English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1414-1430 DOI: 10.7536/PC210709 前一篇   后一篇

• 综述与评论 •

二维纳米材料的改性及其环境污染物治理方面的应用

周晋, 陈鹏鹏*()   

  1. 安徽大学化学化工学院 安徽 230601
  • 收稿日期:2021-07-07 修回日期:2021-11-04 出版日期:2021-12-02 发布日期:2021-12-02
  • 通讯作者: 陈鹏鹏
  • 基金资助:
    安徽省自然科学基金项目(2008085ME138); 合肥市自然科学基金项目(2021034)

Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment

Jin Zhou, Pengpeng Chen()   

  1. College of Chemistry and Chemical Engineering, Anhui University,Anhui 230601, China
  • Received:2021-07-07 Revised:2021-11-04 Online:2021-12-02 Published:2021-12-02
  • Contact: Pengpeng Chen
  • Supported by:
    Anhui Provincial Natural Science Foundation(2008085ME138); Hefei Municipal Natural Science Foundation(2021034)

二维纳米材料是一类具有类似二维平面形态,且厚度在纳米级甚至数个原子层的材料,其种类繁多并且具有很多与体相材料不同的物化性质,在众多领域受到了广泛关注。二维纳米材料在催化降解、吸脱附、过滤、传感检测等领域具有可观的应用潜力,还可用于环境污染的防治。通过形貌、元素、基团、缺陷的修饰、改性和材料合成等策略可以调控二维纳米材料的性质,从而研发新的材料体系或者改善二维纳米材料的性能。本文首先归纳了二维纳米材料的种类,并重点阐述了各种改性策略的作用及研究现状,以及改性的二维纳米材料在治理水体污染、大气污染和污染物检测等方面的应用,为二维纳米材料在环境治理领域的发展现状作了系统介绍和展望。

Two-dimensional (2D) nanomaterials are nanomaterials with a sheet-like morphology, which have a nanoscaled thickness or even several atomic layers. There are many kinds of 2D nanomaterials and they have many physical and chemical properties different from bulk materials, so 2D nanomaterials have great potential in catalytic degradation, adsorption, filtration, sensor and so on, and can also be used for the prevention and control of environmental pollution. The properties of 2D nanomaterials can be controlled by modification of morphology, elements, groups, defects and material composite so as to improve their performance or develop new material systems. In this paper, the types of 2D nanomaterials are summarized first. The paper also focuses on the role and status of various 2D nanomaterials modification strategies, as well as the application of modified two-dimensional materials in the treatment of water pollution, air pollution, pollutant detection and so on. In a word, the paper makes a systematic introduction and prospect for the development of 2D nanomaterials in environmental governance.

