English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1348-1358 DOI: 10.7536/PC210624 前一篇   后一篇

• 综述与评论 •

近红外二区发光稀土纳米材料的设计及生物成像应用

陆峰1, 赵婷1, 孙晓军1, 范曲立1,*(), 黄维1,2   

  1. 1 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室 南京 210023
    2 西北工业大学柔性电子研究院 西安 710072
  • 收稿日期:2021-06-24 修回日期:2021-07-28 出版日期:2021-12-02 发布日期:2021-12-02
  • 通讯作者: 范曲立
  • 基金资助:
    国家自然科学基金项目(21975131); 国家自然科学基金项目(21674048)

Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging

Feng Lu1, Ting Zhao1, Xiaojun Sun1, Quli Fan1(), Wei Huang1,2   

  1. 1 State Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications,Nanjing 210023, China
    2 Institute of Flexible Electronics, Northwestern Polytechnical University,Xi’an 710072, China
  • Received:2021-06-24 Revised:2021-07-28 Online:2021-12-02 Published:2021-12-02
  • Contact: Quli Fan
  • Supported by:
    National Natural Science Foundation of China(21975131); National Natural Science Foundation of China(21674048)

近年来,近红外二区(NIR-II,1000~1700 nm)荧光成像因其较高的空间分辨率、较深的组织穿透能力,在分子影像领域引起了广泛的关注。常见的NIR-II发光材料(如有机小分子、共轭聚合物、量子点等)通常具有光稳定性差、荧光量子产率低、斯托克斯位移小、荧光峰宽等问题,限制了这一新型成像技术的进一步发展与应用。稀土纳米材料由于其独特的发光特性,能够较好地克服这些不足,近年来不同结构的稀土纳米材料也逐渐被设计开发并应用于近红外二区荧光成像与检测,展示出了巨大的应用潜力。本综述首先介绍了稀土纳米材料的光学特性,然后按敏化离子的不同(Yb3+、Nd3+、Er3+、Tm3+)详细介绍了近红外二区稀土纳米材料的设计方法及相关应用,最后对稀土纳米材料在近红外二区成像领域的进一步发展进行了展望。

In recent years, fluorescence imaging in the second near-infrared region (NIR-Ⅱ, 1000~1700 nm) has attracted lots of interests due to its unique advantages such as deep tissue penetration, low background and high spatial resolution. Commonly used NIR-Ⅱ probes such as small molecules, conjugated polymers and quantum dots, usually exhibit poor photostability, low quantum yield, small stokes shift and large half-peak width, which hinders the further development and application of NIR-Ⅱ imaging. Rare-earth based nanomaterials with unique optical properties have exhibited great potential for optical imaging. Rare-earth nanoparticles with metal ions as activators do not suffer from photobleaching and can provide narrow excitation/emission peaks with large stokes shift. Their emission is tuned with the choice of doped rare-earth ions and can maintain high quantum yield, which is different from other fluorophores. The fluorescence lifetime of rare-earth nanoparticles is also much longer than common fluorophores. All these features enable them as novel probes for in vivo fluorescence imaging and diagnosis in the NIR-Ⅱ region. This review briefly introduces the optical features of rare-earth nanoparticles, and discusses the design and application of NIR-Ⅱ emissive rare-earth nanoparticles according to the use of different sensitizers (Yb3+, Nd3+, Er3+ and Tm3+). Finally, the limitations and development direction of rare-earth nanoparticles in NIR-Ⅱ imaging are prospected.

