English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1042-1060 DOI: 10.7536/PC210636 前一篇   后一篇

• 综述 •

石墨炔在光催化及光电催化中的应用

马晓清*()   

  1. 上海工程技术大学材料工程学院 上海 201620
  • 收稿日期:2021-07-01 修回日期:2021-08-01 出版日期:2022-05-24 发布日期:2021-11-02
  • 通讯作者: 马晓清
  • 基金资助:
    国家自然科学基金项目(52002241)

Graphynes for Photocatalytic and Photoelectrochemical Applications

Xiaoqing Ma()   

  1. School of Materials Engineering, Shanghai University of Engineering Science,Shanghai 201620, China
  • Received:2021-07-01 Revised:2021-08-01 Online:2022-05-24 Published:2021-11-02
  • Contact: Xiaoqing Ma
  • Supported by:
    National Natural Science Foundation of China(52002241)

长久有效地利用太阳能,是可持续发展永恒的主题。石墨炔是碳同素异形体的一颗新星,仅由sp和sp2杂化的碳原子组成,具有巨大的共轭网络和延展的二维多孔结构。独特的拓扑结构使石墨炔显示出与众不同的半导体和光学特性,表现出优异的电荷迁移率和本征带隙。因此,在太阳能的转换和利用方面具有广阔的应用前景。然而,作为一个新出现的碳同素异形体家族,石墨炔类碳材料用作光催化剂的真正潜能有待进一步探索。本文简要介绍了几种石墨炔的合成、形貌及表征方法,系统阐述了近年来石墨炔基光催化剂在污水处理、裂解水、CO2还原以及光电催化等领域的应用及机理研究。提出了目前研究中存在的一些问题,并对未来的发展及研究方向进行了展望。

Long-term and efficient utilization of solar energy is an eternal issue for sustainable development. Among the solar energy conversion techniques, photo(electro)catalysis plays an overwhelming role in clean energy production and pollutant treatment. Carbon-based catalysts have been studied as promising candidates achieving low cost, high energy conversion efficiency and environmental friendliness. Very recently, the family of graphynes (GYs) is rising as a superb new star of carbon allotrope. It consists of merely sp- and sp2- hybridized carbon atoms, constructing a huge conjugated network and expanded two-dimensional porous structure. The unique topological structures endow GYs distinctive semiconductor and optical properties, excellent charge mobility and intrinsic band gap. Therefore, a broad application in the conversion and utilization of solar energy is expected. Since graphdiyne, one of the graphyne-family members has been firstly synthesized in 2010, many efforts have been made in the fields of photo(electro)catalysis. The enhanced photocatalytic or photoelectrocatalytic efficiencies of these carbon allotropes either alone or combined with other photocatalysts are reported. Generally, according to current reports, the enhancements are mainly attributed to the high carrier mobility promoting charge transfer, the natural pore structure which is conductive to mass transport and more exposed active sites for catalysis. However, as a newly-emerged family of carbon allotrope, the essential potential of GYs-based photocatalysts are expected to be further explored. In this review, the synthesis of GYs with different morphology and the structural characterization methods are briefly introduced. Then the photocatalysts based on GYs for specific chemical reactions are comprehensivey included. The synthesis, performances and mechanisms of these photocatalysts are elucidated systematically in the applications of polution degradation, water splitting, CO2 reduction and photoelectrolysis as well as nitrogen fixation and bacterial disinfection (noted in few reports). Furthermore, some problems existing in the current research are put forward, and the perspectives and challenges are presented aiming at photo(electro)catalytic efficiency elevations.