Contents

1 Introduction

2 Categories of 2D nanomaterials

2.1 Single-element 2D nanomaterials and their derivatives

2.2 Inorganic compound 2D nanomaterials

2.3 Organic 2D nanomaterials

3 Strategies for modifying 2D nanomaterials

3.1 Composite of materials

3.2 Modification of elements

3.3 Modification of groups

3.4 Defect engineering

3.5 Modification of morphology

4 Application of 2D nanomaterials in environmental pollution control

4.1 Classification and detection of environmental pollutant

4.1 Water pollution control

4.3 Air pollution control

5 Conclusion and outlook

()
图1 不同类型的超薄二维纳米材料[14]
Fig. 1 Schematic illustration of different kinds of typical ultrathin 2D nanomaterials[14]. Copyright 2015, ACS
图2 不同方式的二维纳米材料基高效异质结光催化剂的设计[61]
Fig. 2 Schematics illustrating the design of efficient 2D nanomaterial-based heterojunction photocatalysts with different configurations[61]. Copyright 2020, WILEY-VCH Verlag GmbH & Co. KGaA
图3 SFGO-La3+和LFGO-La3+的机理示意图。嵌在GO纳米片之间的La3+阳离子(蓝色球体)允许甲醇(C:黑色;H:白色;O:红色)渗透而将溶质分子(黄色球体)截留下来[86]
Fig. 3 Schematic illustration showing the key strategy used in this work. The La3+ cations (blue spheres) intercalated between the GO nanosheets allow permeation of methanol (C, black; H, white; O, red) but exclude solute molecules (yellow sphere)[86]. Copyright 2020, AAAS
图4 有机官能团修饰的MoS2纳米片的合成步骤[91]
Fig. 4 The synthetic route of organic functional groups decorated MoS2 (OFGD-MoS2) nanosheets[91]. Copyright 2014, RSC
图5 二维MCOF的空间位阻举例[59]。(a) 由酞菁铜或酞菁锌构成的二维MCOFs(M = Cu2+或Zn2+);(b) 一种由酞菁镍构成的二维Ni-COF;(c),(e) Cu-COF或Zn-COF的错位式AA堆积;(d),(f) Ni-COF的重叠式AA堆积
Fig. 5 An example about the steric hindrance of 2D MCOF[59]. (a) 2D MCOFs (M = Cu2+ or Zn2+) were constructed by Cu- or Zn-phthalocyanine. (b) A 2D Ni-COF was constructed by Ni-phthalocyanine. (c) and (e) Serrated AA stacking of the Cu-COF or Zn-COF. (d) and (f) Eclipsed AA stacking of the Ni-COF. Copyright 2020, WILEY-VCH
图6 锑纳米片的光催化固氮性能[110]。(a) 不同离心速度下得到的锑纳米片在紫外-可见光或可见光照射下的NH3产率(用吲哚酚蓝法测定),由离子色谱法测得的可见光下NH3产率的数据也在其中,如橙色小球(IC data)所示;(b) 不同锑纳米片的NH3产量-反应时间关系图;(c) 锑纳米片的光催化固氮与能带的示意图
Fig. 6 Performance of photocatalytic N2 fixation of Sb nanosheets[110]. (a) NH3 yield rates under UV-Vis (column with slash) or visible light irradiation (column without slash) determined using the indophenol blue method over Sb nanosheets derived at different CF speeds. The NH3 yield rates under visible light obtained by ion chromatography were also included, as indicated by orange balls (IC data). (b) NH3 yield versus reaction time over the Sb nanosheets. (c) Schematic illustration of photocatalytic N2 fixation and the energy band structures of Sb nanosheets. Copyright 2020, Elsevier
表1 多种含二维纳米材料的传感体系及部分性能指标
Table 1 Several sensing systems containing 2D nanomaterials and their performance
Sensing system Detection target Mechanism Linear range Limit of
detection
Non interfering
substances
ref
Ag2S/Ag@MoS2 rhodamine 6G surface-enhanced Raman scattering - 0.01 μM - 119
BPNS-PEI-TsNiPc crystal violet surface-enhanced Raman scattering - - - 62
Cu-MoS2-based antibody
fragments electrode
3-phenoxybenzoic acid electrochemical biosensing - 3.8 μM - 120
ZIF-8/NH2-MIL-53(Al) doxycycline fluorescence sensing 0.004~38.5 mg/L 1.2 μg/L 9 inorganic anions
and 7 antibiotics
121
tetracycline 0.004~25.7 mg/L 1.2 μg/L
oxytetracycline 0.004~32.1 mg/L 1.2 μg/L
chlortetracycline 0.005~25.7 mg/L 2.2 μg/L
{[Eu2Na(Hpdbb)
(pdbb)2(CH3COO)2
2.5DMA}n
nitrofurazone fluorescence sensing 0~100 μM 0.64 μM 9 inorganic anions
and 5 antibiotics
122
nitrofurantoin 0~80 μM 0.68 μM
furazolidone 0~80 μM 1.06 μM
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ 0~500 μM 5.35 μM
MnO 4 - 0~800 μM 5.99 μM
BiVO4/Ti3C2TX Hg2+ photoelectrochemical sensing 1 pM~2 nM 1 pM 8 metal ions 123
MoS2-Pd NO gas electrochemical sensing - 0.1 ppm NO2, H2S, NH3 124
Ag/H-ZIF-67/glassy carbon electrode H2O2 electrochemical sensing 5 μM~7 mM or 7~67 mM 1.1 μM glucose, NaCl, citric acid, ascorbic acid 125
GO NSs with PdO-WO3
NSs
H2S gas electrochemical sensing - - C2H5OH, C7H8,
CH3COCH3, NH3,
HCHO, CH3SH
126
Au/MoS2 acetone, ethanol, 2-propanol electrochemical sensing - - toluene, hexane,
benzene
127
Graphene/TiS3 ethanol, methanol, acetone electrochemical sensing 2~12 ppm
(for ethanol)
2 ppm
(for ethanol)
H2, CO, CH4 128
MoS2 FET with HfO2 and antibody E. coli electrochemical biosensing - 10 CFU/mL P. aeruginosa 129
Ti3C2-based 16S rDNA
sensor
M. tuberculosis electrochemical biosensing 102~108 CFU/mL 20 CFU/mL 4 bacteria and BCG vaccine 130
图7 几种有利于光催化的异质结和机理的能带结构:Ⅱ型异质结、p-n结、肖特基结、Z型异质结、S型(阶梯型)异质结以及光致界面电荷转移机理
Fig. 7 Several types of band structure of heterojunction and mechanism: type-Ⅱ heterojunction, p-n heterojunction, Schottky junction, Z-scheme heterojunction, step-scheme heterojunction and photoinduced interfacial charge transfer, which are beneficial to photocatalysis
[1]
Lewis A C. Science, 2018, 359(6377): 744.

doi: 10.1126/science.aar4925     URL    
[2]
Boyjoo Y, Sun H Q, Liu J, Pareek V K, Wang S B. Chem. Eng. J., 2017, 310: 537.

doi: 10.1016/j.cej.2016.06.090     URL    
[3]
Bolisetty S, Peydayesh M, Mezzenga R. Chem. Soc. Rev., 2019, 48(2): 463.

doi: 10.1039/c8cs00493e     pmid: 30603760
[4]
Cabrerizo A, Muir D C G, de Silva A O, Wang X W, Lamoureux S F, Lafrenière M J. Environ. Sci. Technol., 2018, 52(24): 14187.

doi: 10.1021/acs.est.8b05011     pmid: 30521332
[5]
Li X F, Mitch W A. Environ. Sci. Technol., 2018, 52(4): 1681.

doi: 10.1021/acs.est.7b05440     URL    
[6]
Benabbou A K, Derriche Z, Felix C, Lejeune P, Guillard C. Appl. Catal. B Environ., 2007, 76(3/4): 257.

doi: 10.1016/j.apcatb.2007.05.026     URL    
[7]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

pmid: 15499015
[8]
Zhang X D, Xie Y. Chem. Soc. Rev., 2013, 42(21): 8187.

doi: 10.1039/c3cs60138b     URL    
[9]
Fan Z X, Bosman M, Huang X, Huang D, Yu Y, Ong K P, Akimov Y A, Wu L, Li B, Wu J, Huang Y, Liu Q, Eng Png C, Lip Gan C, Yang P D, Zhang H. Nat. Commun., 2015, 6: 7684.

doi: 10.1038/ncomms8684     URL    
[10]
Li Y, Wang W X, Xia K Y, Zhang W J, Jiang Y Y, Zeng Y W, Zhang H, Jin C H, Zhang Z, Yang D R. Small, 2015, 11(36): 4745.

doi: 10.1002/smll.201500769     URL    
[11]
Meng N N, Cheng J, Zhou Y F, Nie W Y, Chen P P. Appl. Surf. Sci., 2017, 396: 310.

doi: 10.1016/j.apsusc.2016.10.136     URL    
[12]
Dong L Q, Wang Y Y, Sun J C, Pan C F, Zhang Q H, Gu L, Wan B S, Song C, Pan F, Wang C, Tang Z L, Zhang J Y. 2D Mater., 2018, 6(1): 015007.
[13]
Zhang N, Yang M Q, Liu S Q, Sun Y G, Xu Y J. Chem. Rev., 2015, 115(18): 10307.

doi: 10.1021/acs.chemrev.5b00267     pmid: 26395240
[14]
Zhang H. ACS Nano, 2015, 9: 9451.