Contents

1 Introduction

2 Introduction of rare-earth nanomaterials

2.1 Rare-earth elements and rare-earth nanoparticles

2.2 Preparation methods of rare-earth nanoparticles

2.3 The optical properties of rare-earth nanoparticles

3 Design strategy and application of NIR-Ⅱ emissive rare-earth nanoparticles

3.1 Yb3+ sensitized NIR-Ⅱ emissive rare-earth nanoparticles

3.2 Nd3+ sensitized NIR-Ⅱ emissive rare-earth nanoparticles

3.3 Er3+ sensitized NIR-Ⅱ emissive rare-earth nanoparticles

3.4 Tm3+ sensitized NIR-Ⅱ emissive rare-earth nanoparticles

4 Conclusion and outlook

()
表1 近红外二区发光稀土纳米材料中稀土元素的光学性质
Table 1 Excitation and emission positions of Rare-earth elements in NIR-II Emissive Nanoparticles
图1 (A)水热合成NaYF4:Yb/Er纳米颗粒的透过光谱和样品照片;(B)纳米颗粒的透射电镜图[30]
Fig. 1 (A) Transmission spectrum and photograph of the NaYF4:Yb/Er particles in ethanol solutions; (B) TEM image of the particles[30]
图2 高温油相合成NaYF4:Yb,Er纳米材料的透射电镜图,(A)球形颗粒;(B)椭球型;(C)片状[36]
Fig. 2 TEM images of NaYF4:Yb,Er (A) nanospheres, (B) nanoellipses and (C) nanoplates[36]
图3 (A)NaYbF4:Er,Ce@NaYF4 核壳纳米颗粒的结构示意图和透射电镜图,右上的标尺为200 nm,右下的标尺为20 nm;Yb3+, Er3+和Ce3+离子间的能级跃迁(B)和能量传递机制(C)示意图;(D)Ce3+掺杂前后的上转换和下转换发光光谱; (E) 稀土纳米颗粒上转换和下转换发光强度随Ce3+离子浓度的变化[52]
Fig. 3 (A) Schematic design and TEM images of NaYbF4:Er,Ce@NaYF4 core-shell nanoparticles, scale bars are 200 nm and 20 nm for upper right and lower right images; (B) Energy transfer diagram between Yb3+, Er3+, and Ce3+ ions; (C) Schematic illustration of the proposed energy-transfer mechanisms; (D) Upconversion and downconversion luminescence spectra of the Er-RENPs with and without Ce3+ doping; (E) The effect of Ce3+ doping concentration on the upconversion and downconversion emission intensity[52]
图4 (A)多层结构1525 nm发光的稀土纳米颗粒示意图; (B)纳米颗粒的能量传递途径示意图[61]
Fig. 4 (A) Structure of the C/S1/S2/S3 NCs for 1525 nm luminescence; (B) Proposed energy transfer mechanisms in the multilayer core/shell NCs[61]
图5 (A)不同Nd离子掺杂浓度下的发光衰减曲线;(B)发光寿命与掺杂浓度关系曲线[44]
Fig. 5 (A) Fluorescence decay curves obtained from core/shell NPs with different Nd3+ dopant levels; (B) Concentration dependence of the fluorescence lifetime of the NaYF4:Yb,Nd@CaF2 NPs[44]
图6 裸鼠尾静脉注射纳米颗粒24 h后用不同滤光片获得的荧光成像图,(A)900 nm长通滤光片;(B)1000 nm带通滤光片[67]
Fig. 6 NIR-II fluorescence images of tumor-bearing nude mice 24 h post intravenous injection of NaYF4:Yb,Nd@NaYF4 NPs captured with 900 nm long pass filter (A) and 1000 nm bandpass filter(B)[67]
图7 (A) NaErF4/NaLuF4 纳米颗粒的结构组成示意图;(B)稀土纳米颗粒的透射电镜图;(C)Er基纳米颗粒能级跃迁示意图;(D)稀土纳米颗粒的上转换和下转换发光图[41]
Fig. 7 (A) Schematic illustration of the NaErF4/NaLuF4 core-shell nanocrystals structural composition; (B) TEM image of the core-shell nanocrystals; (C) Energy level diagram of erbium showing the energy transfer pathways; (D) Upconversion and downshifted emission photographs of the core-shell nanocrystals[41]
图8 (A)尾静脉注射纳米颗粒后脑血管的实时成像;(B)短波红外镜头下放大的脑血管成像图;(C,D)图B中蓝色和黄色区域的放大图;(E,F)图C、D中绿线和红线的截面强度分布和高斯拟合曲线[74]
Fig. 8 (A) Real-time imaging of NPs in brain vessels at a set of time points post IV injection; (B) Cerebral vascular image taken using a SWIR lens; (C, D) Corresponding zoom-in images of blue and yellow highlighted zones in (B); (E, F) Cross-sectional intensity distribution profiles and Gaussian fitting lines along the green and red line in (C, D)[74]
图9 注射稀土纳米颗粒后皮下瘤(A)和腹膜瘤(B)的上转换(上)和下转换(下)荧光成像图,成像分辨率通过肿瘤区域的截面强度曲线比较,图中标尺为3 mm[26]
Fig. 9 Up-conversion (top) and down-conversion (bottom) luminescence images of (A) subcutaneous and (B) intraperitoneal tumors recorded at different time points post injection of NP-FA, the resolution of up-/down-conversion luminescence imaging can be compared through the line spectra drawn across the tumorous regions in vivo. The scale bars correspond to 3 mm[26]
图10 NaErF4:2%Ho@NaYF4核壳上转换纳米的能量传递示意图;近红外二区上转换纳米颗粒的(B)透射电子显微镜图片及(C)上转换发光光谱[76]
Fig. 10 (A) Energy transfer mechanism in the NaErF4:2%Ho@NaYF4 core/shell UCNPs; (B) TEM, HAADF-STEM, HRTEM images and (C) upconversion emission spectrum of the obtained NIR-Ⅱ UCNPs[76]
图11 NaYF4:5%Tm3+,50%Er3+@NaYF4纳米颗粒的(A)设计原理示意图、(B)透射电镜图及相应傅里叶变换衍射图及(C)Tm3+和Er3+之间的能量传递示意图[79]
Fig. 11 (A) Schematic design, (B) TEM images and the corresponding Fourier transform diffraction pattern, and (C) simplified energy transfer pathway of the NaYF4:5%Tm3+,50%Er3+@NaYF4 nanocrystals[79]
[1]
Hettie K S. Front. Mol. Biosci., 2021, 8: 670251.