Contents

1 Introduction

2 Synthesis and structures of graphynes

2.1 First synthesis of two-dimensional graphdiyne films

2.2 Preparation of graphdiyne with controlled morphology

2.3 Mechanochemical synthesis of γ-graphyne and its derivatives

2.4 Characterization of graphynes

3 Preparation and applications of GYs-based photocatalysts

3.1 Water treatment

3.2 Photoelectrode materials

3.3 Photocatalytic water splitting

3.4 Photocatalytic CO2 reduction

4 Conclusions and outlook

()
图1 2010—2021年涉及主题关键词“graphyne”或“graphdiyne”的年发表量和被引量(截至2021年5月2日,数据来自Web of Science数据库)
Fig. 1 Number of yearly publications and citations from 2010 to 2021 involving the topic keywords “graphyne” or “graphdiyne.” Retrieved on May 2nd, 2021 from the Web of Science database
图2 图1中涉及关键词“photocatal*”或“photoelectroc*”的发表量(截至2021年5月2日,数据来自Web of Science数据库)
Fig. 2 Publications of keywords “photocatal*” or “photoelectroc*” among “graphyne or graphdiyne” families. Retrieved on May 2nd, 2021 from the Web of Science database
图3 石墨炔的种类和结构
Fig. 3 Classification and structures of graphynes
图4 石墨双炔薄膜的合成路线图[40]
Fig. 4 The synthetic route of graphdiyne films[40]. Copyright 2010, Royal Society of Chemistry
图5 液/液和气/液界面合成石墨双炔示意图及其显微形貌:液/液界面合成过程示意图(a)和照片(b);(c) 气/液界面合成及转移过程;(d) HMDS/Si(100) 的 SEM 图像;(e) 弹性碳网上的 TEM 图像;(f) HMDS/Si(100) 上的 AFM 形貌图及其沿蓝线的横截面分析[42]
Fig. 5 Schematic illustration of liquid/liquid and gas/liquid interfacial synthetic procedure, and micrographs[42].(a) Schematic illustration and (b) photo of liquid/liquid interfacial synthetic procedure; (c) gas/liquid interfacial synthesis and transfer process; (d) SEM micrograph on HMDS/Si(100); (e) TEM micrograph on an elastic carbon grid; (f) AFM topographicimage on HMDS/Si(100) and its cross-sectional analysis along the blue line. Copyright 2017, American Chemical Society
图6 一维结构石墨炔制备工艺:(a) GDNT 阵列的制备过程示意图[46];(b) VLS法制备GDNWs的过程示意图[50];(c) 分步脱卤均偶联反应制备石墨炔纳米线[53]
Fig. 6 Preparation process of one-dimensional graphynes[46,50,53].(a) The process to fabricate GDNT arrays[46]; (b) Schematic illustration of the VLS process in the growth of GDNWs[50]; (c) The schematic illustration shows the stepwise dehalogenative homocoupling reactions, which results in the formation of a graphyne nanowire[53]. Copyright 2011, American Chemical Society; Copyright 2012, Royal Society of Chemistry; Copyright 2020, Royal Society of Chemistry
图7 三维石墨双炔的制备工艺[43,48,54,55]:(a) 在Cu基底上制备石墨双炔纳米墙结构的实验装置和示意图[54];(b) 通过铜箔包封催化在任意基底上制备 GDY 纳米壁的示意图[43];(c) “爆炸法”制备石墨双炔示意图[55];(d) 以硅藻土为模板制备 3DGDY的示意图[48]
Fig. 7 Preparation processes of 3D graphdiynes[43,48,54,55].(a) Schematic illustration of the experimental setup for the synthesis of graphdiyne nanowalls on Cu substrate[54]; (b) Schematic illustration of GDY nanowalls on arbitrary substrates via copper envelope catalysis[43]; (c) Illustrations of the “explosion” preparation processes.[55]; (d) Schematic illustration of the experimental setup for the 3DGDY synthesis using diatomite as template[48]. Copyright 2015, American Chemical Society; Copyright 2017, Wiley-VCH; Copyright 2017, Royal Society of Chemistry; Copyright 2018, Wiley-VCH
图8 γ-石墨单炔及氮掺杂石墨单炔的制备和表征[63,68]:(a)以苯为前驱体制备γ-石墨单炔的过程示意图,γ-石墨单炔的(b)紫外-可见漫反射吸收光谱(插图:样品照片)和(c)能带结构[63];氮掺杂γ-石墨单炔的(d)制备过程,(e) N 1s XPS光谱和(f)结构单元[68]
Fig. 8 Preparation and characterization of γ-graphyne and nitrogen-doped graphyne[63,68].(a) Preparation of γ-graphyne using benzene as precursor; (b) UV-vis diffusion reflectance spectra (insert: the photo of sample), and (c) energy band of γ-graphyne[63]; (d) Preparation, (e) N 1s XPS spectra and (f) structural unit of nitrogen doped γ-graphyne[68]. Copyright 2018, Elsevier; Copyright 2020, Wiley-VCH
图9 石墨炔形貌和晶体结构表征[40,54,64]:Cu基底上石墨双炔纳米壁的SEM图像:(a)俯视图,(b)横截面图;(c) Si/SiO2基底上剥离石墨双炔薄膜的 AFM 图像[54];γ-石墨单炔的(d~e) HRTEM图像和(f)SAED图[64];石墨双炔薄膜的(g)HRTEM图像,(h) SAED图和(i)XRD图[40]
Fig. 9 Characterizations of morphology and crystal structures for graphynes[40,54,64].SEM images of graphdiyne nanowalls on Cu substrate: (a) top view, (b) cross-sectional view; (c) AFM image of an exfoliated sample on Si/SiO2 substrate[54]; (d~e) HRTEM image, and (f) SAED patterns of γ-graphyne[64]; (g) HRTEM image, (h) SAED patterns, and (i) XRD pattern of graphdiyne film[40]. Copyright 2015, American Chemical Society; Copyright 2019, Royal Society of Chemistry; Copyright 2010, Royal Society of Chemistry
图10 石墨炔碳成键表征[40,63,80]:(a) 计算得到的石墨双炔拉曼光谱[80];石墨双炔薄膜的(b)拉曼光谱和(d,e)XPS光谱[40];γ-石墨单炔的(c)拉曼光谱和 (f) C1s XPS 光谱
Fig. 10 Characterizations of chemical bonding of the carbon atoms for graphynes[40,63,80].(a) Calculated Raman spectra of GDY[80] ; (b) Raman spectra and (d,e) XPS spectra of graphdiyne film[40]; (c) Raman spectra and (f) C1s XPS spectra of γ-graphyne[63]. Copyright 2016, American Chemical Society; Copyright 2010, Royal Society of Chemistry; Copyright 2018, Elsevier
表1 已报道的石墨炔基光催化剂的应用
Table 1 Application of the reported GYs-based photocatalysts.
No. Photocatalysts Applications Performances Roles ref
1 P25-GDY MB degaradation 4.5% increase than P25-graphene e- acceptor 82
2 TiO2@β-GDY MB degaradation >TiO2@γ-GDY>TiO2 e- acceptor 83
3 GDY-NTNS RhB degaradation 1.6 times faster than NTNS e- pool 84
4 ZnO-GDY MB degaradation 2-fold higher than ZnO e- acceptor 85
5 Ag3PO4@γ-GY NFL/HNP/PH degaradation 10~20 times higher than Ag3PO4 e- transfer 86
6 Ag3PO4/GDY emulsion MB degaradation;
Water oxidation
>Ag3PO4/graphene>Ag3PO4/CNT> Ag3PO4 e- acceptor;
hole transfer mediator
87
7 TA-BGY MO degaradation;
E.coli inactivation
99% (8h), 150 mW·cm-2 Xe
100% (1h), 100 mW·cm-2 Xe
Host 88
8 Ag/AgBr/GO/GDY MO degaradation >Ag/AgBr/GDY>Ag/AgBr/GO>Ag/AgBr e- collector 89
