English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 926-949 DOI: 10.7536/PC210710 前一篇   后一篇

• 综述 •

冶金法生产太阳能级硅的除硼方法、技术及工艺

曾毅1, 任永生1,2,3,*(), 马文会1,*(), 陈辉2, 詹曙4, 曹静1   

  1. 1 昆明理工大学冶金与能源工程学院 昆明 650093
    2 东京大学材料工程学院 东京 113-8656
    3 北京科技大学钢铁冶金新技术国家重点实验室 北京 100083
    4 合肥工业大学计算机与信息学院 合肥 230601
  • 收稿日期:2021-07-12 修回日期:2021-09-27 出版日期:2022-04-24 发布日期:2021-12-02
  • 通讯作者: 任永生, 马文会
  • 基金资助:
    国家自然科学基金青年基金项目(52104303); 国家自然科学基金云南联合基金项目(U1702251); 北京科技大学钢铁冶金新技术国家重点实验室基金项目(KK21-07)

Boron Removal Method, Technology and Process for Producing Solar Grade Silicon by Metallurgical Method

Yi Zeng1, Yongsheng Ren1,2,3(), Wenhui Ma1(), Hui Chen2, Shu Zhan4, Jing Cao1   

  1. 1 Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology,Kunming 650093, China
    2 Department of Materials Engineering, The University of Tokyo, Tokyo 113-8656, Japan
    3 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing,Beijing 100083, China
    4 School of Computer and Information, Hefei University of Technology, Hefei 230601, China
  • Received:2021-07-12 Revised:2021-09-27 Online:2022-04-24 Published:2021-12-02
  • Contact: Yongsheng Ren, Wenhui Ma
  • Supported by:
    Youth Fund of the National Natural Science Foundation of China(52104303); Yunnan Joint Fund of the National Natural Science Foundation of China(U1702251); Open Fund of the State Key Laboratory of Advanced Metallurgy of University of Science and Technology Beijing(KK21-07)

太阳能作为一种绿色可再生能源受到了广泛关注,而杂质去除是从冶金级硅中获得太阳能级硅所需的纯化过程,对硅基太阳能电池的制备至关重要。冶金法制备太阳能级多晶硅新工艺技术由于其能耗低、成本低和污染少等优点,成为研究开发的热点,但如何有效地去除硼是我们面临的最严峻的挑战之一。本文综述了硼的热力学和动力学性质(溶解度、扩散率、扩散系数、传质系数和活度系数)以及近年来除硼的相关课题研究(吹气、炉渣处理、等离子体处理、酸浸和溶剂精炼)。研究发现,溶剂精炼是一种很有前途的获取高纯硅的方法,硅的富集率以及硼的去除率均可达到90%以上,而添加剂能够加强硼化物的形成和析出来改进除硼工艺,且后续几乎可被完全消除,不会对精炼硅造成污染,这将更加有效除硼并增加工艺实用性。最后本文对几种除硼工艺进行了比较分析,并对冶金法的应用前景进行了展望。

As a kind of green renewable energy, solar energy has attracted wide attention, and impurity removal is a necessary purification process to obtain solar grade silicon from metallurgical grade silicon, which is very important for the preparation of silicon-based solar cells. The new technology for preparing solar grade polysilicon by the metallurgical method has become the focus of research and development because of its advantages such as low energy consumption, low cost and less pollution. However, the effective removal of boron is one of the most severe challenges we face. In this paper, the thermodynamic and kinetic properties of boron (solubility, diffusivity, diffusion coefficient, mass transfer coefficients and activity coefficient) and the research topics of boron removal in recent years (gas blowing, slag treatment, plasma treatment, acid leaching and solvent refining) are reviewed. It is found that solvent refining is a promising method to obtain high purity silicon. The enrichment rate of silicon and the removal rate of boron can reach more than 90%. Additives can strengthen the formation and precipitation of borides to improve the boron removal process, and the subsequent almost can be completely eliminated, which will not cause pollution to the refined silicon, which will be more effective in boron removal and increase the practicability of the process. At the end of the paper, several deboration processes are compared and analyzed, and the application prospect of metallurgical process is forecasted.