doi: 10.1021/acsnano.5b05040     pmid: 26407037
[15]
Tan C L, Cao X H, Wu X J, He Q Y, Yang J, Zhang X, Chen J Z, Zhao W, Han S K, Nam G H, Sindoro M, Zhang H. Chem. Rev., 2017, 117(9): 6225.

doi: 10.1021/acs.chemrev.6b00558     URL    
[16]
Huang C C, Li C, Shi G Q. Energy Environ. Sci., 2012, 5(10): 8848.

doi: 10.1039/c2ee22238h     URL    
[17]
Zhang X D, Xie X, Wang H, Zhang J J, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135(1): 18.

doi: 10.1021/ja308249k     URL    
[18]
Xie Z J, Xing C Y, Huang W C, Fan T J, Li Z J, Zhao J L, Xiang Y J, Guo Z N, Li J Q, Yang Z G, Dong B Q, Qu J L, Fan D Y, Zhang H. Adv. Funct. Mater., 2018, 28(16): 1870107.

doi: 10.1002/adfm.201870107     URL    
[19]
Li Z J, Qiao H, Guo Z N, Ren X H, Huang Z Y, Qi X, Dhanabalan S C, Ponraj J S, Zhang D, Li J Q, Zhao J L, Zhong J X, Zhang H. Adv. Funct. Mater., 2018, 28(16): 1705237.

doi: 10.1002/adfm.201705237     URL    
[20]
Ren X H, Zhou J, Qi X, Liu Y D, Huang Z Y, Li Z J, Ge Y Q, Dhanabalan S C, Ponraj J S, Wang S Y, Zhong J X, Zhang H. Adv. Energy Mater., 2017, 7(19): 1700396.

doi: 10.1002/aenm.201700396     URL    
[21]
Ren X H, Li Z J, Huang Z Y, Sang D, Qiao H, Qi X, Li J Q, Zhong J X, Zhang H. Adv. Funct. Mater., 2017, 27(18): 1606834.

doi: 10.1002/adfm.201606834     URL    
[22]
Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A, Geim A K. Phys. Rev. Lett., 2008, 100: 016602.

doi: 10.1103/PhysRevLett.100.016602     URL    
[23]
Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S. Science, 2009, 323(5914): 610.

doi: 10.1126/science.1167130     pmid: 19179524
[24]
Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22(35): 3906.

doi: 10.1002/adma.201001068     URL    
[25]
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8(3): 902.

doi: 10.1021/nl0731872     URL    
[26]
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Science, 2008, 320(5881): 1308.

doi: 10.1126/science.1156965     pmid: 18388259
[27]
Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E, Snow E S. Nano Lett., 2010, 10(8): 3001.

doi: 10.1021/nl101437p     pmid: 20698613
[28]
Bridgman P W. J. Am. Chem. Soc., 1914, 36(7): 1344.

doi: 10.1021/ja02184a002     URL    
[29]
Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D. ACS Nano, 2014, 8(4): 4033.

doi: 10.1021/nn501226z     URL    
[30]
Sakthivel T, Huang X Y, Wu Y C, Rtimi S. Chem. Eng. J., 2020, 379: 122297.

doi: 10.1016/j.cej.2019.122297     URL    
[31]
Gusmão R, Sofer Z, Pumera M. Angew. Chem. Int. Ed., 2017, 56(28): 8052.

doi: 10.1002/anie.201610512     pmid: 28111875
[32]
Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Chem. Commun., 2010, 46(19): 3256.

doi: 10.1039/b922733d     URL    
[33]
Vogt P, de Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G. Phys. Rev. Lett., 2012, 108(15): 155501.

doi: 10.1103/PhysRevLett.108.155501     URL    
[34]
Bianco E, Butler S, Jiang S S, Restrepo O D, Windl W, Goldberger J E. ACS Nano, 2013, 7(5): 4414.

doi: 10.1021/nn4009406     URL    
[35]
Zhang L H, Huang H Y, Zhang B, Gu M Y, Zhao D, Zhao X W, Li L R, Zhou J, Wu K, Cheng Y H, Zhang J Y. Angewandte Chemie Int. Ed., 2020, 59(3): 1074.

doi: 10.1002/anie.201912761     URL    
[36]
Pumera M, Sofer Z. Adv. Mater., 2017, 29(21): 1605299.

doi: 10.1002/adma.201605299     URL    
[37]
Lim K R G, Handoko A D, Nemani S K, Wyatt B, Jiang H Y, Tang J W, Anasori B, Seh Z W. ACS Nano, 2020, 14(9): 10834.

doi: 10.1021/acsnano.0c05482     URL    
[38]
Hu M M, Zhang H, Hu T, Fan B B, Wang X H, Li Z J. Chem. Soc. Rev., 2020, 49(18): 6666.

doi: 10.1039/D0CS00175A     URL    
[39]
Deshmukh K, Ková?ík T, Khadheer Pasha S K. Coord. Chem. Rev., 2020, 424: 213514.

doi: 10.1016/j.ccr.2020.213514     URL    
[40]
Peng J H, Chen X Z, Ong W J, Zhao X J, Li N. Chem, 2019, 5(1): 18.

doi: 10.1016/j.chempr.2018.08.037     URL    
[41]
Sinha A, Dhanjai , Zhao H M, Huang Y J, Lu X B, Chen J P, Jain R. TrAC-Trends Anal. Chem., 2018, 105: 424.

doi: 10.1016/j.trac.2018.05.021     URL    
[42]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306     URL    
[43]
Green M A, Ho-Baillie A, Snaith H J. Nat. Photonics, 2014, 8(7): 506.

doi: 10.1038/nphoton.2014.134     URL    
[44]
Ma S, Cai M L, Cheng T, Ding X H, Shi X Q, Alsaedi A, Hayat T, Ding Y, Tan Z A, Dai S Y. Sci. China Mater., 2018, 61(10): 1257.

doi: 10.1007/s40843-018-9294-5     URL    
[45]
Pickett W E, Singh D J. Phys. Rev. B, 1996, 53(3): 1146.

pmid: 9983571
[46]
Yan Y L, Cao J M, Meng F N, Wang N, Gao L G, Ma Y L. Progress in Chemistry, 2019, 31: 1031.
( 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 化学进展, 2019, 31: 1031.).