9 TiO2 /GDY RhB degaradation
Antibacterial
- e- transfer
Biocompatibility
90
10 CdSe QDs/GDY Photocathode H2 : 90% ± 5% faradic efficiency h+ transfer 91
11 GDY/BiVO4 Photoanode Iph two times BiVO4 h+ extraction 43
12 Superhydrophilic CoAl-LDH/GDY /BiVO4 Photoanode 3.15 mA·cm-2 (1.23 V vs. RHE) Interfacial mass/
e-transfer
92
13 g-C3N4/GDY Photocathode Iph 3-folds higher than g-C3N4 h+ transfer 93
14 g-C3N4/GDY/NiFe-LDH Photoanode Iph 45-folds higher than g-C3N4 h+ transport 94
15 GDYO/TiO2 Photocathode Iph 10-folds higher than TiO2 Charge transfer 95
16 SiHJ/GDY/NiOx Photoanode Iph twice higher than SiHJ/NiOx Conductivity; catalytic activity 96
17 PTEB Photocathode 10 μA·cm-2 (0.3 V vs RHE) Host 97
18 Pyr-GDY Photocathode 12 times GDY Host 98
19 γ-GY/TiO2 NT Photoanode
PEC degradation
PEC NH3 synthesis
1.3~6.5 folds higher than TiO2 Heterojunction 99
20 Ag3PO4/GDY/g-C3N4 O2 evolution 12.2 times higher than Ag3PO4 e-/h+ mediator 100
21 GDYO O2 evolution 31 times GDY Host 23
22 CdS/GDY H2 evolution 2.6 folds higher than CdS h+ transfer 101
23 NiBi/GDY H2 evolution 2.9 and 4.5 times higher than NiBi/graphene and NiBi e- donating 102
24 TiO2/γ-GY H2 evolution 8.4-folds higher than TiO2 Type II heterojunction 66
25 TiO2/MoSe2/ γ-GY H2 evolution 6.2 times TiO2 Heterojunction 67
26 GDY-CuI H2 evolution 15.8 times GDY; 3.0 times CuI - 103
27 PDBA H2 evolution
Photocathode
340 μmol·h-1·g-1(Pt, TEOA, >420 nm)
10 μA·cm-2 (0.3 V vs RHE)
Host 104
28 TiO2/GDY CO2 reduction 50.53 μmol·h-1·g-1 CO Cocatalyst 105
29 CdS/GDY CO2 reduction 18.72 μmol·h-1·g-1 CO2 conversion Adsorption sites
e- transfer
106
30 g-C3N4/GDY CO2 reduction 18~20 times increase (vs g-C3N4) Carrier mobility 107
31 N-GDY NADH regeneration 35% yield in 3 h Host 108
图11 石墨双炔与TiO2、ZnO和Ag3PO4复合材料的光降解性能及过程示意图:(a) P25-GDY的结构示意图和亚甲基蓝(MB)在P25-GDY上光降解的过程[82];(b) 不同TiO2-GDY复合材料的价带和导带位置[111];(c) GDY-NTNS[84]、(d) GDY-ZnO[85]、(e) Ag3PO4@γ-GY复合材料[86]的光催化机理示意图;(f) Ag/AgBr和石墨炔杂化体系在可见光照射下降解甲基橙的性能[89]
Fig. 11 The performances and schematic illustrations of photodegradation process for graphdiynes combined with TiO2, ZnO and Ag3PO4[82,84-86,89,111].(a) Schematic structure of P25-GDY and tentative processes of the photodegradation of methylene blue (MB) over P25-GDY[82]; (b) CB, VB position of different TiO2-GDY composites[111]; Schematic illustration of photocatalytic mechanism for (c) GDY-NTNS[84], (d) GDY-ZnO[85], (e) Ag3PO4@γ-GY composites[86]; (f) Photocatalytic performances of Ag/AgBr, Ag/AgBr/GO, Ag/AgBr/GDY, and Ag/AgBr/GO/GDY toward the photodegradation of MO pollutant under visible-light irradiation[89]. Copyright 2012, Wiley-VCH; Copyright 2013, American Chemical Society; Copyright 2018, Springer; Copyright 2015, American Chemical Society; Copyright 2020, Elsevier; Copyright 2015, Royal Society of Chemistry
图12 石墨双炔基光电极的光生载流子转移机制示意图及形貌和性能[43,91,93,94,99]:(a) 由CdSe QDs/GDY光电阴极组成的PEC电池;(b) CdSe QDs/GDY薄膜的SEM图像[91];(c) PEC中GDY/BiVO4光阳极和光生激子在界面处的迁移示意图;(d) BiVO4 和 GDY/BiVO4 光阳极的空穴注入率[43];(e) g-C3N4和GDY的能带结构[93];(f) g-C3N4/GDY/NiFe-LDH结构的SEM图[94];(g) 不同条件下TNT 和 GY/TNT的氨合成速率[99]
Fig. 12 The mechanism of photogenerated carrier transfer, morphology and performances of graphdiyne-based photoelectrode[43,91,93,94,99].(a) Schematic diagram of the PEC Cell, consisting of the CdSe QDs/GDY photocathode; (b) SEM image of the assembled CdSe QDs/GDY film[91]; (c) Schematic illustration of GDY/BiVO4 photoanodes in a PEC setup and the migration of the photogenerated excitons at the interface; (d) Hole injection yield of BiVO4 and GDY/BiVO4 photoanodes[43]; (e) Band structures of g-C3N4 and GDY[93]; (f) SEM image of the g-C3N4/GDY/NiFe-LDH structure[94]; (g) Ammonia synthesis rate of pristine TNT and GY/TNT sample under di?erent condition[99]. Copyright 2016, American Chemical Society; Copyright 2017, Wiley-VCH; Copyright 2018, Wiley-VCH; Copyright 2020, Wiley-VCH; Copyright 2021, Elsevier
图13 石墨双炔基产氢光催化剂的制备及反应过程示意图:(a) CdS/GDY复合材料的制备及其光催化过程[101];(b) APO/GDY/CN Z-scheme系统可能的电子转移机制[100];GDY-CuI的(c) 析氢机理分析和(d)照片[103]
Fig. 13 Schematic illustration of preparation and charge carrier transfer of graphdiyne-based photocatalysts for H2 evolution[100,101,103].(a) Preparation of CdS/GDY composite and its photocatalytic process[101]; (b) Possible electron transfer mechanism of the APO/GDY/CN Z-scheme system[100]; Hydrogen evolution mechanism analysis of (c) GDY-CuI and (d) their photos[103]. Copyright 2019, American Chemical Society; Copyright 2018, Elsevier; Copyright 2020, Wiley-VCH
图14 TiO2/γ-GY的(a)光催化过程和 (b)能带结构示意图,以及 (c)产氢活性[66];TiO2/MoSe2/GY的(d)HRTEM图,(e)能带结构示意图和(f)产氢活性[67]
Fig. 14 (a) Photocatalytic process, (b) band structure diagram and (c) hydrogen production activity of TiO2/ γ-GY composites[66]; (d) HRTEM, (e) band structure diagram, and (f) hydrogen production activity of TiO2/ MoSe2 /γ-GY ternary complex[67]. Copyright 2018, Royal Society of Chemistry; Copyright 2020, Springer
图15 GDY异质材料光催化还原CO2机理及性能:(a) TiO2/GDY 异质结示意图;(b) TiO2/GDY还原 CO2 的光催化活性[105];(c) 纯 CdS、CdG 和 CdGDY 光催化还原 CO2 活性[106]; (d) GDY@CNtb光催化还原CO2机理[107]
Fig. 15 The mechanism and performances of photocatalytic CO2 reduction for graphdiyne-based heterostructures.(a) Schematic illustration of TiO2/GDY heterojunction; (b) Photocatalytic activities of CO2 reduction over TiO2/GDY samples[105];(c) CH4, CH3OH and CO evolution during photocatalytic CO2 reduction over pure CdS, CdG and CdGDY[106]; (d) Proposed mechanism of photocatalytic CO2 reduction over GDY@CNtb[107]. Copyright 2019, Wiley VCH; Copyright 2020, Royal Society of Chemistry; Copyright 2021, Elesevier
[13]
Kang J, Li J B, Wu F M, Li S S, Xia J B. J. Phys. Chem. C, 2011, 115(42): 20466.