doi: 10.3389/fmolb.2021.670251     URL    
[2]
Huang J G, Pu K Y. Chem. Sci., 2021, 12(10): 3379.

doi: 10.1039/D0SC02925D     URL    
[3]
Hong G S, Antaris A L, Dai H J. Nat. Biomed. Eng., 2017, 1: 0010.

doi: 10.1038/s41551-016-0010     URL    
[4]
Bashkatov A N, Genina E A, Kochubey V I, Tuchin V V. J. Phys. D: Appl. Phys., 2005, 38: 2543.

doi: 10.1088/0022-3727/38/15/004     URL    
[5]
Li Z, Sun Q, Zhu Y, Tan B, Xu Z P, Dou S X. J. Mater. Chem. B, 2014, 2: 2793.

doi: 10.1039/C3TB21760D     URL    
[6]
Liu H, Ren F, Zhang H, Han Y, Qin H, Zeng J, Wang Y, Sun Q, Li Z, Gao M. J. Mater. Chem. B, 2018, 6: 1508.

doi: 10.1039/C7TB03148C     URL    
[7]
Jacques S L. Phys. Med. Biol., 2013, 58: R37.

doi: 10.1088/0031-9155/58/11/R37     URL    
[8]
Wang Z, Li X, Li Y Y, Wang Q, Lu X M, Fan Q L. Prog. Chem., 2022, 34(1):198.
( 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 化学进展, 2022, 34(1):198.)

doi: 10.7536/PC201237    
[9]
Lin H, Gao S S, Dai C, Chen Y, Shi J L. J. Am. Chem. Soc., 2017, 139(45): 16235.

doi: 10.1021/jacs.7b07818     URL    
[10]
Yang T, Tang yongan, Liu L, Lv X Y, Wang Q L, Ke H T, Deng Y B, Yang H, Yang X L, Liu G, Zhao Y L, Chen H B. ACS Nano, 2017, 11(2): 1848.

doi: 10.1021/acsnano.6b07866     pmid: 28117993
[11]
Hong G S, Diao S, Chang J L, Antaris A L, Chen C X, Zhang B, Zhao S, Atochin D N, Huang P L, Andreasson K I, Kuo C J, Dai H J. Nat. Photonics, 2014, 8(9): 723.

doi: 10.1038/nphoton.2014.166     URL    
[12]
Bruns O T, Bischof T S, Harris D K, Franke D, Shi Y X, Riedemann L, Bartelt A, Jaworski F B, Carr J A, Rowlands C J, Wilson M W B, Chen O, Wei H, Hwang G W, Montana D M, Coropceanu I, Achorn O B, Kloepper J, Heeren J, So P T C, Fukumura D, Jensen K F, Jain R K, Bawendi M G. Nat. Biomed. Eng., 2017, 1(4): 56.

