T, Jiang L. Adv. Funct. Mater., 2014, 24(6): 809.

doi: 10.1002/adfm.201302034     URL    
[38]
Zhang F X, Low H Y. Langmuir, 2007, 23(14): 7793.

doi: 10.1021/la700293y     URL    
[39]
Tie L, Guo Z G, Liu W M. J. Colloid Interface Sci., 2015, 453: 142.

doi: 10.1016/j.jcis.2015.04.066     URL    
[40]
Ju J, Bai H, Zheng Y M, Zhao T Y, Fang R C, Jiang L. Nat. Commun., 2012, 3: 1247.

doi: 10.1038/ncomms2253     URL    
[41]
Parker A R, Lawrence C R. Nature, 2001, 414(6859): 33.

doi: 10.1038/35102108     URL    
[42]
Chen H W, Zhang P F, Zhang L W, Liu H L, Jiang Y, Zhang D Y, Han Z W, Jiang L. Nature, 2016, 532(7597): 85.

doi: 10.1038/nature17189     URL    
[43]
Comanns P, Buchberger G, Buchsbaum A. J. R. Soc. Interface, 2015, 12: 20150415.

doi: 10.1098/rsif.2015.0415     URL    
[44]
Kim K, Kim H, Ho Park S, Joon Lee S. Front. Plant Sci., 2017, 8: 1777.

doi: 10.3389/fpls.2017.01777     URL    
[45]
Malik F T, Clement R M, Gethin D T. Philos. T. R. Soc. A, 2016, 374: 20160110.
[46]
Luo C, Wang X. Sci. Rep., 2017, 7: 9717.

doi: 10.1038/s41598-017-10036-3     URL    
[47]
Xu T, Lin Y, Zhang M. ACS Nano, 2016, 10: 10681.

doi: 10.1021/acsnano.6b05595     URL    
[48]
Li J, Guo Z G. Nanoscale, 2018, 10(29): 13814.

doi: 10.1039/C8NR04354J     URL    
[49]
Rykaczewski K, Jordan J S, Linder R. Langmuir, 2016, 32: 9335.

doi: 10.1021/acs.langmuir.6b02173     pmid: 27537082
[50]
Guo L, Tang G H. Int. J. Heat Mass Transf., 2015, 84: 198.

doi: 10.1016/j.ijheatmasstransfer.2014.12.072     URL    
[51]
Luo C. Langmuir, 2015, 31(43): 11809.

doi: 10.1021/acs.langmuir.5b03600     URL    
[52]
Li X, Yang Y, Liu L. Adv. Mater. Interfaces, 2020, 7: 1901752.

doi: 10.1002/admi.201901752     URL    
[53]
Becker N, Oroudjev E, Mutz S. Nat. Mater., 2003, 2: 278.

doi: 10.1038/nmat858     URL    
[54]
Cranford S W. J. R. Soc. Interface, 2013, 10(82): 20130148.

doi: 10.1098/rsif.2013.0148     URL    
[55]
Yarger J L, Cherry B R, van der Vaart A. Nat. Rev. Mater., 2018, 3(3): 18008.

doi: 10.1038/natrevmats.2018.8     URL    
[56]
Krasnov I, Seydel T, Greving I. J. R. Soc. Interface, 2016, 13: 20160506.

doi: 10.1098/rsif.2016.0506     URL    
[57]
Blackledge T A, Boutry C, Wong S C. J. Exp. Biol., 2009, 212: 1981.

doi: 10.1242/jeb.028944     URL    
[58]
Vollrath F, Porter D. Soft Matter, 2006, 2(5): 377.

doi: 10.1039/b600098n     pmid: 32680251
[59]
Carroll B J. J. Colloid Interface Sci., 1976, 57(3): 488.

doi: 10.1016/0021-9797(76)90227-7     URL    
[60]
Shang L, Fu F, Cheng Y. Small, 2017, 13: 1600286.

doi: 10.1002/smll.201600286     URL    
[61]
Nørgaard T, Dacke M. Front. Zool., 2010, 7(1): 23.

doi: 10.1186/1742-9994-7-23     URL    
[62]
Guadarrama-Cetina J, Mongruel A, Medici M G. Eur. Phys. J. E., 2014, 37: 1.

doi: 10.1140/epje/i2014-14001-x     URL    
[63]
Bohn H F, Federle W. Proc. Natl. Acad. Sci.U.S.A., 2004, 101: 14138.

doi: 10.1073/pnas.0405885101     URL    
[64]
Labonte D, Robinson A, Bauer U, Federle W. Acta Biomater., 2021, 119: 225.

doi: 10.1016/j.actbio.2020.11.005     pmid: 33189952
[65]
Chen H W, Zhang P, Zhang L. Nature, 2016, 532: 85.

doi: 10.1038/nature17189     URL    
[66]
Zhang P F, Zhang L, Chen H. Adv. Mater., 2017, 29.
[67]
Oliver J F, Huh C, Mason S G. J. Colloid Interface Sci., 1977, 59(3): 568.