Contents

1 Introduction

2 Properties of boron in silicon

2.1 Solubility of boron in silicon

2.2 Diffusivity of boron in silicon

2.3 Diffusion coefficients and mass transfer coefficients of boron in silicon and slags

2.4 Activity coefficients of boron in silicon and slags

2.5 Segregation coefficients of boron between solid silicon and solvent

2.6 The technical difficulties and challenges of boron removal in silicon

3 Boron removal process

3.1 Boron removal by gas blowing

3.2 Boron removal by slag treatment

3.3 Boron removal by a united refining technique combined gas blowing with slag treatment

3.4 Boron removal by plasma refining

3.5 Boron removal by acid leaching

3.6 Boron removal by solvent refining

3.7 Application of boron removal technology by metallurgical method

4 Conclusion and prospect

()
图1 富硅Si-B系统中的相平衡
Fig. 1 Phase equilibria in the Si-rich Si-B system
图2 B在Si中的扩散系数
Fig. 2 Diffusion coefficients of B in Si
表1 扩散系数和传质速率[10,11,22⇓⇓⇓⇓⇓⇓⇓~30]. DSi和DS分别是B在Si中的扩散系数和BO1.5在渣中的扩散系数。βSi和βS分别是B在Si中的传质系数和BO1.5在渣中的传质系数。δSi和δS分别是Si和渣中的边界层厚度
Table 1 Diffusion coefficients and mass transfer rates[10,11,22⇓⇓⇓⇓⇓⇓⇓~30].DSi and DS are the diffusion coefficients of B in Si and BO1.5 in slag, respectively. βSi and βS are the mass transfer coefficients of B in Si and BO1.5 in slag, respectively. δSi and δS are boundary layer thicknesses in Si and slag, respectively
图3 B在Si中的活度系数
Fig. 3 Activity coefficients of B in Si
表2 Si中不同元素与B之间的相互作用系数[21,31,32,34,35,37]
Table 2 Interaction coefficients between various elements and boron in silicon[21,31,32,34,35,37]
表3 B在固体Si和共晶相之间的分凝系数[35,38⇓⇓⇓~42]
Table 3 Segregation coefficients of boron between solid silicon and eutectics[35,38⇓⇓⇓~42]
图4 吹气实验装置的横截面配置
Fig. 4 The cross-sectional configuration of experimental setup for gas injection
图5 水蒸气和氧气混合精炼除B机理
Fig. 5 Mechanism of boron removal using a mixed water vapor and oxygen gases refining
图6 通过HSC Chemistry计算Ar-H2O(H2,O2或CO2)-B体系中气态硼化物的混合自由能
Fig. 6 Mixing free energy of gaseous boric species for Ar-H2O-(H2, O2 or CO2)-B system through HSC chemistry
图7 CaO-SiO2渣除B的反应机理
Fig. 7 Reaction mechanism of boron removal using CaO-SiO2 slag
图8 CaO-SiO2二元体系相图
Fig. 8 Phase diagram of binary CaO-SiO2 system
图9 CaO-SiO2-ZnO三元熔渣精炼除B示意图
Fig. 9 Schematic diagram of boron removal by CaO-SiO2-ZnO ternary slag refining
图10 吹气与炉渣处理相结合的联合精炼技术的研究思路
Fig. 10 Research idea of united refining technique of combining gas blowing with slag treatment
图11 B分配与CaO-SiO2二元系和CaO-SiO2-CaF2三元系炉渣组成的函数关系
Fig. 11 Boron partition versus a function of slag composition of binary CaO-SiO2 and ternary CaO-SiO2-CaF2 system
图12 利用炉渣处理和吹气精炼技术协同分离B的示意图
Fig. 12 Schematic diagram of synergistic separation to boron using combined slag treatment and gas blowing refining technique
图13 Ar-H2-H2O等离子体精炼MG-Si除硼的过程机理
Fig. 13 Mechanism of deboronization process for MG-Si purification by Ar-H2-H2O plasma refining
图14 溶剂精炼实验装置原理图
Fig. 14 Schematic of the experimental apparatus for solvent refining
图15 Si-Al熔体中B与添加剂元素相互作用示意图
Fig. 15 Schematic diagram of interaction between boron and additive element in Si-Al melt
图16 部分硼化物的Ellingham图
Fig. 16 Ellingham diagram of partial borides
表4 原材料、合金和精炼Si中的杂质含量及其每次运行后的去除分数(ppmw)[85]
图17 炉渣与Si-Cu合金之间的B分配系数与(a) CaO/SiO2和(b) SiO2/Al2O3比值在1773 K处达到平衡的函数关系
Fig. 17 Distribution coefficients of B between slag and Si-Cu alloy as a function of (a) CaO/SiO2 and (b) SiO2/Al2O3 ratios of slag equilibrated at 1773 K
图18 MG-Si溶解、Si晶粒再结晶和杂质偏析过程示意图
Fig. 18 A schematic of the process of the dissolution of MG-Si, recrystallization of a Si grain, and segregation of impurities
图19 使用溶剂精炼方法从Si-Al、Si-Sn和Si-Al-Sn合金中去除硼
Fig. 19 The B removal from Si-Al, Si-Sn, and Si-Al-Sn alloys using solvent refining methods
表5 溶剂精炼法去除硅基合金中硼的研究[39,40,42,62,85,97,99,100,101,104,106,108,113,115,116,118,126,128,129,134,135,136⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~149]
Table 5 Reported removal efficiency of B from Si-based alloys using solvent refining method[39,40,42,62,85,97,99,100,101,104,106,108,113,115,116,118,126,128,129,134,135,136⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓⇓~149]
Authors and ref Alloy system B removal efficiency P removal efficiency Si separation method
Yoshikawa and Morita et al.[97] Si-54 wt% Al 56→0.81 ppmw (98.6%) 35.8→0.93 ppmw (97.4%) Electromagnetic separation
Obinata and Komatsu et al.[136] Si-Al 120→20 ppmw (83.3%) Electrolysis separation
Yoshikawa et al.[137] Si-54 wt% Al + Ti 65.4→0.42 ppmw (99.4%) - Electromagnetic separation
Gumaste et al.[138] Si-Al 6→6 ppmw 45→15 ppmw (98.6%) Pouring+acid leaching
Gu et al.[139] Si-Al 8→1.55 ppmw (80.6%) 13→0.41 ppmw(96.8%) Pouring the residual alloy+
Acid leaching
Li et al.[140] 35 wt% Si-Al 8.33→5.25 ppmw (37.0%) 33.65→13.5 ppmw (60.0%) Super gravity separation
Hu et al.[104] Si-Sn 12.1→3.3 ppmw (Si-Sn alloy) 242.6→44.5 ppmw (Si-Sn alloy) Super gravity separation
Si-Al →0.28 ppmw (Si-Al alloy) →0.46 ppmw (Si-Al alloy)
Jie et al.[141] 30 wt% Si-Al 65→3.1 ppmw (93.4%) 68→10.8 ppmw (81.4%) Electromagnetic separation
Li et al.[135] 22.8 wt% Si-Al 14.8→3.8 ppmw (74.3%) - Acid leaching
Li et al.[134] Si-63.8 wt% Al 14.8→1.4 ppmw (90.5%) - Acid leaching
Ma and Lei et al.[99,100,142] 45 wt% Si-Al 27.9→10.8 ppmw (61.3%) 104.9→2.5 ppmw (97.6%) Electromagnetic separation
+Directional solidification
Si-54 wt% Al + Zr 65.4→0.42 ppmw (99.4%) - Electromagnetic separation
Al-46 wt% Si + Hf 58.9→1.04 ppmw (98.2%) - Electromagnetic separation
Al-46 wt% Si + Ti 58.9→0.46 ppmw (99.2%) - Electromagnetic separation
Esfahani et al.[39] Si-17 wt% Fe 27→2 ppmw (92.6%) 68→29 ppmw (57.4%) Heavy medium
Khajavi et al.[116] Si-Fe (70%, at 1583 K; 65%,
at 1483 K)
- Acid leaching
Wu et al.[115] Si-Fe - 378.5→17.2 ppmw (95.5%) Acid leaching
Luo and Huang et al.[108,113,143] Si-Cu 3.12→1.29 ppmw (58.7%) 17.14→9.9 ppmw (42.2%) Acid leaching
Si-50 wt% Cu + 3.12→0.35 ppmw (88.8%) 17.14→7.27 ppmw (57.8%) Acid leaching
slag treatment
Si-Cu 36→27 ppmw (25%) 25→18 ppmw (28%) Directional solidification
Li et al.[62] 30 wt% Si-Cu 15→1 ppmw (93.3%) 20→1 ppmw (95%) Acid leaching
Zhang et al.[144] Si-Sn - 16.1→3.77 ppmw (85.51%) Zone melting directional
solidification method
Li et al.[128] Si-Sn+ 12.92→0.79 ppmw (93.9%) - Acid leaching
slag treatment
Ma et al.[85,145,146] Si-Sn 33→11.6 ppmw (64.8%) 37→9.7 ppmw (73.8%) Directional solidification method
Sn-84.4 wt% Si + 33→9.2 ppmw (75.1%) 36.2→9.6 ppmw (73.5%) Directional solidification method
slag treatment
Sn-26.2 wt% Si + 33→0.3 ppmw (99.1%) - Electromagnetic separation
slag treatment
Hu et al.[147] Si-Sn + Ca 10.3→3.12 ppmw (69.71%) 108.5→28.9 ppmw (73.36%) Super gravity separation
Li et al.[129,148] Si-Al-Sn 14.8→3.8 ppmw (74.3%) - Electromagnetic separation
Si-Al-Zn 14.8→3.8 ppmw(74.3%) - Acid leaching
Zhao et al.[40] 6 wt% Si-Sn 15→0.1 ppmw (99.3%) - Acid leaching
Lei et al.[149] Si-5wt% Zr 52→35 ppmw (32.7%) 51→12 ppmw (76.5%) Acid leaching
Morito et al.[118] Si-Na - 73→3.4 ppmw (95.3%) Acid leaching
Lai et al.[126] Si-Ca 8.6→3 ppmw (65.1%) 35→4 ppmw (88.6%) Acid leaching
Ren et al.[106] Si-50 at% Sn + Zr 120→31.2 ppmw (73.6%) - Directional solidification+
Acid leaching
Ren et al.[42] Si-50 at% Cu + Zr 80→5.3 ppmw (93.4%) - Directional solidification +
Acid leaching
Chen et al.[101] Al-35at% Si + V 73.6→35.5 ppma (76.8%) - Directional solidification +
Acid leaching
[1]
I.S.E. Fraunhofer, Photovoltaics report. Fraunhofer ISE, Freiburg, 2020: 4.
[2]
Shimoda T, Masuda T. Jpn. J. Appl. Phys., 2014, 53(2S): 02BA01.