doi: 10.1038/s41551-017-0056     URL    
[13]
Antaris A L, Chen H, Diao S, Ma Z R, Zhang Z, Zhu S J, Wang J, Lozano A X, Fan Q L, Chew L, Zhu M, Cheng K, Hong X C, Dai H J, Cheng Z. Nat. Commun., 2017, 8: 15269.

doi: 10.1038/ncomms15269     URL    
[14]
Dang X N, Gu L, Qi J F, Correa S, Zhang G R, Belcher A M, Hammond P T. PNAS, 2016, 113(19): 5179.

doi: 10.1073/pnas.1521175113     URL    
[15]
Shinn J, Lee S, Lee H K, Ahn J, Lee S A, Lee S, Lee Y. Arch. Pharmacal Res., 2021, 44(2): 165.

doi: 10.1007/s12272-021-01313-x     URL    
[16]
Lin H X, Lin Z X, Zheng K H, Wang C L, Lin L S, Chen J X, Song J B. Adv. Opt. Mater., 2021, 9: 2002177.

doi: 10.1002/adom.202002177     URL    
[17]
Yang Y J, Tu D T, Zhang Y Q, Zhang P, Chen X Y. iScience, 2021, 24(2): 102062.

doi: 10.1016/j.isci.2021.102062     URL    
[18]
Binnemans K. Chem. Rev., 2009, 109(9): 4283.

doi: 10.1021/cr8003983     pmid: 19650663
[19]
Ge X Q, Wei R Y, Sun L N. J. Mater. Chem. B, 2020, 8(45): 10257.

doi: 10.1039/D0TB01745K     URL    
[20]
Tyler G. Plant Soil, 2004, 267(1/2): 191.

doi: 10.1007/s11104-005-4888-2     URL    
[21]
Zhang S Y. Spectroscopy of Rare Earth Ions: Spectral Property and Spectral Theory. Beijing: Science Press, 2008. 33.
( 张思远. 稀土离子的光谱学:光谱性质和光谱理论. 北京: 科学出版社, 2008. 33.).
[22]
Tan H L. Doctoral Dissertation of Southeast University, 2012.
( 谭宏亮. 东南大学博士论文, 2012.).
[23]
Haase M, Schäfer H. Angew. Chem. Int. Ed., 2011, 50(26): 5808.

doi: 10.1002/anie.201005159     URL    
[24]
Bagheri A, Arandiyan H, Boyer C, Lim M. Adv. Sci., 2016, 3(7): 1500437.

doi: 10.1002/advs.201500437     URL    
[25]
Zhou J, Liu Z, Li F Y. Chem. Soc. Rev., 2012, 41(3): 1323.

doi: 10.1039/C1CS15187H     URL    
[26]
Li Y Y, Zhang P S, Ning H R, Zeng J F, Hou Y, Jing L H, Liu C Y, Gao M Y. Small, 2019, 15(51): 1905344.

doi: 10.1002/smll.201905344     URL    
[27]
Zhong Y T, Dai H J. Nano Res., 2020, 13(5): 1281.

doi: 10.1007/s12274-020-2721-0     URL    
[28]
Labrador-Páez L, Ximendes E C, Rodríguez-Sevilla P, Ortgies D H, Rocha U, Jacinto C, Martín Rodríguez E, Haro-González P, Jaque D. Nanoscale, 2018, 10(27): 12935.

doi: 10.1039/c8nr02307g     pmid: 29953157
[29]
Gu Z J, Yan L, Tian G, Li S J, Chai Z F, Zhao Y L. Adv. Mater., 2013, 25(28): 3758.

doi: 10.1002/adma.201301197     URL    
[30]
Wang F, Liu X G. J. Am. Chem. Soc., 2008, 130(17): 5642.

doi: 10.1021/ja800868a     URL    
[31]
Wang X, Zhuang J, Peng Q, Li Y D. Nature, 2005, 437(7055): 121.

doi: 10.1038/nature03968     URL    
[32]
Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Nature, 2010, 463(7284): 1061.

doi: 10.1038/nature08777     URL    
[33]
Xue Z L, Zeng S J, Hao J H. Biomaterials, 2018, 171: 153.

doi: 10.1016/j.biomaterials.2018.04.037     URL    
[34]
Yi G S, Chow G M. Adv. Funct. Mater., 2006, 16(18): 2324.