doi: 10.7536/PC181202    
[47]
Tsai H, Nie W Y, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. Nature, 2016, 536(7616): 312.

doi: 10.1038/nature18306     URL    
[48]
Ahmad S, Fu P, Yu S W, Yang Q, Liu X, Wang X C, Wang X L, Guo X, Li C. Joule, 2019, 3(3): 794.

doi: 10.1016/j.joule.2018.11.026     URL    
[49]
Oshima T, Eguchi M, Maeda K. ChemSusChem, 2016, 9(4): 396.

doi: 10.1002/cssc.201501237     URL    
[50]
Maeda K, Eguchi M, Oshima T. Angew. Chem. Int. Ed., 2014, 53(48): 13164.

doi: 10.1002/anie.201408441     URL    
[51]
Ma R Z, Sasaki T. Acc. Chem. Res., 2015, 48(1): 136.

doi: 10.1021/ar500311w     URL    
[52]
Shamsi J, Dang Z Y, Bianchini P, Canale C, di Stasio F, Brescia R, Prato M, Manna L. J. Am. Chem. Soc., 2016, 138(23): 7240.

doi: 10.1021/jacs.6b03166     pmid: 27228475
[53]
Li Y X, Zhang X Y, Huang H, Kershaw S V, Rogach A L. Mater. Today, 2020, 32: 204.

doi: 10.1016/j.mattod.2019.06.007     URL    
[54]
Wang J, Li N, Xu Y X, Pang H. Chem. Eur. J., 2020, 26(29): 6402.

doi: 10.1002/chem.202000294     URL    
[55]
Cote A P. Science, 2005, 310: 1166.

doi: 10.1126/science.1120411     URL    
[56]
Furukawa H, Cordova K E, O’Keeffe M, Yaghi O M. Science, 2013, 341(6149): 1230444.

doi: 10.1126/science.1230444     URL    
[57]
Geng K Y, He T, Liu R Y, Dalapati S, Tan K T, Li Z P, Tao S S, Gong Y F, Jiang Q H, Jiang D L. Chem. Rev., 2020, 120(16): 8814.

doi: 10.1021/acs.chemrev.9b00550     URL    
[58]
Zhang X L, Li G L, Wu D, Li X L, Hu N, Chen J, Chen G, Wu Y N. Biosens. Bioelectron., 2019, 137: 178.

doi: 10.1016/j.bios.2019.04.061     URL    
[59]
Dong J Q, Han X, Liu Y, Li H Y, Cui Y. Angew. Chem. Int. Ed., 2020, 59(33): 13722.

doi: 10.1002/anie.202004796     URL    
[60]
Wan J, Zhang Y, Wang R M, Liu L, Liu E Z, Fan J, Fu F. J. Hazard. Mater., 2020, 384: 121484.

doi: 10.1016/j.jhazmat.2019.121484     URL    
[61]
Su Q, Li Y, Hu R, Song F, Liu S Y, Guo C P, Zhu S M, Liu W B, Pan J. Adv. Sustainable Syst., 2020, 4(9): 2000130.

doi: 10.1002/adsu.202000130     URL    
[62]
Wang R, Yan X Y, Ge B C, Zhou J X, Wang M L, Zhang L X, Jiao T F. ACS Sustainable Chem. Eng., 2020, 8(11): 4521.

doi: 10.1021/acssuschemeng.9b07840     URL    
[63]
Dong Y P, Lin C, Gao S J, Manoranjan N, Li W X, Fang W X, Jin J. J. Membr. Sci., 2020, 607: 118184.

doi: 10.1016/j.memsci.2020.118184     URL    
[64]
Wang J, Zhang Z J, Zhu J N, Tian M T, Zheng S C, Wang F D, Wang X D, Wang L. Nat. Commun., 2020, 11: 3540.

doi: 10.1038/s41467-020-17373-4     pmid: 32669687
[65]
Fu W, Wang X Y, Huang Z Q. Sci. Total. Environ., 2019, 659: 895.

doi: 10.1016/j.scitotenv.2018.12.303     URL    
[66]
Liu Y, Chen P P, Nie W Y, Zhou Y F. Appl. Surf. Sci., 2018, 436: 562.

doi: 10.1016/j.apsusc.2017.12.080     URL    
[67]
Chen P P, Liu X Y, Jin R D, Nie W Y, Zhou Y F. Carbohydr. Polym., 2017, 167: 36.

doi: 10.1016/j.carbpol.2017.02.094     URL    
[68]
Cen Y L, Shi J J, Zhang M, Wu M, Du J, Guo W H, Zhu Y H. J. Colloid Interface Sci., 2019, 546: 20.

doi: 10.1016/j.jcis.2019.03.044     URL    
[69]
Yi X Y, Yuan J L, Tang H F, Du Y, Hassan B, Yin K, Chen Y Q, Liu X. J. Colloid Interface Sci., 2020, 571: 297.

doi: 10.1016/j.jcis.2020.03.061     URL    
[70]
Li J, Zhan G M, Yu Y, Zhang L Z. Nat. Commun., 2016, 7: 11480.

doi: 10.1038/ncomms11480     URL    
[71]
Low J, Yu J G, Jaroniec M, Wageh S, Al-Ghamdi A A. Adv. Mater., 2017, 29(20): 1601694.

doi: 10.1002/adma.201601694     URL    
[72]
Fu J W, Xu Q L, Low J, Jiang C J, Yu J G. Appl. Catal. B Environ., 2019, 243: 556.

doi: 10.1016/j.apcatb.2018.11.011     URL    
[73]
Xiang Q J, Yu J G, Jaroniec M. J. Am. Chem. Soc., 2012, 134(15): 6575.

doi: 10.1021/ja302846n     URL    
[74]
Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Nano Lett., 2011, 11(11): 4774.

doi: 10.1021/nl202587b     pmid: 21981013
[75]
Xu Q L, Zhang L Y, Cheng B, Fan J J, Yu J G. Chem, 2020, 6(7): 1543.