doi: 10.7567/JJAP.53.02BA01     URL    
[3]
Tang K, Øvrelid E J, Tranell G, Tangstad M. Mater. Trans., 2009, 50(8): 1978.

doi: 10.2320/matertrans.M2009110     URL    
[4]
Samsonov G V, Sleptsov V M. Russ. J. Inorg. Chem., 1963, 8: 1047.
[5]
Brosset C, Magnusson B. Nature, 1960, 187(4731): 54.

doi: 10.1038/187054a0     URL    
[6]
Trumbore F A, Freeland P E, Logan R A. J. Electrochem. Soc., 1961, 108(5): 458.

doi: 10.1149/1.2428111     URL    
[7]
Hesse J. Z. Met., 1968, 59: 499.
[8]
Olesinski R W, Abbaschian G J. Bull. Alloy Phase Diagr., 1984, 5(5): 476.

doi: 10.1007/BF02872899     URL    
[9]
Fuller C S, Ditzenberger J A. J. Appl. Phys., 1956, 27(5): 544.

doi: 10.1063/1.1722419     URL    
[10]
Garandet J P. Int. J. Thermophys., 2007, 28(4): 1285.

doi: 10.1007/s10765-007-0205-z     URL    
[11]
Kodera H. Jpn. J. Appl. Phys., 1963, 2(4): 212.

doi: 10.1143/JJAP.2.212     URL    
[12]
Williams E L. J. Electrochem. Soc., 1961, 108(8): 795.