doi: 10.1021/jp206751m     URL    
[14]
Puigdollers A R, Alonso G, Gamallo P. Carbon, 2016, 96: 879.

doi: 10.1016/j.carbon.2015.10.043     URL    
[15]
Li J, Gao X, Zhu L, Ghazzal M N, Zhang J, Tung C H, Wu L Z. Energy Environ. Sci., 2020, 13(5): 1326.

doi: 10.1039/C9EE03558C     URL    
[16]
Zhao Y, Guo P L, Li X H, Jin Z W. Carbon, 2019, 149: 336.

doi: 10.1016/j.carbon.2019.04.075     URL    
[17]
Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Chem. Rev., 2018, 118(16): 7744.

doi: 10.1021/acs.chemrev.8b00288     URL    
[18]
Ivanovskii A L. Prog. Solid State Chem., 2013, 41(1/2): 1.

doi: 10.1016/j.progsolidstchem.2012.12.001     URL    
[19]
Li Y J, Xu L, Liu H B, Li Y L. Chem. Soc. Rev., 2014, 43(8): 2572.

doi: 10.1039/c3cs60388a     URL    
[20]
Zhang J B, Xu J L, Zhang B, Feng Y Q. Acta Polym. Sin., 2019, 50(12): 1239.
(张嘉宾, 徐加良, 张宝, 冯亚青. 高分子学报, 2019, 50(12): 1239.)
[21]
Chen X, Zhang S L. Acta Phys. Chim. Sin., 2018, 34(9): 1061.

doi: 10.3866/PKU.WHXB201801311     URL    
(陈熙, 张胜利. 物理化学学报, 2018, 34(9): 1061.)
[22]
Huang C S, Li Y L. Acta Phys. Chimica Sin., 2016, 32(6): 1314.
(黄长水, 李玉良. 物理化学学报, 2016, 32(6): 1314.)
[23]
Jiang W, Zhang Z, Wang Q, Dou J X, Zhao Y Y, Ma Y C, Liu H R, Xu H X, Wang Y C. Nano Lett., 2019, 19(6): 4060.

doi: 10.1021/acs.nanolett.9b01458     pmid: 31136712
[24]
Zhou X T, You M, Wang F H, Wang Z Z, Gao X F, Jing C, Liu J M, Guo M Y, Li J Y, Luo A P, Liu H B, Liu Z H, Chen C Y. Adv. Mater., 2021, 33(24): 2100556.

doi: 10.1002/adma.202100556     URL    
[25]
Baughman R H, Eckhardt H, Kertesz M. J. Chem. Phys., 1987, 87(11): 6687.

doi: 10.1063/1.453405     URL    
[26]
Gao X, Liu H B, Wang D, Zhang J. Chem. Soc. Rev., 2019, 48(3): 908.

doi: 10.1039/C8CS00773J     URL    
[27]
Malko D, Neiss C, Viñes F, Görling A. Phys. Rev. Lett., 2012, 108(8): 086804.

doi: 10.1103/PhysRevLett.108.086804     URL    
[28]
Nulakani N V R, Subramanian V. J. Mater. Chem. C, 2018, 6(28): 7626.

doi: 10.1039/C8TC02386G     URL    
[29]
Koo J, Park M, Hwang S, Huang B, Jang B, Kwon Y, Lee H. Phys. Chem. Chem. Phys., 2014, 16(19): 8935.

doi: 10.1039/C4CP00800F     URL    
[30]
Zhang Y Y, Pei Q X, Wang C M. Appl. Phys. Lett., 2012, 101(8): 081909.

doi: 10.1063/1.4747719     URL    
[31]
Yue Q, Chang S L, Kang J, Qin S Q, Li J B. J. Phys. Chem. C, 2013, 117(28): 14804.

doi: 10.1021/jp4021189     URL    
[32]
Coluci V R, Galvão D S, Baughman R H. J. Chem. Phys., 2004, 121(7): 3228.

pmid: 15291635
[33]
Long M Q, Tang L, Wang D, Li Y L, Shuai Z G. ACS Nano, 2011, 5(4): 2593.

doi: 10.1021/nn102472s     URL    
[34]
Zhang Q Y, Tang C M, Zhu W H, Cheng C. J. Phys. Chem. C, 2018, 122(40): 22838.