doi: 10.1016/j.chempr.2020.06.010     URL    
[76]
Ning S G, Zhang S W, Sun J N, Li C P, Zheng J F, Khalifa Y M, Zhou S H, Cao J, Wu Y Y. ACS Appl. Mater. Interfaces, 2020, 12(39): 43705.

doi: 10.1021/acsami.0c12044     URL    
[77]
Jo W K, Tonda S. J. Hazard. Mater., 2019, 368: 778.

doi: 10.1016/j.jhazmat.2019.01.114     URL    
[78]
Liz-Marzán L M, Grzelczak M. Science, 2017, 356(6343): 1120.

doi: 10.1126/science.aam8774     pmid: 28619898
[79]
Niu J, Wang D, Qin H L, Xiong X, Tan P L, Li Y Y, Liu R, Lu X X, Wu J, Zhang T, Ni W H, Jin J. Nat. Commun., 2014, 5: 3313.

doi: 10.1038/ncomms4313     URL    
[80]
Haque F, Daeneke T, Kalantar-zadeh K, Ou J Z. Nano Micro Lett., 2017, 10(2): 1.
[81]
Yang K J, Wang J, Chen X X, Zhao Q, Ghaffar A, Chen B L. Environ. Sci.: Nano, 2018, 5(6): 1264.
[82]
Zou H Y, Rong W F, Long B H, Ji Y F, Duan L L. ACS Catal., 2019, 9(12): 10649.

doi: 10.1021/acscatal.9b02794     URL    
[83]
Banerjee A, Chattopadhyay S, Kundu A, Sharma R K, Maiti P, Das S. Ceram. Int., 2019, 45(14): 16821.

doi: 10.1016/j.ceramint.2019.05.223    
[84]
Xun W, Wang Y J, Fan R L, Mu Q Q, Ju S, Peng Y, Shen M R. ACS Energy Lett., 2021, 6(1): 267.

doi: 10.1021/acsenergylett.0c02320     URL    
[85]
Li C B, Wang Y, Li C H, Xu S X, Hou X D, Wu P. ACS Appl. Mater. Interfaces, 2019, 11(23): 20770.

doi: 10.1021/acsami.9b02767     URL    
[86]
Nie L N, Goh K, Wang Y, Lee J, Huang Y J, Karahan H E, Zhou K, Guiver M D, Bae T H. Sci. Adv., 2020, 6(17): eaaz9184.

doi: 10.1126/sciadv.aaz9184     URL    
[87]
Ding L, Li L B, Liu Y C, Wu Y, Lu Z, Deng J J, Wei Y Y, Caro J, Wang H H. Nat. Sustain., 2020, 3(4): 296.

doi: 10.1038/s41893-020-0474-0     URL    
[88]
Ma H P, Liu B L, Li B, Zhang L M, Li Y G, Tan H Q, Zang H Y, Zhu G S. J. Am. Chem. Soc., 2016, 138(18): 5897.

doi: 10.1021/jacs.5b13490     URL    
[89]
Guo H X, Wang J H, Fang Q R, Zhao Y, Gu S, Zheng J, Yan Y S. CrystEngComm, 2017, 19(33): 4905.

doi: 10.1039/C7CE00042A     URL    
[90]
Gong Y N, Zhong W H, Li Y, Qiu Y Z, Zheng L R, Jiang J, Jiang H L. J. Am. Chem. Soc., 2020, 142(39): 16723.

doi: 10.1021/jacs.0c07206     URL    
[91]
Zhou L, He B Z, Yang Y, He Y G. RSC Adv., 2014, 4(61): 32570.

doi: 10.1039/C4RA04682J     URL    
[92]
Yan Z L, Fu L J, Yang H M, Ouyang J. J. Hazard. Mater., 2018, 344: 1090.

doi: 10.1016/j.jhazmat.2017.11.058     URL    
[93]
Lu Y T, Wang H Q, Lu Y. Mater. Des., 2019, 184: 108134.

doi: 10.1016/j.matdes.2019.108134     URL    
[94]
He L L, Huang D S, He Z X, Yang X J, Yue G Z, Zhu J, Astruc D, Zhao P X. J. Hazard. Mater., 2020, 388: 121761.

doi: 10.1016/j.jhazmat.2019.121761     URL    
[95]
Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Nano Lett., 2013, 13(6): 2615.

doi: 10.1021/nl4007479     pmid: 23659662
[96]
Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M W, Chhowalla M. ACS Nano, 2012, 6(8): 7311.

doi: 10.1021/nn302422x     URL    
[97]
Wang K, Chen P P, Nie W Y, Xu Y, Zhou Y F. Chem. Eng. J., 2019, 359: 1205.

doi: 10.1016/j.cej.2018.11.057     URL    
[98]
Meng Z, Stolz R M, Mirica K A. J. Am. Chem. Soc., 2019, 141(30): 11929.

doi: 10.1021/jacs.9b03441     URL    
[99]
Wang M C, Ballabio M, Wang M, Lin H H, Biswal B P, Han X C, Paasch S, Brunner E, Liu P, Chen M W, Bonn M, Heine T, Zhou S Q, Cánovas E, Dong R H, Feng X L. J. Am. Chem. Soc., 2019, 141(42): 16810.

doi: 10.1021/jacs.9b07644     URL    
[100]
Wen R, Li Y, Zhang M C, Guo X H, Li X, Li X F, Han J, Hu S, Tan W, Ma L J, Li S J. J. Hazard. Mater., 2018, 358: 273.

doi: 10.1016/j.jhazmat.2018.06.059     URL    
[101]
Liu H P, Lei W, Tong Z M, Li X J, Wu Z X, Jia Q L, Zhang S W, Zhang H J. Adv. Mater. Interfaces, 2020, 7(15): 2000494.

doi: 10.1002/admi.202000494     URL    
[102]
Kang X L, Liu S H, Dai Z D, He Y P, Song X Z, Tan Z Q. Catalysts, 2019, 9(2): 191.