doi: 10.1149/1.2428219     URL    
[13]
Barry M L, Olofsen P. J. Electrochem. Soc., 1969, 116(6): 854.

doi: 10.1149/1.2412077     URL    
[14]
Fuller C S, Ditzenberger J A. J. Appl. Phys., 1954, 25(11): 1439.
[15]
Okamura M. Jpn. J. Appl. Phys., 1969, 8(12): 1440.

doi: 10.1143/JJAP.8.1440     URL    
[16]
Domínguez E, Jaraiz M. J. Electrochem. Soc., 1986, 133(9): 1895.

doi: 10.1149/1.2109043     URL    
[17]
Vick G L, Whittle K M. J. Electrochem. Soc., 1969, 116(8): 1142.

doi: 10.1149/1.2412239     URL    
[18]
Wijaranakula W. Jpn. J. Appl. Phys., 1993, 32(Part 1, No. 9A): 3872.
[19]
Ghoshtagore R N. Phys. Rev. B, 1971, 3(2): 397.
[20]
Tang K, Øvrelid E J, Tranell G, Tangstad M. Thermochemical and Kinetic Databases for the Solar Cell Silicon Materials, Crystal Growth of Si for Solar Cells. Springer, Berlin, Heidelberg, 2009. 219.
[21]
Noguchi R, Suzuki K, Tsukihashi F, Sano N. Metall. Mater. Trans. B, 1994, 25(6): 903.

doi: 10.1007/BF02662772     URL    
[22]
Fang M, Lu C H, Huang L Q, Lai H X, Chen J, Yang X B, Li J T, Ma W H, Xing P F, Luo X T. Ind. Eng. Chem. Res., 2014, 53(30): 12054.

doi: 10.1021/ie404427c     URL    
[23]
Krystad E, Tang K, Tranell G. JOM, 2012, 64(8): 968.

doi: 10.1007/s11837-012-0382-5     URL    
[24]
Zhang L, Tan Y, Li J Y, Liu Y, Wang D. Mater. Sci. Semicond. Process, 2013, 16(6): 1645.

doi: 10.1016/j.mssp.2013.04.012     URL    
[25]
Tang K, Øvrelid E J, Tranell G, Tangstad M. J. Occup. Med., 2009, 61(11): 49.
[26]
Wu J J, Wang F M, Chen Z J, Ma W H, Li Y L, Yang B, Dai Y N. Fluid Phase Equilibria, 2015, 404: 70.

doi: 10.1016/j.fluid.2015.06.040     URL    
[27]
Wu J J, Wang F M, Ma W H, Lei Y, Yang B. Metall. Mater. Trans. B, 2016, 47(3): 1796.

doi: 10.1007/s11663-016-0615-z     URL    
[28]
Nishimoto H, Kang Y, Yoshikawa T, Morita K. High Temp. Mater. Process., 2012, 31(4/5): 471.

doi: 10.1515/htmp-2012-0083     URL    
[29]
Wang Y, Morita K. J. Sustain. Metall., 2015, 1(2): 126.

doi: 10.1007/s40831-015-0015-7     URL    
[30]
Wang F M, Wu J J, Ma W H, Lei Y, Wei K X, Yang B. J. Chem. Thermodyn., 2018, 118: 215.

doi: 10.1016/j.jct.2017.11.018     URL    
[31]
Tanahashi M, Fujisawa T, Yamauchi C. Shigen-to-Sozai, 1998, 114(11): 807.

doi: 10.2473/shigentosozai.114.807     URL    
[32]
Inoue G, Yoshikawa T, Morita K. High Temp. Mater. Process., 2003, 22(3/4): 221.

doi: 10.1515/HTMP.2003.22.3-4.221     URL    
[33]
Yoshikawa T, Morita K. Mater. Trans., 2005, 46(6): 1335.

doi: 10.2320/matertrans.46.1335     URL    
[34]
Yoshikawa T, Morita K. Metall. Mater. Trans. B, 2005, 36(6): 731.

doi: 10.1007/s11663-005-0076-2     URL    
[35]
Khajavi L T, Morita K, Yoshikawa T, Barati M. J. Alloys Compd., 2015, 619: 634.

doi: 10.1016/j.jallcom.2014.09.062     URL    
[36]
Teixeira L A V, Morita K. ISIJ Int., 2009, 49(6): 783.

doi: 10.2355/isijinternational.49.783     URL    
[37]
Xu F M, Wu S R, Tan Y, Li J Y, Li Y Q, Liu Y. Sep. Sci. Technol., 2014, 49(2): 305.

doi: 10.1080/01496395.2013.817423     URL    
[38]
Hall R N. J. Phys. Chem., 1953, 57(8): 836.

doi: 10.1021/j150509a021     URL    
[39]
Esfahani S, Barati M. Met. Mater. Int., 2011, 17(6): 1009.

doi: 10.1007/s12540-011-6020-x     URL    
[40]
Zhao L X, Wang Z, Guo Z C, Li C Y. T. Nonfree. Metal. Soc., 2011, 21(5): 1185.
[41]
Yin Z, Oliazadeh A, Esfahani S, Johnston M, Barati M. Can. Metall. Q., 2011, 50(2): 166.

doi: 10.1179/000844311X12949307643551     URL    
[42]
Ren Y S, Morita K. ACS Sustain. Chem. Eng., 2020, 8(17): 6853.

doi: 10.1021/acssuschemeng.0c01785     URL    
[43]
Khattak C P, Joyce D B. National Renewable Energy Laboratory, 2001. 8.
[44]
Sortland Ø S, Tangstad M. Metall. Mater. Trans. E, 2014, 1(3): 211.
[45]
Khattak C P, Joyce D B, Schmid F. Sol. Energy Mater. Sol. Cells, 2002, 74(1/4): 77.