doi: 10.1002/adfm.200600053     URL    
[35]
Boyer J, Cuccia L A, Capobianco J A. Nano Lett., 2007, 7: 847.

doi: 10.1021/nl070235+     URL    
[36]
Li Z Q, Zhang Y. Nanotechnology, 2008, 19(34): 345606.

doi: 10.1088/0957-4484/19/34/345606     URL    
[37]
Deng R R, Qin F, Chen R F, Huang W, Hong M H, Liu X G. Nat. Nanotechnol., 2015, 10(3): 237.

doi: 10.1038/nnano.2014.317     URL    
[38]
Zhou Y, Pei W B, Wang C Y, Zhu J X, Wu J S, Yan Q Y, Huang L, Huang W, Yao C, Loo J S C, Zhang Q C. Small, 2014, 10(17): 3560.

doi: 10.1002/smll.201303127     pmid: 24497481
[39]
Hao C L, Wu X L, Sun M Z, Zhang H Y, Yuan A M, Xu L G, Xu C L, Kuang H. J. Am. Chem. Soc., 2019, 141(49): 19373.

doi: 10.1021/jacs.9b09360     URL    
[40]
Villa I, Vedda A, Cantarelli I X, Pedroni M, Piccinelli F, Bettinelli M, Speghini A, Quintanilla M, Vetrone F, Rocha U, Jacinto C, Carrasco E, Rodríguez F S, Juarranz Á, Rosal B, Ortgies D H, Gonzalez P H, SolÉ J G, García D J. Nano Res., 2015, 8(2): 649.

doi: 10.1007/s12274-014-0549-1     URL    
[41]
Johnson N J J, He S, Diao S, Chan E M, Dai H J, Almutairi A. J. Am. Chem. Soc., 2017, 139(8): 3275.

doi: 10.1021/jacs.7b00223     pmid: 28169535
[42]
Sun C X, Li B H, Zhao M Y, Wang S F, Lei Z H, Lu L F, Zhang H X, Feng L S, Dou C R, Yin D R, Xu H X, Cheng Y S, Zhang F. J. Am. Chem. Soc., 2019, 141(49): 19221.

doi: 10.1021/jacs.9b10043     URL    
[43]
Tan M L, Li F, Cao N, Li H, Wang X, Zhang C Y, Jaque D, Chen G Y. Small, 2020, 16(48): 2004118.

doi: 10.1002/smll.202004118     URL    
[44]
Ortgies D H, Tan M L, Ximendes E C, del Rosal B, Hu J, Xu L, Wang X D, Martín Rodríguez E, Jacinto C, Fernandez N, Chen G Y, Jaque D. ACS Nano, 2018, 12(5): 4362.

doi: 10.1021/acsnano.7b09189     pmid: 29697971
[45]
del Rosal B, Ortgies D H, Fernández N, Sanz-Rodríguez F, Jaque D, Rodríguez E M. Adv. Mater., 2016, 28(46): 10188.

doi: 10.1002/adma.201603583     URL    
[46]
Zhao M Y, Li B H, Wu Y F, He H S, Zhu X Y, Zhang H X, Dou C R, Feng L S, Fan Y, Zhang F. Adv. Mater., 2020, 32(28): 2001172.

doi: 10.1002/adma.202001172     URL    
[47]
Wen S H, Zhou J J, Zheng K Z, Bednarkiewicz A, Liu X G, Jin D Y. Nat. Commun., 2018, 9: 2415.

doi: 10.1038/s41467-018-04813-5     URL    
[48]
Fan Y, Liu L, Zhang F. Nano Today, 2019, 25: 68.

doi: 10.1016/j.nantod.2019.02.009     URL    
[49]
Chen B, Wang F. Acc. Chem. Res., 2020, 53(2): 358.

doi: 10.1021/acs.accounts.9b00453     URL    
[50]
Zhong Y T, Tian G, Gu Z J, Yang Y J, Gu L, Zhao Y L, Ma Y, Yao J N. Adv. Mater., 2014, 26(18): 2831.

doi: 10.1002/adma.201304903     URL    
[51]
Lu F, Yang L, Ding Y J, Zhu J J. Adv. Funct. Mater., 2016, 26(26): 4778.