doi: 10.1021/acs.jpcc.8b05272     URL    
[35]
Ahmadi A, Jafari H, Faghihnasiri R, Faghihnasiri M. Mater. Res. Express, 2019, 6(4): 045050.

doi: 10.1088/2053-1591/aafc59     URL    
[36]
Chen X H, Zhang Y N, Ren Y B, Wang D, Yun J N. Mater. Res. Express, 2019, 6(9): 095610.

doi: 10.1088/2053-1591/ab2e9a     URL    
[37]
van Miert G, Juričić V, Morais Smith C. Phys. Rev. B, 2014, 90(19): 195414.

doi: 10.1103/PhysRevB.90.195414     URL    
[38]
Yun J N, Zhang Z Y, Yan J F, Zhao W. Thin Solid Films, 2015, 589: 662.

doi: 10.1016/j.tsf.2015.06.056     URL    
[39]
Jiang P H, Liu H J, Cheng L, Fan D D, Zhang J, Wei J, Liang J H, Shi J. Carbon, 2017, 113: 108.

doi: 10.1016/j.carbon.2016.11.038     URL    
[40]
Li G X, Li Y L, Liu H B, Guo Y B, Li Y J, Zhu D B. Chem. Commun., 2010, 46(19): 3256.

doi: 10.1039/b922733d     URL    
[41]
Qian X M, Liu H B, Huang C S, Chen S H, Zhang L, Li Y J, Wang J Z, Li Y L. Sci. Rep., 2015, 5: 7756.

doi: 10.1038/srep07756     URL    
[42]
Matsuoka R, Sakamoto R, Hoshiko K, Sasaki S, Masunaga H, Nagashio K, Nishihara H. J. Am. Chem. Soc., 2017, 139(8): 3145.

doi: 10.1021/jacs.6b12776     pmid: 28199105
[43]
Gao X, Li J, Du R, Zhou J Y, Huang M Y, Liu R, Li J, Xie Z Q, Wu L Z, Liu Z F, Zhang J. Adv. Mater., 2017, 29(9): 1605308.

doi: 10.1002/adma.201605308     URL    
[44]
Jia Z Y, Li Y J, Zuo Z C, Liu H B, Li D, Li Y L. Adv. Electron. Mater., 2017, 3(11): 1700133.

doi: 10.1002/aelm.201700133     URL    
[45]
Klappenberger F, Hellwig R, Du P, Paintner T, Uphoff M, Zhang L D, Lin T, Moghanaki B A, Paszkiewicz M, Vobornik I, Fujii J, Fuhr O, Zhang Y Q, Allegretti F, Ruben M, Barth J V. Small, 2018, 14(14): 1704321.

doi: 10.1002/smll.201704321     URL    
[46]
Li G X, Li Y L, Qian X M, Liu H B, Lin H W, Chen N, Li Y J. J. Phys. Chem. C, 2011, 115(6): 2611.

doi: 10.1021/jp107996f     URL    
[47]
Li J F, Chen Y H, Gao J, Zuo Z C, Li Y J, Liu H B, Li Y L. ACS Appl. Mater. Interfaces, 2019, 11(3): 2591.

doi: 10.1021/acsami.8b01207     URL    
[48]
Li J Q, Xu J, Xie Z Q, Gao X, Zhou J Y, Xiong Y, Chen C G, Zhang J, Liu Z F. Adv. Mater., 2018, 30(20): 1800548.

doi: 10.1002/adma.201800548     URL    
[49]
Min H, Qi Y Q, Chen Y H, Zhang Y L, Han X X, Xu Y, Liu Y, Hu J S, Liu H, Li Y Y, Nie G J. ACS Appl. Mater. Interfaces, 2019, 11(36): 32798.

doi: 10.1021/acsami.9b12801     URL    
[50]
Qian X M, Ning Z Y, Li Y L, Liu H B, Ouyang C B, Chen Q, Li Y J. Dalton Trans., 2012, 41(3): 730.

doi: 10.1039/C1DT11641J     URL    
[51]
Wang H, Deng K Q, Xiao J, Li C X, Zhang S W, Li X F. Sensor Actuat. B: Chem., 2020, 304: 127363.

doi: 10.1016/j.snb.2019.127363     URL    
[52]
Xue Y R, Guo Y, Yi Y P, Li Y J, Liu H B, Li D, Yang W S, Li Y L. Nano Energy, 2016, 30: 858.

doi: 10.1016/j.nanoen.2016.09.005     URL    
[53]
Yu X, Cai L L, Bao M L, Sun Q, Ma H H, Yuan C X, Xu W. Chem. Commun., 2020, 56(11): 1685.

doi: 10.1039/C9CC07421J     URL    
[54]
Zhou J Y, Gao X, Liu R, Xie Z Q, Yang J, Zhang S Q, Zhang G M, Liu H B, Li Y L, Zhang J, Liu Z F. J. Am. Chem. Soc., 2015, 137(24): 7596.

doi: 10.1021/jacs.5b04057     URL    
[55]
Zuo Z C, Shang H, Chen Y H, Li J F, Liu H B, Li Y J, Li Y L. Chem. Commun., 2017, 53(57): 8074.

doi: 10.1039/C7CC03200E     URL    
[56]
Gao X, Ren H Y, Zhou J Y, Du R, Yin C, Liu R, Peng H L, Tong L M, Liu Z F, Zhang J. Chem. Mater., 2017, 29(14): 5777.

doi: 10.1021/acs.chemmater.7b01838     URL    
[57]
Gao X, Zhu Y H, Yi D, Zhou J Y, Zhang S S, Yin C, Ding F, Zhang S Q, Yi X H, Wang J Z, Tong L M, Han Y, Liu Z F, Zhang J. Sci. Adv., 2018, 4(7): eaat6378.

doi: 10.1126/sciadv.aat6378     URL    
[58]
Zhou J Y, Xie Z Q, Liu R, Gao X, Li J Q, Xiong Y, Tong L M, Zhang J, Liu Z F. ACS Appl. Mater. Interfaces, 2019, 11(3): 2632.