doi: 10.1016/S0927-0248(02)00051-X     URL    
[46]
Nordstrand E F, Tangstad M. Metall. Mater. Trans. B, 2012, 43(4): 814.

doi: 10.1007/s11663-012-9671-1     URL    
[47]
Altenberend J, Chichignoud G, Delannoy Y. Metall. Mater. Trans. E, 2017, 4(1): 41.
[48]
Lee B P, Lee H M, Park D H, Shin J S, Yu T U, Moon B M. Sol. Energy Mater. Sol. Cells, 2011, 95(1): 56.

doi: 10.1016/j.solmat.2010.02.011     URL    
[49]
Flamant G, Kurtcuoglu V, Murray J, Steinfeld A. Sol. Energy Mater. Sol. Cells, 2006, 90(14): 2099.

doi: 10.1016/j.solmat.2006.02.009     URL    
[50]
Wu J J, Ma W H, Yang B, Dai Y N, Morita K. Trans. Nonferrous Met. Soc. China, 2009, 19(2): 463.

doi: 10.1016/S1003-6326(08)60296-4     URL    
[51]
Wu J J, Li Y L, Ma W H, Liu K, Wei K X, Xie K Q, Yang B, Dai Y N. Silicon, 2014, 6(1): 79.

doi: 10.1007/s12633-013-9158-y     URL    
[52]
Suzuki K, Kumagai T, Sano N. ISIJ Int., 1992, 32(5): 630.

doi: 10.2355/isijinternational.32.630     URL    
[53]
Jones J A T, Bowman B, Lefrank P A. Making, Shaping, and Treating of Steel. Steelmaking and Refining Volume, The AISE Steel Foundation, Pittsburgh, PA, 1998. 281.
[54]
Jung E J, Moon B M, Seok S H, Min D J. Energy, 2014, 66: 35.

doi: 10.1016/j.energy.2013.08.010     URL    
[55]
Wu J J, Li Y L, Ma W H, Wei K X, Yang B, Dai Y N. Trans. Nonferrous Met. Soc. China, 2014, 24(4): 1231.

doi: 10.1016/S1003-6326(14)63183-6     URL    
[56]
Jakobsson L K, Tangstad M. Metall. Mater. Trans. B, 2015, 46(2): 595.

doi: 10.1007/s11663-014-0268-8     URL    
[57]
Luo D W, Liu N, Lu Y P, Zhang G L, Li T J. Trans. Nonferrous Met. Soc. China, 2011, 21(5): 1178.

doi: 10.1016/S1003-6326(11)60840-6     URL    
[58]
Li M, Utigard T, Barati M. Metall. Mater. Trans. B, 2015, 46(1): 74.

doi: 10.1007/s11663-014-0168-y     URL    
[59]
Johnston M D, Barati M. J. Non Cryst. Solids, 2011, 357(3): 970.

doi: 10.1016/j.jnoncrysol.2010.10.033     URL    
[60]
Jakobsson L K, Tangstad M. Metall. Mater. Trans. B, 2014, 45(5): 1644.

doi: 10.1007/s11663-014-0088-x     URL    
[61]
Li Y L, Wu J J, Ma W H, Yang B. Silicon, 2015, 7(3): 247.

doi: 10.1007/s12633-014-9222-2     URL    
[62]
Li M, Utigard T, Barati M. Metall. Mater. Trans. B, 2014, 45(1): 221.

doi: 10.1007/s11663-013-0011-x     URL    
[63]
Zhang L, Tan Y, Xu F M, Li J Y, Wang H Y, Gu Z. Sep. Sci. Technol., 2013, 48(7): 1140.

doi: 10.1080/01496395.2012.714438     URL    
[64]
Zhang L, Tan Y, Li J Y, Liu Y, Wang D K. Mater. Sci. Semicond. Process., 2013, 16(6): 1645.

doi: 10.1016/j.mssp.2013.04.012     URL    
[65]
Safarian J, Tranell G, Tangstad M. Metall. Mater. Trans. B, 2013, 44(3): 571.

doi: 10.1007/s11663-013-9823-y     URL    
[66]
Yin C H, Hu B F, Huang X M. J. Semicond., 2011, 32(9): 092003.

doi: 10.1088/1674-4926/32/9/092003     URL    
[67]
White J F, Du S C. Metall. Mater. Trans. B, 2014, 45(1): 96.

doi: 10.1007/s11663-013-0010-y     URL    
[68]
Wu J J, Xia Z F, Ma W H, Wang F M, Zhou Y Q, Wei K X. Mater. Sci. Semicond. Process., 2017, 57: 59.

doi: 10.1016/j.mssp.2016.10.001     URL    
[69]
Wang F M, Wu J J, Ma W H, Xu M, Lei Y, Yang B. Sep. Purif. Technol., 2016, 170: 248.

doi: 10.1016/j.seppur.2016.06.060     URL    
[70]
Wu J J, Zhou Y Q, Ma W H, Xu M, Yang B. Metall. Mater. Trans. B, 2017, 48(1): 22.

doi: 10.1007/s11663-016-0860-1     URL    
[71]
Xia Z F, Wu J J, Ma W H, Lei Y, Wei K X, Dai Y N. Sep. Purif. Technol., 2017, 187: 25.