doi: 10.1002/adfm.201600464     URL    
[52]
Zhong Y T, Ma Z R, Zhu S J, Yue J Y, Zhang M X, Antaris A L, Yuan J, Cui R, Wan H, Zhou Y, Wang W Z, Huang N F, Luo J, Hu Z Y, Dai H J. Nat. Commun., 2017, 8: 737.

doi: 10.1038/s41467-017-00917-6     URL    
[53]
Gu Y Y, Guo Z Y, Yuan W, Kong M Y, Liu Y L, Liu Y T, Gao Y L, Feng W, Wang F, Zhou J J, Jin D Y, Li F Y. Nat. Photonics, 2019, 13(8): 580.
[54]
LiÉgard F, Doualan J L, MoncorgÉ R, Bettinelli M. Appl. Phys. B, 2005, 80(8): 985.

doi: 10.1007/s00340-005-1829-y     URL    
[55]
Liang C, Kai Y, Shuai Z, Shao M, Zhuang L. Nano Res., 2010, 3: 722.

doi: 10.1007/s12274-010-0036-2     URL    
[56]
Wang Z J, Meijerink A. J. Phys. Chem. C, 2018, 122(45): 26298.

doi: 10.1021/acs.jpcc.8b09371     URL    
[57]
Lei X L, Li R F, Tu D T, Shang X Y, Liu Y, You W W, Sun C X, Zhang F, Chen X Y. Chem. Sci., 2018, 9(20): 4682.

doi: 10.1039/C8SC00927A     URL    
[58]
Zhong Y T, Ma Z R, Wang F F, Wang X, Yang Y J, Liu Y L, Zhao X, Li J C, Du H T, Zhang M X, Cui Q H, Zhu S J, Sun Q C, Wan H, Tian Y, Liu Q, Wang W Z, Garcia K C, Dai H J. Nat. Biotechnol., 2019, 37(11): 1322.

doi: 10.1038/s41587-019-0262-4     URL    
[59]
Xu J T, Shi R P, Chen G Y, Dong S M, Yang P P, Zhang Z Y, Niu N, Gai S L, He F, Fu Y J, Lin J. ACS Nano, 2020, 14(8): 9613.

doi: 10.1021/acsnano.0c00082     URL    
[60]
Naczynski D J, Tan M C, Zevon M, Wall B, Kohl J, Kulesa A, Chen S, Roth C M, Riman R E, Moghe P V. Nat. Commun., 2013, 4: 2199.

doi: 10.1038/ncomms3199     pmid: 23873342
[61]
Wang R, Li X M, Zhou L, Zhang F. Angew. Chem. Int. Ed., 2014, 53(45): 12086.

doi: 10.1002/anie.201407420     pmid: 25196421
[62]
Shen J, Chen G Y, Vu A M, Fan W, Bilsel O S, Chang C C, Han G. Adv. Opt. Mater., 2013, 1(9): 644.

doi: 10.1002/adom.201300160     URL    
[63]
Cao C, Wu N, Yuan W, Gu Y Y, Ke J M, Feng W, Li F Y. Nanoscale, 2020, 12(15): 8248.

doi: 10.1039/D0NR01098G     URL    
[64]
Youbin L I, Jiang M Y, Xue Z L, Zeng S J. Theranostics, 2020, 10(15): 6875.

doi: 10.7150/thno.41967     pmid: 32550909
[65]
Cao C, Xue M, Zhu X J, Yang P Y, Feng W, Li F Y. ACS Appl. Mater. Interfaces, 2017, 9(22): 18540.

doi: 10.1021/acsami.7b04305     URL    
[66]
Li Y, Tang J L, Pan D X, Sun L D, Chen C Y, Liu Y, Wang Y F, Shi S, Yan C H. ACS Nano, 2016, 10(2): 2766.

doi: 10.1021/acsnano.5b07873     URL    
[67]
Lu F, Zhao T, Sun X J, Wang Z Q, Fan Q L, Huang W. Chem. Res. Chin. Univ., 2021, 37(4): 943.

doi: 10.1007/s40242-021-1172-9     URL    
[68]
Rocha U, Kumar K U, Jacinto C, Villa I, Sanz-Rodríguez F, del Carmen Iglesias de la Cruz M, Juarranz A, Carrasco E, van Veggel F C J M, Bovero E, SolÉ J G, Jaque D. Small, 2014, 10(6): 1141.