doi: 10.1016/0021-9797(77)90052-2     URL    
[68]
Concus P, Finn R. P. Natl. Acad. Sci. USA, 1969, 63: 292.

doi: 10.1073/pnas.63.2.292     URL    
[69]
Morgenthaler S, Zink C, Spencer N D. Soft Matter, 2008, 4(3): 419.

doi: 10.1039/b715466f     pmid: 32907200
[70]
Liedberg B, Wirde M, Tao Y T. Langmuir, 1997, 13: 5329.

doi: 10.1021/la962053t     URL    
[71]
Sant S, Hancock M J, Donnelly J P. CAN J. Chem. Eng., 2010, 88: 899.

doi: 10.1002/cjce.20411     URL    
[72]
Zhang J L, Han Y C. Langmuir, 2007, 23(11): 6136.

doi: 10.1021/la063376k     URL    
[73]
Sun C, Zhao X W, Han Y H, Gu Z Z. Thin Solid Films, 2008, 516(12): 4059.

doi: 10.1016/j.tsf.2008.01.011     URL    
[74]
Feng S L, Zhu P G, Zheng H X, Zhan H Y, Chen C, Li J Q, Wang L Q, Yao X, Liu Y H, Wang Z K. Science, 2021, 373(6561): 1344.

doi: 10.1126/science.abg7552     URL    
[75]
Chu K H, Xiao R, Wang E N. Nat. Mater., 2010, 9(5): 413.

doi: 10.1038/nmat2726     URL    
[76]
Soltani M, Golovin K. RSC Adv., 2020, 10(66): 40569.

doi: 10.1039/D0RA08627D     URL    
[77]
Wu L, Dong Z, Kuang M. Adv. Funct. Mater., 2015, 25: 2237.

doi: 10.1002/adfm.201404559     URL    
[78]
Li C L, Yu C, Zhou S. P. Natl. Acad. Sci. USA, 2020, 117: 23436.

doi: 10.1073/pnas.2011935117     URL    
[79]
Malik F, Clement R, Gethin D. Bioinspir. Biomim., 2014, 9: 031002.

doi: 10.1088/1748-3182/9/3/031002     URL    
[80]
Zhang L B, Wu J B, Hedhili M N, Yang X L, Wang P. J. Mater. Chem. A, 2015, 3(6): 2844.

doi: 10.1039/C4TA05862C     URL    
[81]
Seo D, Lee C, Nam Y. Langmuir, 2014, 30(51): 15468.

doi: 10.1021/la5041486     URL    
[82]
Li K, Ju J, Xue Z. Nat. Commun., 2013, 4: 2276.

doi: 10.1038/ncomms3276     URL    
[83]
Zheng S, Du M, Miao W. Adv. Funct. Mater., 2018, 28: 1800832.

doi: 10.1002/adfm.201800832     URL    
[84]
Blossey R. Nat. Mater., 2003, 2(5): 301.

pmid: 12728235
[85]
Squires T M, Quake S R. Rev. Mod. Phys., 2005, 77(3): 977.

doi: 10.1103/RevModPhys.77.977     URL    
[86]
Kotz K T, Noble K A, Faris G W. Appl. Phys. Lett., 2004, 85(13): 2658.

doi: 10.1063/1.1797538     URL    
[87]
Bavière R, Boutet J, Fouillet Y. Microfluid. Nanofluidics, 2008, 4(4): 287.

doi: 10.1007/s10404-007-0173-4     URL    
[88]
Wu H P, Zhu K, Cao B B, Zhang Z, Wu B B, Liang L H, Chai G Z, Liu A P. Soft Matter, 2017, 13(16): 2995.

doi: 10.1039/C6SM02864K     URL    
[89]
Stone H A, Stroock A D, Ajdari A. Annu. Rev. Fluid Mech., 2004, 36: 381.

doi: 10.1146/annurev.fluid.36.050802.122124     URL    
[90]
Fang G P, Li W, Wang X F, Qiao G J. Langmuir, 2008, 24(20): 11651.

doi: 10.1021/la802033q     URL    
[91]
Li C X, Wu L, Yu C. Angew. Chem. Int. Ed., 2017, 56: 13623.

doi: 10.1002/anie.201706665     URL    
[1] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[2] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[3] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[4] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.
[5] 韦存茜, 严杰, 唐浩, 张庆华, 詹晓力, 陈丰秋. 灌注液体型光滑多孔表面制备及应用[J]. 化学进展, 2016, 28(1): 9-17.
[6] 刘娟, 杨青林*, 徐晶晶, 刘克松*, 郭林, 江雷. 仿壁虎和贻贝黏附材料[J]. 化学进展, 2012, (10): 1946-1954.
[7] 周官强,陈新,邵正中. 基于动物丝蛋白的人工纺丝*[J]. 化学进展, 2006, 18(0708): 933-938.