doi: 10.1016/j.seppur.2017.06.037     URL    
[72]
Johnston M D, Khajavi L T, Li M, Sokhanvaran S, Barati M. JOM, 2012, 64(8): 935.

doi: 10.1007/s11837-012-0384-3     URL    
[73]
Benmansour M, Nikravech M, Morvan D, Amouroux J, Chapelle J. J. Phys. D: Appl. Phys., 2004, 37(21): 2966.

doi: 10.1088/0022-3727/37/21/005     URL    
[74]
Rousseau S, Benmansour M, Morvan D, Amouroux J. Sol. Energy Mater. Sol. Cells, 2007, 91(20): 1906.

doi: 10.1016/j.solmat.2007.07.010     URL    
[75]
Nakamura N, Baba H, Sakaguchi Y, Kato Y. Mater. Trans., 2004, 45(3): 858.

doi: 10.2320/matertrans.45.858     URL    
[76]
Yuge N, Baba H, Sakaguchi Y, Nishikawa K, Terashima H, Aratani F. Sol. Energy Mater. Sol. Cells, 1994, 34(1/4): 243.

doi: 10.1016/0927-0248(94)90046-9     URL    
[77]
Yuge N, Abe M, Hanazawa K, Baba H, Nakamura N, Kato Y, Sakaguchi Y, Hiwasa S, Aratani F. Prog. Photovolt: Res. Appl., 2001, 9(3): 203.

doi: 10.1002/pip.372     URL    
[78]
Díez M D, Fjeld M, Andersen E, Lie B. Chem. Eng. Sci., 2006, 61(1): 229.

doi: 10.1016/j.ces.2005.01.047     URL    
[79]
Pizzini S. Sol. Energy Mater., 1982, 6(3): 253.

doi: 10.1016/0165-1633(82)90035-1     URL    
[80]
Dietl J. Sol. Cells, 1983, 10(2): 145.

doi: 10.1016/0379-6787(83)90015-7     URL    
[81]
Sun Y H, Ye Q H, Guo C J, Chen H Y, Lang X, David F, Luo Q W, Yang C M. Hydrometallurgy, 2013, 139: 64.

doi: 10.1016/j.hydromet.2013.07.002     URL    
[82]
Lai H X, Huang L Q, Gan C H, Xing P F, Li J T, Luo X T. Hydrometallurgy, 2016, 164: 103.

doi: 10.1016/j.hydromet.2016.06.003     URL    
[83]
Shimpo T, Yoshikawa T, Morita K. Metall. Mater. Trans. B, 2004, 35(2): 277.

doi: 10.1007/s11663-004-0029-1     URL    
[84]
Yoshikawa T, Morita K. J. Electrochem. Soc., 2003, 150(8): G465.

doi: 10.1149/1.1588300     URL    
[85]
Ma X D, Yoshikawa T, Morita K. Metall. Mater. Trans. B, 2013, 44(3): 528.

doi: 10.1007/s11663-013-9812-1     URL    
[86]
Mitrašinović A M, Utigard T A. Silicon, 2009, 1(4): 239.

doi: 10.1007/s12633-009-9025-z     URL    
[87]
Li Y Q, Tan Y, Li J Y, Xu Q, Liu Y. J. Alloys Compd., 2014, 583: 85.

doi: 10.1016/j.jallcom.2013.08.145     URL    
[88]
Zhao L X, Wang Z, Guo Z C, Li C Y. Trans. Nonferrous Met. Soc. China, 2011, 21(5): 1185.

doi: 10.1016/S1003-6326(11)60841-8     URL    
[89]
Yoshikawa T, Morita K. J. Cryst. Growth, 2009, 311(3): 776.

doi: 10.1016/j.jcrysgro.2008.09.095     URL    
[90]
Yoshikawa T, Morita K. Sci. Technol. Adv. Mater., 2003, 4(6): 531.

doi: 10.1016/j.stam.2003.12.007     URL    
[91]
Zou Q C, Jie J C, Sun J L, Wang T M, Cao Z Q, Li T J. Sep. Purif. Technol., 2015, 142: 101.

doi: 10.1016/j.seppur.2015.01.005     URL    
[92]
Li Y L, Chen J, Dai S Y. J. Cryst. Growth, 2016, 453: 49.

doi: 10.1016/j.jcrysgro.2016.08.013     URL    
[93]
Ban B Y, Li J W, Bai X L, He Q X, Chen J, Dai S Y. J. Alloys Compd., 2016, 672: 489.

doi: 10.1016/j.jallcom.2016.02.198     URL    
[94]
Bai X L, Ban B Y, Li J W, Fu Z Q, Peng Z J, Wang C B, Chen J. Sep. Purif. Technol., 2017, 174: 345.

doi: 10.1016/j.seppur.2016.11.002     URL    
[95]
Li Y L, Chen J, Ban B Y, Zhang T T, Dai S Y. High Temp. Mater. Process., 2015, 34(1): 43.
[96]
Ban B Y, Li Y L, Zuo Q X, Zhang T T, Chen J, Dai S Y. J. Mater. Process. Technol., 2015, 222: 142.

doi: 10.1016/j.jmatprotec.2015.03.012     URL    
[97]
Yoshikawa T, Arimura K, Morita K. Metall. Mater. Trans. B, 2005, 36(6): 837.

doi: 10.1007/s11663-005-0085-1     URL    
[98]
Lei Y, Ma W H, Sun L E, Wu J J, Morita K. Sep. Purif. Technol., 2016, 162: 20.

doi: 10.1016/j.seppur.2016.02.014     URL    
[99]
Lei Y, Ma W H, Sun L E, Dai Y N, Morita K. Metall. Mater. Trans. B, 2016, 47(1): 27.