doi: 10.1002/smll.201301716     URL    
[69]
CerÓn E N, Ortgies D H, del Rosal B, Ren F Q, Benayas A, Vetrone F, Ma D L, Sanz-Rodríguez F, SolÉ J G, Jaque D, Rodríguez E M. Adv. Mater., 2015, 27(32): 4781.

doi: 10.1002/adma.201501014     URL    
[70]
Ma B L, Zhai X J, Du G P, Zhou J. Chem. Sci., 2019, 10(11): 3281.

doi: 10.1039/C8SC05044A     URL    
[71]
Zheng K Z, Han S Y, Zeng X, Wu Y M, Song S Y, Zhang H J, Liu X G. Adv. Mater., 2018, 30(30): 1801726.

doi: 10.1002/adma.201801726     URL    
[72]
Ma L Y, Liu Y X, Liu L D, Jiang A Q, Mao F, Liu D D, Wang L, Zhou J. Adv. Funct. Mater., 2018, 28(6): 1705057.

doi: 10.1002/adfm.201705057     URL    
[73]
He S, Johnson N J J, Nguyen Huu V A, Huang Y R, Almutairi A. Chem. Mater., 2018, 30(12): 3991.

doi: 10.1021/acs.chemmater.7b04700     URL    
[74]
Li H, Wang X, Li X L, Zeng S J, Chen G Y. Chem. Mater., 2020, 32(8): 3365.

doi: 10.1021/acs.chemmater.9b04784     URL    
[75]
Wang X, Yakovliev A, Ohulchanskyy T Y, Wu L N, Zeng S J, Han X J, Qu J L, Chen G Y. Adv. Opt. Mater., 2018, 6(20): 1800690.

doi: 10.1002/adom.201800690     URL    
[76]
Liu L, Wang S F, Zhao B Z, Pei P, Fan Y, Li X M, Zhang F. Angew. Chem. Int. Ed., 2018, 57(25): 7518.

doi: 10.1002/anie.201802889     pmid: 29719100
[77]
Zhou B, Yan L, Huang J S, Liu X L, Tao L L, Zhang Q Y. Nat. Photonics, 2020, 14(12): 760.

doi: 10.1038/s41566-020-00714-6     URL    
[78]
Cheng X W, Ge H, Wei Y, Zhang K, Su W H, Zhou J M, Yin L S, Zhan Q Q, Jing S, Huang L. ACS Nano, 2018, 12(11): 10992.

doi: 10.1021/acsnano.8b04988     URL    
[79]
Zhang H X, Fan Y, Pei P, Sun C X, Lu L F, Zhang F. Angew. Chem. Int. Ed., 2019, 58(30): 10153.

doi: 10.1002/anie.201903536     URL    
[80]
Huang P, Zheng W, Zhou S Y, Tu D T, Chen Z, Zhu H M, Li R F, Ma E, Huang M D, Chen X Y. Angew. Chem. Int. Ed., 2014, 53(5): 1252.

doi: 10.1002/anie.201309503     pmid: 24436151
[81]
Teng X, Zhu Y H, Wei W, Wang S C, Huang J F, Naccache R, Hu W B, Tok A I Y, Han Y, Zhang Q C, Fan Q L, Huang W, Capobianco J A, Huang L. J. Am. Chem. Soc., 2012, 134(20): 8340.

doi: 10.1021/ja3016236     pmid: 22506543
[82]
Xie J, Zheng G C, Hu Y M, Nosheen F, Zhang Z C, Liang E J. Rare Met., 2021, 40(1): 113.

doi: 10.1007/s12598-020-01631-x     URL    
[83]
Wei T, Han Y D, Wei Y, Gao C, Ma H, Zhang F, Bao S Y, Jing S, Huang L. J. Mater. Chem. C, 2021, 9(11): 3800.

doi: 10.1039/D1TC00239B     URL    
[84]
He S Q, Chen S, Li D F, Wu Y F, Zhang X, Liu J F, Song J, Liu L W, Qu J L, Cheng Z. Nano Lett., 2019, 19(5): 2985.

doi: 10.1021/acs.nanolett.9b00140     URL    
[85]
Himmelstoß S F, Hirsch T. Part. Part. Syst. Charact., 2019, 36(10): 1900235.