doi: 10.3390/catal9020191     URL    
[103]
Ghorbani-Asl M, Kretschmer S, Spearot D E, Krasheninnikov A V. 2D Mater., 2017, 4(2): 025078.
[104]
Lin Z, Carvalho B R, Kahn E, Lv R T, Rao R, Terrones H, Pimenta M A, Terrones M. 2D Mater., 2016, 3(2): 022002.
[105]
Xie C, Zhou B, Zhou L, Wu Y J, Wang S Y. Progress in Chemistry, 2020, 32: 1172.
( 谢超, 周波, 周灵, 吴雨洁, 王双印. 化学进展, 2020, 32: 1172.).

doi: 10.7536/PC200434    
[106]
Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Science, 2007, 317(5834): 100.

pmid: 17615351
[107]
Liang Y T, Vijayan B K, Gray K A, Hersam M C. Nano Lett., 2011, 11(7): 2865.

doi: 10.1021/nl2012906     pmid: 21688817
[108]
Chen S C, Wang H, Kang Z X, Jin S, Zhang X D, Zheng X S, Qi Z M, Zhu J F, Pan B C, Xie Y. Nat. Commun., 2019, 10: 788.

doi: 10.1038/s41467-019-08697-x     URL    
[109]
Wu S, Yu H T, Chen S, Quan X. ACS Catal., 2020, 10(24): 14380.

doi: 10.1021/acscatal.0c03359     URL    
[110]
Zhao Z Q, Choi C, Hong S, Shen H D, Yan C, Masa J, Jung Y, Qiu J S, Sun Z Y. Nano Energy, 2020, 78: 105368.

doi: 10.1016/j.nanoen.2020.105368     URL    
[111]
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135(47): 17881.

doi: 10.1021/ja408329q     URL    
[112]
Ran J R, Zhang H P, Qu J T, Shan J Q, Chen S M, Yang F, Zheng R K, Cairney J, Song L, Jing L Q, Qiao S Z. ACS Mater. Lett., 2020, 2(11): 1484.
[113]
Liu Y W, Cheng M, He Z H, Gu B C, Xiao C, Zhou T F, Guo Z P, Liu J D, He H Y, Ye B J, Pan B C, Xie Y. Angew. Chem. Int. Ed., 2019, 58(3): 731.

doi: 10.1002/anie.201808177     URL    
[114]
Sapkota B, Liang W T, VahidMohammadi A, Karnik R, Noy A, Wanunu M. Nat. Commun., 2020, 11: 3705.

doi: 10.1038/s41467-020-17422-y     URL    
[115]
Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. J. Am. Chem. Soc., 2013, 135(28): 10274.

doi: 10.1021/ja404523s     pmid: 23790049
[116]
Zhang M M, Wang K, Zeng S H, Xu Y, Nie W Y, Chen P P, Zhou Y F. Chem. Eng. J., 2021, 411: 128517.

doi: 10.1016/j.cej.2021.128517     URL    
[117]
Xie J F, Qu H C, Lei F C, Peng X, Liu W W, Gao L, Hao P, Cui G W, Tang B. J. Mater. Chem. A, 2018, 6(33): 16121.

doi: 10.1039/C8TA05054F     URL    
[118]
Zhang W, Du Q K, Zhang L F. J. Appl. Phys., 2017, 122(24): 244304.

doi: 10.1063/1.5006407     URL    
[119]
Wu J, Zhou Y F, Nie W Y, Chen P P. J. Nanoparticle Res., 2018, 20(1): 1.

doi: 10.1007/s11051-017-4105-2     URL    
[120]
Giang H, Pali M, Fan L, Suni I I. Electroanalysis, 2019, 31(5): 957.

doi: 10.1002/elan.201800845     URL    
[121]
Li C H, Zhang X S, Wen S M, Xiang R, Han Y, Tang W Z, Yue T L, Li Z H. J. Hazard. Mater., 2020, 395: 122615.

doi: 10.1016/j.jhazmat.2020.122615     URL    
[122]
Xu S, Shi J J, Ding B, Liu Z Y, Wang X G, Zhao X J, Yang E C. Dalton Trans., 2019, 48(5): 1823.

doi: 10.1039/C8DT04208J     URL    
[123]
Jiang Q Q, Wang H J, Wei X Q, Wu Y, Gu W L, Hu L Y, Zhu C Z. Anal. Chimica Acta, 2020, 1119: 11.

doi: 10.1016/j.aca.2020.04.049     URL    
[124]
Chacko L, Massera E, Aneesh P M. J. Electrochem. Soc., 2020, 167(10): 106506.

doi: 10.1149/1945-7111/ab992c     URL    
[125]
Sun D P, Yang D C, Wei P, Liu B, Chen Z G, Zhang L Y, Lu J. ACS Appl. Mater. Interfaces, 2020, 12(37): 41960.

doi: 10.1021/acsami.0c11269     URL    
[126]
Jang J S, Lee J, Koo W T, Kim D H, Cho H J, Shin H, Kim I D. Anal. Chem., 2020, 92(1): 957.

doi: 10.1021/acs.analchem.9b03869     URL    
[127]
Chen W Y, Yen C C, Xue S C, Wang H Y, Stanciu L A. ACS Appl. Mater. Interfaces, 2019, 11(37): 34135.

doi: 10.1021/acsami.9b13827     URL    
[128]
Rafiefard N, Iraji zad A, Esfandiar A, Sasanpour P, Fardindoost S, Zou Y C, Haigh S J, Shokouh S H H. Microchimica Acta, 2020, 187(2): 1.

doi: 10.1007/s00604-019-3921-8     URL    
[129]
Masurkar N, Thangavel N K, Yurgelevic S, Varma S, Auner G W, Reddy Arava L M. Biosens. Bioelectron., 2021, 172: 112724.

doi: 10.1016/j.bios.2020.112724     URL    
[130]
Zhang J L, Li Y, Duan S Y, He F J. Anal. Chimica Acta, 2020, 1123: 9.

doi: 10.1016/j.aca.2020.05.013     URL    
[131]
Lai C, Wang Z H, Qin L, Fu Y K, Li B S, Zhang M M, Liu S Y, Li L, Yi H, Liu X G, Zhou X R, An N, An Z W, Shi X X, Feng C L. Coord. Chem. Rev., 2021, 427: 213565.