doi: 10.1007/s11663-015-0506-8     URL    
[100]
Lei Y, Ma W H, Sun L E, Wu J J, Dai Y N, Morita K. Sci. Technol. Adv. Mater., 2016, 17(1): 12.

doi: 10.1080/14686996.2016.1140303     URL    
[101]
Chen K, Chen X H, Lei Y, Ma W H, Han J X, Yang Z H. Sep. Purif. Technol., 2018, 203: 168.

doi: 10.1016/j.seppur.2018.03.067     URL    
[102]
Hopkins R H, Rohatgi A. J. Cryst. Growth, 1986, 75(1): 67.

doi: 10.1016/0022-0248(86)90226-5     URL    
[103]
Olesinski R W, Abbaschian G J. J. Phase Equilib., 1984, 5(3): 273.
[104]
Hu L, Wang Z, Gong X Z, Guo Z C, Zhang H. Metall. Mater. Trans. B, 2013, 44(4): 828.

doi: 10.1007/s11663-013-9850-8     URL    
[105]
Ren Y S, Wang H P, Morita K. Vacuum, 2018, 158: 86.

doi: 10.1016/j.vacuum.2018.09.044     URL    
[106]
Ren Y S, Wang H P, Morita K. Vacuum, 2019, 167: 319.

doi: 10.1016/j.vacuum.2019.06.029     URL    
[107]
Olesinski R W, Abbaschian G J. Bull. Alloy Phase Diagr., 1986, 7(2): 170.

doi: 10.1007/BF02881559     URL    
[108]
Huang L Q, Lai H X, Lu C H, Fang M, Ma W H, Xing P F, Li J T, Luo X T. Hydrometallurgy, 2016, 161: 14.

doi: 10.1016/j.hydromet.2016.01.013     URL    
[109]
Cai J, Li J T, Chen W H, Chen C, Luo X T. Trans. Nonferrous Met. Soc. China, 2011, 21(6): 1402.

doi: 10.1016/S1003-6326(11)60873-X     URL    
[110]
Jakobsson L K, Tangstad M. Metall. Mater. Trans. B, 2014, 45(5): 1644.

doi: 10.1007/s11663-014-0088-x     URL    
[111]
Zhang L, Tan Y, Xu F M, Li J Y, Wang H Y, Gu Z. Sep. Sci. Technol., 2013, 48(7): 1140.

doi: 10.1080/01496395.2012.714438     URL    
[112]
Suzuki K, Sano N, Tenth E C. Photovoltaic Solar Energy Conference. Dordrecht: Springer Netherlands, 1991. 273/275.
[113]
Huang L Q, Lai H X, Gan C H, Xiong H P, Xing P F, Luo X T. Sep. Purif. Technol., 2016, 170: 408.

doi: 10.1016/j.seppur.2016.07.004     URL    
[114]
Ren Y S, Ueda S, Morita K. ACS Sustain. Chem. Eng., 2019, 7(24): 20107.

doi: 10.1021/acssuschemeng.9b05986     URL    
[115]
Wu J J, Wang Z, Hu X J, Guo Z C. Chin. J. Process. Eng., 2014, 14: 64.
[116]
Khajavi L T, Morita K, Yoshikawa T, Barati M. Metall. Mater. Trans. B, 2015, 46(2): 615.

doi: 10.1007/s11663-014-0236-3     URL    
[117]
Morito H, Yamada T, Ikeda T, Yamane H. J. Alloys Compd., 2009, 480(2): 723.

doi: 10.1016/j.jallcom.2009.02.036     URL    
[118]
Morito H, Karahashi T, Uchikoshi M, Isshiki M, Yamane H. Silicon, 2012, 4(2): 121.

doi: 10.1007/s12633-011-9105-8     URL    
[119]
Morito H, Karahashi T, Yamane H. J. Cryst. Growth, 2012, 355(1): 109.

doi: 10.1016/j.jcrysgro.2012.06.032     URL    
[120]
Yamane H, Morito H, Uchikoshi M. J. Cryst. Growth, 2013, 377: 66.

doi: 10.1016/j.jcrysgro.2013.04.049     URL    
[121]
Li J W, Ban B Y, Li Y L, Bai X L, Zhang T T, Chen J. Silicon, 2017, 9(1): 77.

doi: 10.1007/s12633-014-9269-0     URL    
[122]
Olesinski R W, Kanani N, Abbaschian G J. Bull. Alloy Phase Diagr., 1985, 6(4): 362.

doi: 10.1007/BF02880523     URL    
[123]
Girault B, Chevrier F, Joullie A, Bougnot G. J. Cryst. Growth, 1977, 37(2): 169.

doi: 10.1016/0022-0248(77)90079-3     URL    
[124]
He F L, Zheng S S, Chen C. Metall. Mater. Trans. B, 2012, 43(5): 1011.

doi: 10.1007/s11663-012-9681-z     URL    
[125]
Meteleva-Fischer Y V, Yang Y X, Boom R, Kraaijveld B, Kuntzel H. Miner. Process. Extr. Metall., 2013, 122(4): 229.

doi: 10.1179/0371955313Z.00000000068     URL    
[126]
Lai H X, Huang L Q, Lu C H, Fang M, Ma W H, Xing P F, Li J T, Luo X T. Hydrometallurgy, 2015, 156: 173.

doi: 10.1016/j.hydromet.2015.06.012     URL    
[127]
Xi F S, Li S Y, Ma W H, Chen Z J, Wei K X, Wu J J. Hydrometallurgy, 2021, 201: 105553.