doi: 10.1021/acsami.8b02612     URL    
[59]
Xie J N, Wang N, Dong X H, Wang C Y, Du Z, Mei L Q, Yong Y, Huang C S, Li Y L, Gu Z J, Zhao Y L. ACS Appl. Mater. Interfaces, 2019, 11(3): 2579.

doi: 10.1021/acsami.8b00949     URL    
[60]
Jia Z Y, Li Y J, Zuo Z C, Liu H B, Huang C S, Li Y L. Acc. Chem. Res., 2017, 50(10): 2470.

doi: 10.1021/acs.accounts.7b00205     URL    
[61]
Sun T, Gao F Y, Tang X L, Yi H H, Yu Q J, Zhao S Z, Xie X Z. New Carbon Mater., 2021, 36(2): 304.

doi: 10.1016/S1872-5805(21)60021-5     URL    
(孙婷, 高凤雨, 唐晓龙, 易红宏, 于庆君, 赵顺征, 解锡舟. 新型炭材料, 2021, 36(2): 304.)
[62]
Li Y J, Liu Q N, Li W F, Meng H, Lu Y Z, Li C X. ACS Appl. Mater. Interfaces, 2017, 9(4): 3895.

doi: 10.1021/acsami.6b13610     URL    
[63]
Li Q D, Li Y, Chen Y, Wu L L, Yang C F, Cui X L. Carbon, 2018, 136: 248.

doi: 10.1016/j.carbon.2018.04.081     URL    
[64]
Li Q D, Yang C F, Wu L L, Wang H, Cui X L. J. Mater. Chem. A, 2019, 7(11): 5981.

doi: 10.1039/C8TA10317H     URL    
[65]
Yang C F, Li Y, Chen Y, Li Q D, Wu L L, Cui X L. Small, 2019, 15(8): 1804710.

doi: 10.1002/smll.201804710     URL    
[66]
Wu L L, Li Q D, Yang C F, Ma X Q, Zhang Z F, Cui X L. J. Mater. Chem. A, 2018, 6(42): 20947.

doi: 10.1039/C8TA07307D     URL    
[67]
Wu L L, Li Q D, Yang C F, Chen Y, Dai Z Q, Yao B Y, Zhang X Y, Cui X L. J. Mater. Sci. Mater. Electron., 2020, 31(11): 8796.

doi: 10.1007/s10854-020-03414-7     URL    
[68]
Yang C F, Qiao C, Chen Y, Zhao X Q, Wu L L, Li Y, Jia Y, Wang S Y, Cui X L. Small, 2020, 16(10): 1907365.

doi: 10.1002/smll.201907365     URL    
[69]
Bao H H, Wang L, Li C, Luo J. ACS Appl. Mater. Interfaces, 2019, 11(3): 2717.

doi: 10.1021/acsami.8b05051     URL    
[70]
Chu P K, Li L H. Mater. Chem. Phys., 2006, 96(2/3): 253.

doi: 10.1016/j.matchemphys.2005.07.048     URL    
[71]
Li C, Lu X L, Han Y Y, Tang S F, Ding Y, Liu R R, Bao H H, Li Y L, Luo J, Lu T B. Nano Res., 2018, 11(3): 1714.

doi: 10.1007/s12274-017-1789-7     URL    
[72]
Chen Y, Li Q D, Wang W J, Lu Y X, He C L, Qiu D, Cui X L. 2D Mater., 2021, 8: 044012. 8679.
[73]
Zhao Y S, Wan J W, Yao H Y, Zhang L J, Lin K F, Wang L, Yang N L, Liu D B, Song L, Zhu J, Gu L, Liu L, Zhao H J, Li Y L, Wang D. Nat. Chem., 2018, 10(9): 924.

doi: 10.1038/s41557-018-0100-1     URL    
[74]
Lu X L, Han Y Y, Lu T B. Acta Phys. Chimica Sin., 2018, 34(9): 1014.
(卢秀利, 韩莹莹, 鲁统部. 物理化学学报, 2018, 34(9): 1014.)
[75]
Bhattacharya B, Seriani N, Sarkar U. Carbon, 2019, 141: 652.

doi: 10.1016/j.carbon.2018.09.077    
[76]
Abbas M, Wu Z Y, Zhong J, Ibrahim K, Fiori A, Orlanducci S, Sessa V, Terranova M L, Davoli I. Appl. Phys. Lett., 2005, 87(5): 051923.

doi: 10.1063/1.2006214     URL    
[77]
He J J, Wang N, Cui Z L, Du H P, Fu L, Huang C S, Yang Z, Shen X Y, Yi Y P, Tu Z Y, Li Y L. Nat. Commun., 2017, 8: 1172.

doi: 10.1038/s41467-017-01202-2     URL    
[78]
Zhong J, Wang J, Zhou J G, Mao B H, Liu C H, Liu H B, Li Y L, Sham T K, Sun X H, Wang S D. J. Phys. Chem. C, 2013, 117(11): 5931.

doi: 10.1021/jp310013z     URL    
[79]
Gu H L, Zhong L X, Shi G S, Li J Q, Yu K, Li J, Zhang S, Zhu C Y, Chen S H, Yang C L, Kong Y, Chen C, Li S Z, Zhang J, Zhang L M. J. Am. Chem. Soc., 2021, 143(23): 8679.

doi: 10.1021/jacs.1c02326     URL    
[80]
Zhang S Q, Wang J Y, Li Z Z, Zhao R Q, Tong L M, Liu Z F, Zhang J, Liu Z R. J. Phys. Chem. C, 2016, 120(19): 10605.

doi: 10.1021/acs.jpcc.5b12388     URL    
[81]
Zhao Y S, Zhang L J, Qi J, Jin Q, Lin K F, Wang D. Acta Phys. Chimica Sin., 2018, 34(9): 1048.
(赵亚松, 张丽娟, 齐健, 金泉, 林凯峰, 王丹. 物理化学学报, 2018, 34(9): 1048.)
[82]
Wang S, Yi L X, Halpert J E, Lai X Y, Liu Y Y, Cao H B, Yu R B, Wang D, Li Y L. Small, 2012, 8(2): 265.