doi: 10.1016/j.ccr.2020.213565     URL    
[132]
Hussain T, Sajjad M, Singh D, Bae H, Lee H, Larsson J A, Ahuja R, Karton A. Carbon, 2020, 163: 213.

doi: 10.1016/j.carbon.2020.02.078     URL    
[133]
Li D S, Liu G, Zhang Q, Qu M J, Fu Y Q, Liu Q J, Xie J. Sens. Actuat. B Chem., 2021, 331: 129414.

doi: 10.1016/j.snb.2020.129414     URL    
[134]
Shamsayei M, Yamini Y, Asiabi H. Appl. Clay Sci., 2020, 188: 105540.

doi: 10.1016/j.clay.2020.105540     URL    
[135]
Liu L H, Liu J Y, Zhao L, Yang Z C, Lv C Q, Xue J R, Tang A P. Environ. Sci. Pollut. Res., 2019, 26(9): 8721.

doi: 10.1007/s11356-019-04352-6     URL    
[136]
Fard A K, Mckay G, Chamoun R, Rhadfi T, Preud’Homme H, Atieh M A. Chem. Eng. J., 2017, 317: 331.

doi: 10.1016/j.cej.2017.02.090     URL    
[137]
Wang X D, Yin R L, Zeng L X, Zhu M S. Environ. Pollut., 2019, 253: 100.

doi: 10.1016/j.envpol.2019.06.067     URL    
[138]
Ma R, Zhang S, Wen T, Gu P C, Li L, Zhao G X, Niu F L, Huang Q F, Tang Z W, Wang X K. Catal. Today, 2019, 335: 20.

doi: 10.1016/j.cattod.2018.11.016     URL    
[139]
Song B, Zeng Z T, Zeng G M, Gong J L, Xiao R, Ye S J, Chen M, Lai C, Xu P, Tang X. Adv. Colloid Interface Sci., 2019, 272: 101999.

doi: 10.1016/j.cis.2019.101999     URL    
[140]
Zhang L L, Jin H, Ma H K, Gregory K, Qi Z W, Wang C X, Wu W T, Cang D Q, Li Z F. Chem. Eng. J., 2020, 381: 122787.

doi: 10.1016/j.cej.2019.122787     URL    
[141]
Singh P, Shandilya P, Raizada P, Sudhaik A, Rahmani-Sani A, Hosseini-Bandegharaei A. Arab. J. Chem., 2020, 13(1): 3498.

doi: 10.1016/j.arabjc.2018.12.001     URL    
[142]
Xiu Z, Guo M, Zhao T, Pan K, Xing Z, Li Z, Zhou W. Chem. Eng. J., 2020, 382: 123011.

doi: 10.1016/j.cej.2019.123011     URL    
[143]
Creutz C, Brunschwig B S, Sutin N. J. Phys. Chem. B, 2006, 110(50): 25181.

doi: 10.1021/jp063953d     URL    
[144]
Fei W H, Gao J, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. J. Hazard. Mater., 2021, 402: 123515.

doi: 10.1016/j.jhazmat.2020.123515     URL    
[145]
Liu N, Lu N, Yu H T, Chen S, Quan X. Chemosphere, 2020, 246: 125760.

doi: 10.1016/j.chemosphere.2019.125760     URL    
[146]
Yang Y B, Yang X D, Liang L, Gao Y Y, Cheng H Y, Li X M, Zou M C, Ma R Z, Yuan Q, Duan X F. Science, 2019, 364(6445): 1057.

doi: 10.1126/science.aau5321     URL    
[147]
Zhu Y, Chen P P, Nie W Y, Zhou Y F. Water Air Soil Pollut., 2018, 229(3): 1.

doi: 10.1007/s11270-017-3647-3     URL    
[148]
Wei Y B, Zhu Y X, Jiang Y J. Chem. Eng. J., 2019, 356: 915.

doi: 10.1016/j.cej.2018.09.108     URL    
[149]
Ma H K, Zhang L L, Huang X M, Ding W, Jin H, Li Z F, Cheng S K, Zheng L. Chem. Eng. J., 2019, 362: 667.

doi: 10.1016/j.cej.2019.01.042     URL    
[150]
Martínez J L. Science, 2008, 321: 365.

doi: 10.1126/science.1159483     pmid: 18635792
[151]
Guo C S, Wang K, Hou S, Wan L, Lv J P, Zhang Y, Qu X D, Chen S Y, Xu J. J. Hazard. Mater., 2017, 323: 710.

doi: 10.1016/j.jhazmat.2016.10.041     URL    
[152]
Davies J, Davies D. Microbiol. Mol. Biol. Rev., 2010, 74(3): 417.

doi: 10.1128/MMBR.00016-10     URL    
[153]
Reddy P A K, Reddy P V L, Kwon E, Kim K H, Akter T, Kalagara S. Environ. Int., 2016, 91: 94.

doi: 10.1016/j.envint.2016.02.012     URL    
[154]
Gong M F, Xiao S L, Yu X, Dong C C, Ji J H, Zhang D, Xing M Y. RSC Adv., 2019, 9(34): 19278.

doi: 10.1039/C9RA01826C     URL    
[155]
Rahman A U, Khan A U, Yuan Q P, Wei Y, Ahmad A, Ullah S, Khan Z U H, Shams S, Tariq M, Ahmad W. J. Photochem. Photobiol. B Biol., 2019, 193: 31.

doi: 10.1016/j.jphotobiol.2019.01.018     URL    
[156]
Zhang J Y, Lu X M, Tang D D, Wu S H, Hou X D, Liu J W, Wu P. ACS Appl. Mater. Interfaces, 2018, 10(47): 40808.

doi: 10.1021/acsami.8b15318     URL    
[157]
Wang Y, Li J Z, Zhou Z W, Zhou R H, Sun Q, Wu P. Nat. Commun., 2021, 12: 526.

doi: 10.1038/s41467-020-20869-8     URL    
[158]
Ogilby P R. Chem. Soc. Rev., 2010, 39(8): 3181.

doi: 10.1039/b926014p     pmid: 20571680
[159]
Gomes A, Fernandes E, Lima J L F C. J. Biochem. Biophys. Methods, 2005, 65(2/3): 45.