doi: 10.1016/j.hydromet.2021.105553     URL    
[128]
Li J Y, Cao P P, Ni P, Li Y Q, Tan Y. Sep. Sci. Technol., 2016, 51(9): 1598.
[129]
Li J Y, Liu Y, Tan Y, Li Y Q, Zhang L, Wu S R, Jia P J. J. Cryst. Growth, 2013, 371: 1.

doi: 10.1016/j.jcrysgro.2012.12.098     URL    
[130]
Xu F M, Wu S R, Tan Y, Li J Y, Li Y Q, Liu Y. Sep. Sci. Technol., 2014, 49(2): 305.

doi: 10.1080/01496395.2013.817423     URL    
[131]
Li Y Q, Li J Y, Tan Y, Zhang L F, Kazuki M. J. Inorg. Mater., 2016, 31(8): 791.

doi: 10.15541/jim20150649     URL    
[132]
Ma X D, Yoshikawa T, Morita K. J. Alloys Compd., 2012, 529: 12.

doi: 10.1016/j.jallcom.2012.03.057     URL    
[133]
Li Y Q. Doctoral Dissertation of Dalian University of Technology, 2015.
(李亚琼. 大连理工大学博士论文, 2015.).
[134]
Li Y Q, Tan Y, Li J Y, Morita K. J. Alloys Compd., 2014, 611: 267.

doi: 10.1016/j.jallcom.2014.05.138     URL    
[135]
Li Y, Tan Y, Cao P, Li J, Jia P, Liu Y. Mater. Res. Innov., 2015, 19(2): 81.

doi: 10.1179/1433075X13Y.0000000196     URL    
[136]
Obinata I, Komatsu N. J. Jpn. Inst. Met. Mater., 1954, 18(5): 279.
[137]
Yoshikawa T, Morita K. ISIJ Int., 2005, 45(7): 967.

doi: 10.2355/isijinternational.45.967     URL    
[138]
Gumaste J L, Mohanty B C, Galgali R K, Syamaprasad U, Nayak B B, Singh S K, Jena P K. Sol. Energy Mater., 1987, 16(4): 289.

doi: 10.1016/0165-1633(87)90077-3     URL    
[139]
Gu X, Yu X G, Yang D R. Sep. Purif. Technol., 2011, 77(1): 33.

doi: 10.1016/j.seppur.2010.11.016     URL    
[140]
Li J W, Guo Z C, Tang H Q, Wang Z, Sun S T. Trans. Nonferrous Met. Soc. China, 2012, 22(4): 958.

doi: 10.1016/S1003-6326(11)61270-3     URL    
[141]
Jie J C, Zou Q C, Wang H W, Sun J L, Lu Y P, Wang T M, Li T J. J. Cryst. Growth, 2014, 399: 43.

doi: 10.1016/j.jcrysgro.2014.04.003     URL    
[142]
Xue H Y, Lv G Q, Ma W H, Chen D T, Yu J. Metall. Mater. Trans. A, 2015, 46(7): 2922.

doi: 10.1007/s11661-015-2889-1     URL    
[143]
Fang M, Lu C H, Lai H X, Huang L Q, Chen J, Ma W H, Sheng Z L, Shen J N, Li J T, Luo X T. Mater. Sci. Technol., 2013, 29(7): 861.

doi: 10.1179/1743284713Y.0000000212     URL    
[144]
Zhang L F, Ma Y S, Li Y Q. Mat. Sci. Semicon. Proc., 2017, 71: 12.

doi: 10.1016/j.mssp.2017.06.044     URL    
[145]
Ma X D, Lei Y, Yoshikawa T, Zhao B J, Morita K. J. Cryst. Growth, 2015, 430: 98.

doi: 10.1016/j.jcrysgro.2015.08.001     URL    
[146]
Ma X D, Yoshikawa T, Morita K. Sep. Purif. Technol., 2014, 125: 264.

doi: 10.1016/j.seppur.2014.02.003     URL    
[147]
Hu L, Wang Z, Gong X Z, Guo Z C, Zhang H. Sep. Purif. Technol., 2013, 118: 699.

doi: 10.1016/j.seppur.2013.08.013     URL    
[148]
Li J Y, Jia P J, Li Y Q, Cao P P, Liu Y, Tan Y. J. Mater. Sci. Mater. Electron., 2014, 25(4): 1751.

doi: 10.1007/s10854-014-1794-5     URL    
[149]
Lei Y, Ma W H, Lv G Q, Wei K X, Li S Y, Morita K. Sep. Purif. Technol., 2017, 173: 364.

doi: 10.1016/j.seppur.2016.09.051     URL    
[150]
Zhang J, Li T J, Ma X D, Luo D W, Liu N, Liu D H. J. Semicond., 2009, 30(5): 053002.

doi: 10.1088/1674-4926/30/5/053002     URL    
[151]
Rousseau S, Benmansour M, Morvan D, Amouroux J. Sol. Energy Mater. Sol. Cells, 2007, 91(20): 1906.

doi: 10.1016/j.solmat.2007.07.010     URL    
[152]
Ma W H, Dai Y N, Yang B, Liu D C, Wang H. Advanced Materials Industry, 2006, (10): 12.
(马文会, 戴永年, 杨斌, 刘大春, 王华. 新材料产业, 2006, (10): 12.).
[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[3] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[4] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[5] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[6] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[7] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[8] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[9] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[10] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[11] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
[12] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[13] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[14] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[15] 王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 界面钝化策略:提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.