doi: 10.1002/smll.201101686     URL    
[83]
Li J Q, Xie Z Q, Xiong Y, Li Z Z, Huang Q X, Zhang S Q, Zhou J Y, Liu R, Gao X, Chen C G, Tong L M, Zhang J, Liu Z F. Adv. Mater., 2017, 29(19): 1700421.

doi: 10.1002/adma.201700421     URL    
[84]
Dong Y Z, Zhao Y M, Chen Y H, Feng Y Q, Zhu M Y, Ju C G, Zhang B, Liu H B, Xu J L. J. Mater. Sci., 2018, 53(12): 8921.

doi: 10.1007/s10853-018-2210-y     URL    
[85]
Thangavel S, Krishnamoorthy K, Krishnaswamy V, Raju N, Kim S J, Venugopal G. J. Phys. Chem. C, 2015, 119(38): 22057.

doi: 10.1021/acs.jpcc.5b06138     URL    
[86]
Lin Y, Liu H Y, Yang C P, Wu X, Du C, Jiang L M, Zhong Y Y. Appl. Catal. B Environ., 2020, 264: 118479.

doi: 10.1016/j.apcatb.2019.118479     URL    
[87]
Guo S Y, Jiang Y N, Wu F, Yu P, Liu H B, Li Y L, Mao L Q. ACS Appl. Mater. Interfaces, 2019, 11(3): 2684.

doi: 10.1021/acsami.8b04463     URL    
[88]
Chen T, Li W Q, Chen X J, Guo Y Z, Hu W B, Hu W J, Liu Y A, Yang H, Wen K. Chem. Eur. J., 2020, 26(10): 2269.

doi: 10.1002/chem.201905133     URL    
[89]
Zhang X, Zhu M S, Chen P L, Li Y J, Liu H B, Li Y L, Liu M H. Phys. Chem. Chem. Phys., 2015, 17(2): 1217.

doi: 10.1039/c4cp04683h     pmid: 25418916
[90]
Wang R, Shi M S, Xu F Y, Qiu Y, Zhang P, Shen K L, Zhao Q, Yu J G, Zhang Y F. Nat. Commun., 2020, 11: 4465.

doi: 10.1038/s41467-020-18267-1     pmid: 32901012
[91]
Li J, Gao X, Liu B, Feng Q L, Li X B, Huang M Y, Liu Z F, Zhang J, Tung C H, Wu L Z. J. Am. Chem. Soc., 2016, 138(12): 3954.

doi: 10.1021/jacs.5b12758     URL    
[92]
Li J, Gao X, Li Z Z, Wang J H, Zhu L, Yin C, Wang Y, Li X B, Liu Z F, Zhang J, Tung C H, Wu L Z. Adv. Funct. Mater., 2019, 29(16): 1970107.

doi: 10.1002/adfm.201970107     URL    
[93]
Han Y Y, Lu X L, Tang S F, Yin X P, Wei Z W, Lu T B. Adv. Energy Mater., 2018, 8(16): 1702992.

doi: 10.1002/aenm.201702992     URL    
[94]
Si H Y, Deng Q X, Yin C, Tavakoli M M, Zhang J, Kong J. Adv. Mater. Interfaces, 2020, 7(8): 1902083.

doi: 10.1002/admi.201902083     URL    
[95]
Ramakrishnan V, Kim H, Yang B. New J. Chem., 2019, 43(33): 12896.

doi: 10.1039/c9nj02351h    
[96]
Zhang S C, Yin C, Kang Z, Wu P W, Wu J, Zhang Z, Liao Q L, Zhang J, Zhang Y. ACS Appl. Mater. Interfaces, 2019, 11(3): 2745.

doi: 10.1021/acsami.8b06382     URL    
[97]
Zhang T, Hou Y, Dzhagan V, Liao Z Q, Chai G L, Löffler M, Olianas D, Milani A, Xu S Q, Tommasini M, Zahn D R T, Zheng Z K, Zschech E, Jordan R, Feng X L. Nat. Commun., 2018, 9: 1140.

doi: 10.1038/s41467-018-03444-0     pmid: 29555937
[98]
Li M, Wang H J, Zhang C, Chang Y B, Li S J, Zhang W, Lu T B. Sci. China Chem., 2020, 63(8): 1040.

doi: 10.1007/s11426-020-9763-9     URL    
[99]
Gao B W, Sun M X, Ding W, Ding Z P, Liu W Z. Appl. Catal. B Environ., 2021, 281: 119492.

doi: 10.1016/j.apcatb.2020.119492     URL    
[100]
Si H Y, Mao C J, Zhou J Y, Rong X F, Deng Q X, Chen S L, Zhao J J, Sun X G, Shen Y M, Feng W J, Gao P, Zhang J. Carbon, 2018, 132: 598.

doi: 10.1016/j.carbon.2018.02.107     URL    
[101]
Lv J X, Zhang Z M, Wang J, Lu X L, Zhang W, Lu T B. ACS Appl. Mater. Interfaces, 2019, 11(3): 2655.

doi: 10.1021/acsami.8b03326     URL    
[102]
Yin X P, Luo S W, Tang S F, Lu X L, Lu T B. Chin. J. Catal., 2021, 42(8): 1379.

doi: 10.1016/S1872-2067(20)63601-4     URL    
[103]
Li Y B, Yang H, Wang G R, Ma B Z, Jin Z L. ChemCatChem, 2020, 12(7): 1985.

doi: 10.1002/cctc.201902405     URL    
[104]
Shen H, Zhou W X, He F, Gu Y N, Li Y J, Li Y L. J. Mater. Chem. A, 2020, 8(9): 4850.

doi: 10.1039/C9TA14047F     URL    
[105]
Xu F Y, Meng K, Zhu B C, Liu H B, Xu J S, Yu J G. Adv. Funct. Mater., 2019, 29(43): 1904256.