doi: 10.1002/ppsc.201900235     URL    
[86]
Zou W Q, Visser C, Maduro J A, Pshenichnikov M S, Hummelen J C. Nat. Photonics, 2012, 6(8): 560.

doi: 10.1038/nphoton.2012.158     URL    
[87]
Liu Z, Ren F, Zhang H, Yuan Q, Jiang Z L, Liu H H, Sun Q, Li Z. Biomaterials, 2019, 219: 119364.

doi: 10.1016/j.biomaterials.2019.119364     URL    
[88]
Wang C L, Lin H X, Ge X G, Mu J, Su L C, Zhang X, Niu M, Yang H H, Song J B. Adv. Funct. Mater., 2021, 31(16): 2009942.

doi: 10.1002/adfm.202009942     URL    
[89]
Zou X M, Xu M, Yuan W, Wang Q H, Shi Y B, Feng W, Li F Y. Chem. Commun., 2016, 52(91): 13389.

doi: 10.1039/C6CC07180E     URL    
[90]
Ji Y, Lu F, Tang Y F, Qian W, Fan Q L, Huang W. Inorg. Chem. Commun., 2020, 111: 107640.

doi: 10.1016/j.inoche.2019.107640     URL    
[91]
Han S Y, Deng R R, Gu Q F, Ni L M, Huynh U, Zhang J B, Yi Z G, Zhao B D, Tamura H, Pershin A, Xu H, Huang Z Y, Ahmad S, Abdi-Jalebi M, Sadhanala A, Tang minglee, Bakulin A, Beljonne D, Liu X G, Rao A. Nature, 2020, 587(7835): 594.

doi: 10.1038/s41586-020-2932-2     URL    
[92]
Garfield D J, Borys N J, Hamed S M, Torquato N A, Tajon C A, Tian B N, Shevitski B, Barnard E S, Suh Y D, Aloni S, Neaton J B, Chan E M, Cohen B E, Schuck P J. Nat. Photonics, 2018, 12(7): 402.

doi: 10.1038/s41566-018-0156-x     URL    
[93]
Kang F W, He J J, Sun T Y, Bao Z Y, Wang F, Lei D Y. Adv. Funct. Mater., 2017, 27(36): 1701842.

doi: 10.1002/adfm.201701842     URL    
[94]
Zhang K Y, Lu F, Cai Z, Song S T, Jiang L P, Min Q H, Wu X C, Zhu J J. Anal. Chem., 2020, 92(17): 11795.

doi: 10.1021/acs.analchem.0c01969     URL    
[95]
Kannan P, Abdul Rahim F, Chen R, Teng X, Huang L, Sun H D, Kim D H. ACS Appl. Mater. Interfaces, 2013, 5(9): 3508.

doi: 10.1021/am4007758     URL    
[96]
He J J, Zheng W, Ligmajer F, Chan C F, Bao Z Y, Wong K L, Chen X Y, Hao J H, Dai J Y, Yu S F, Lei D Y. Light. Sci. Appl., 2017, 6(5): e16217.

doi: 10.1038/lsa.2016.217     URL    
[97]
Pei P, Chen Y, Sun C X, Fan Y, Yang Y M, Liu X, Lu L F, Zhao M Y, Zhang H X, Zhao D Y, Liu X G, Zhang F. Nat. Nanotechnol., 2021, 16(9): 1011.

doi: 10.1038/s41565-021-00922-3     URL    
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[5] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[6] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[7] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[8] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[9] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[10] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[11] 张继东, 刘阿晨, 陈娇, 袁光辉, 金华峰. 基于生物素的荧光有机小分子及其应用[J]. 化学进展, 2020, 32(5): 594-603.
[12] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[13] 杜曼, 霍宝龙, 刘杰民*, 李梦文, 房乐秋, 杨运旭*. 基于硅杂蒽类染料的荧光探针及其应用[J]. 化学进展, 2018, 30(6): 809-830.
[14] 邱康强, 朱宏翊, 计亮年, 巢晖. 金属配合物用于细胞内动态实时荧光示踪研究[J]. 化学进展, 2018, 30(10): 1524-1533.
[15] 刘瑶瑶, 刘敬民, 方国臻, 张咚咚, 王青华, 王硕. 基于长余辉纳米发光探针的生物传感检测和成像[J]. 化学进展, 2017, 29(6): 667-682.