doi: 10.1016/j.jbbm.2005.10.003     URL    
[160]
Upadhyay R K, Soin N, Roy S S. RSC Adv., 2014, 4(8): 3823.

doi: 10.1039/C3RA45013A     URL    
[161]
Feng H M, Wang W, Zhang M T, Zhu S D, Wang Q, Liu J G, Chen S G. Appl. Catal. B Environ., 2020, 266: 118609.

doi: 10.1016/j.apcatb.2020.118609     URL    
[162]
Zhang R M, Song C J, Kou M P, Yin P Q, Jin X L, Wang L, Deng Y, Wang B, Xia D H, Wong P K, Ye L Q. Environ. Sci. Technol., 2020, 54(6): 3691.

doi: 10.1021/acs.est.9b07891     URL    
[163]
Zhao H T, Mu X L, Zheng C H, Liu S J, Zhu Y Q, Gao X, Wu T. J. Hazard. Mater., 2019, 366: 240.

doi: 10.1016/j.jhazmat.2018.11.107     URL    
[164]
Wang Z S, Yu H J, Xiao Y F, Zhang L, Guo L M, Zhang L X, Dong X P. Chem. Eng. J., 2020, 394: 125014.

doi: 10.1016/j.cej.2020.125014     URL    
[165]
Wang Q Y, Li Z M, Bañares M A, Weng L T, Gu Q F, Price J, Han W, Yeung K L. Small, 2019, 15(42): 1903525.

doi: 10.1002/smll.201903525     URL    
[166]
Lan H C, Zhang J Y, Dai Q J, Ye H, Mao X Y, Wang Y C, Peng H L, Du J, Huang K. Chem. Eng. J., 2021, 409: 127378.

doi: 10.1016/j.cej.2020.127378     URL    
[167]
Hou H L, Zhang X W. Chem. Eng. J., 2020, 395: 125030.

doi: 10.1016/j.cej.2020.125030     URL    
[168]
Persson I, Halim J, Lind H, Hansen T W, Wagner J B,Näslund L Å Darakchieva V, Palisaitis J, Rosen J, Persson P O Å. Adv. Mater., 2019, 31(2): 1805472.

doi: 10.1002/adma.201805472     URL    
[169]
Janakiram S, Ahmadi M, Dai Z D, Ansaloni L, Deng L Y. Membranes, 2018, 8(2): 24.

doi: 10.3390/membranes8020024     URL    
[170]
Li X D, Wang S M, Li L, Zu X L, Sun Y F, Xie Y. Acc. Chem. Res., 2020, 53(12): 2964.

doi: 10.1021/acs.accounts.0c00626     URL    
[171]
Tang Z M, Kong N, Zhang X C, Liu Y, Hu P, Mou S, Liljeström P, Shi J L, Tan W H, Kim J S, Cao Y H, Langer R, Leong K W, Farokhzad O C, Tao W. Nat. Rev. Mater., 2020, 5(11): 847.

doi: 10.1038/s41578-020-00247-y     URL    
[172]
Horváth E, Rossi L, Mercier C, Lehmann C, Sienkiewicz A, ForrÓ L. Adv. Funct. Mater., 2020, 30(40): 2004615.

doi: 10.1002/adfm.202004615     URL    
[173]
Zuo F L, Zhang S C, Liu H, Fong H, Yin X, Yu J Y, Ding B. Small, 2017, 13(46): 1702139.

doi: 10.1002/smll.201702139     URL    
[174]
Liu H, Zhang S C, Liu L F, Yu J Y, Ding B. Adv. Funct. Mater., 2019, 29(39): 1904108.

doi: 10.1002/adfm.201904108     URL    
[175]
Weiss C, Carriere M, Fusco L, Capua I, Regla-Nava J A, Pasquali M, Scott J A, Vitale F, Unal M A, Mattevi C, Bedognetti D, Merkoçi A, Tasciotti E, Yilmazer A, Gogotsi Y, Stellacci F, Delogu L G. ACS Nano, 2020, 14(6): 6383.

doi: 10.1021/acsnano.0c03697     URL    
[176]
Koo W T, Jang J S, Qiao S P, Hwang W, Jha G, Penner R M, Kim I D. ACS Appl. Mater. Interfaces, 2018, 10(23): 19957.

doi: 10.1021/acsami.8b02986     URL    
[177]
Huang L B, Xu S Y, Wang Z Y, Xue K, Su J J, Song Y, Chen S J, Zhu C L, Tang B Z, Ye R Q. ACS Nano, 2020, 14(9): 12045.

doi: 10.1021/acsnano.0c05330     URL    
[178]
Fu L J, Yan Z L, Zhao Q H, Yang H M. Adv. Mater. Interfaces, 2018, 5(23): 1801094.

doi: 10.1002/admi.201801094     URL    
[179]
Yan Z L, Fu L J, Yang H M. Adv. Mater. Interfaces, 2018, 5(4): 1700934.

doi: 10.1002/admi.201700934     URL    
[180]
Lan L Y, Yao Y, Ping J F, Ying Y B. Sens. Actuat. B Chem., 2019, 290: 565.

doi: 10.1016/j.snb.2019.04.016     URL    
[181]
Thirumal V, Yuvakkumar R, Kumar P S, Keerthana S P, Ravi G, Velauthapillai D, Saravanakumar B. Chemosphere, 2021, 281: 130984.

doi: 10.1016/j.chemosphere.2021.130984     URL    
[182]
Amri A, Bertilsya Hendri Y, Yin C Y, Rahman M M, Altarawneh M, Jiang Z T. Chem. Eng. Sci., 2021, 245: 116848.

doi: 10.1016/j.ces.2021.116848     URL    
[183]
Kang S F, Huang W, Zhang L, He M F, Xu S Y, Sun D, Jiang X. ACS Appl. Mater. Interfaces, 2018, 10(16): 13796.

doi: 10.1021/acsami.8b00007     URL    
[184]
Yazdankish E, Foroughi M, Azqhandi M H A. J. Hazard. Mater., 2020, 389: 122151.

doi: 10.1016/j.jhazmat.2020.122151     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[7] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[8] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[9] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[12] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[13] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[14] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[15] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.