doi: 10.1002/adfm.201904256     URL    
[106]
Cao S W, Wang Y J, Zhu B C, Xie G C, Yu J G, Gong J R. J. Mater. Chem. A, 2020, 8(16): 7671.

doi: 10.1039/D0TA02256J     URL    
[107]
Sun C, Liu Y Y, Wang Z Y, Wang P, Zheng Z K, Cheng H F, Qin X Y, Zhang X Y, Dai Y, Huang B B. J. Alloys Compd., 2021, 868: 159045.

doi: 10.1016/j.jallcom.2021.159045     URL    
[108]
Pan Q Y, Liu H, Zhao Y J, Chen S Q, Xue B, Kan X N, Huang X W, Liu J, Li Z B. ACS Appl. Mater. Interfaces, 2019, 11(3): 2740.

doi: 10.1021/acsami.8b03311     URL    
[109]
Mateo D, García-Mulero A, Albero J, García H. Appl. Catal. B Environ., 2019, 252: 111.

doi: 10.1016/j.apcatb.2019.04.011     URL    
[110]
Saha A, Moya A, Kahnt A, Iglesias D, Marchesan S, Wannemacher R, Prato M, Vilatela J J, Guldi D M. Nanoscale, 2017, 9(23): 7911.

doi: 10.1039/C7NR00759K     URL    
[111]
Yang N L, Liu Y Y, Wen H, Tang Z Y, Zhao H J, Li Y L, Wang D. ACS Nano, 2013, 7(2): 1504.

doi: 10.1021/nn305288z     URL    
[112]
Yang F, Ke Z J, Li Z D, Patrick M, Abboud Z, Yamamoto N, Xiao X H, Gu J. ChemSusChem, 2020, 13(13): 3391.

doi: 10.1002/cssc.202000203     pmid: 32281306
[113]
Zhang J, Cao S, Hu W, Piao L. Prog. Chem., 2020, 32(9): 1376.
[114]
Gu J X, Magagula S, Zhao J X, Chen Z F. Small Methods, 2019, 3(9): 1800550.

doi: 10.1002/smtd.201800550     URL    
[115]
Lv Q, Si W Y, Yang Z, Wang N, Tu Z Y, Yi Y P, Huang C S, Jiang L, Zhang M J, He J J, Long Y Z. ACS Appl. Mater. Interfaces, 2017, 9(35): 29744.

doi: 10.1021/acsami.7b08115     URL    
[116]
Zhang J, Feng X L. Joule, 2018, 2(8): 1396.

doi: 10.1016/j.joule.2018.07.031     URL    
[117]
Torres-Pinto A, Silva C G, Faria J L, Silva A M T. Adv. Sci., 2021, 8(10): 2003900.

doi: 10.1002/advs.202003900     URL    
[118]
Zhao Y S, Tang H J, Yang N L, Wang D. Adv. Sci., 2018, 5(12): 1800959.

doi: 10.1002/advs.201800959     URL    
[119]
Ding W, Sun M X, Zhang Z H, Lin X J, Gao B W. Ultrason. Sonochemistry, 2020, 61: 104850.

doi: 10.1016/j.ultsonch.2019.104850     URL    
[120]
Kudo A, Miseki Y. Chem. Soc. Rev., 2009, 38(1): 253.

doi: 10.1039/B800489G     URL    
[1]
Shih C F, Zhang T, Li J H, Bai C L. Joule, 2018, 2(10): 1925.

doi: 10.1016/j.joule.2018.08.016     URL    
[2]
Bard A J. J. Photochem., 1979, 10(1): 59.

doi: 10.1016/0047-2670(79)80037-4     URL    
[3]
Centi G, Perathoner S. ChemSusChem, 2010, 3(2): 195.

doi: 10.1002/cssc.200900289     URL    
[4]
Ma X Q, Chen Y, Lee J, Yang C F, Cui X L. New J. Chem., 2018, 42(2): 1300.

doi: 10.1039/C7NJ03631K     URL    
[5]
Guo L J, Li R, Liu J X, Xi Q, Fan C M. Progress in Chemistry, 2020, 32(1): 46.
(郭丽君, 李瑞, 刘建新, 席庆, 樊彩梅. 化学进展, 2020, 32(1): 46.)

doi: 10.7536/PC190528    
[6]
Zhang G Q, Li Y L, He C X, Ren X Z, Zhang P X, Mi H W. Adv. Energy Mater., 2021, 11(11): 2003294.

doi: 10.1002/aenm.202003294     URL    
[7]
Ma X Q, Cui X L, Zhao Z Q, Melo M A, Roberts E J, Osterloh F E. J. Mater. Chem. A, 2018, 6(14): 5774.

doi: 10.1039/C7TA10934B     URL    
[8]
Ma X Q, Wu Z K, Roberts E J, Han R R, Rao G D, Zhao Z Q, Lamoth M, Cui X L, Britt R D, Osterloh F E. J. Phys. Chem. C, 2019, 123(41): 25081.

doi: 10.1021/acs.jpcc.9b06727     URL    
[9]
Li H, Cui X L. Int. J. Hydrog. Energy, 2014, 39(35): 19877.

doi: 10.1016/j.ijhydene.2014.10.010     URL    
[10]
Ma X Q, Chen Y, Li H, Cui X L, Lin Y H. Mater. Res. Bull., 2015, 66: 51.

doi: 10.1016/j.materresbull.2015.02.005     URL    
[11]
Feng X, Ren Y W, Jiang H F. Progress in Chemistry, 2020, 32(11): 1697.
(封啸, 任颜卫, 江焕峰. 化学进展, 2020, 32(11): 1697.)

doi: 10.7536/PC200407    
[12]
Li Y, Wang X Y, Gong J, Xie Y H, Wu X Y, Zhang G K. ACS Appl. Mater. Interfaces, 2018, 10(50): 43760.

doi: 10.1021/acsami.8b17580     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[6] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[11] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[12] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[13] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[14] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[15] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.