English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1061-1075 DOI: 10.7536/PC210608 前一篇   后一篇

• 综述 •

多酸基硫化态催化剂的加氢脱硫和电解水析氢应用

岳长乐1, 鲍文静1, 梁吉雷3, 柳云骐1, 孙道峰1,2, 卢玉坤1,*()   

  1. 1.中国石油大学(华东)重质油国家重点实验室 青岛 266580
    2.中国石油大学(华东)材料科学与工程学院 青岛 266580
    3.泰州学院医药与化学化工学院 泰州 225300
  • 收稿日期:2021-06-08 修回日期:2021-08-28 出版日期:2022-05-24 发布日期:2021-12-02
  • 通讯作者: 卢玉坤
  • 基金资助:
    国家自然科学基金项目(21878336); 国家自然科学基金项目(22078227); 山东省自然科学基金项目(ZR2018MB035); 青岛市应用基础研究计划(19-6-2-27-cg); 重质油国家重点实验室资助(20CX02213A); 重质油国家重点实验室资助(SKLOP201902005)

Application of POMs-Based Sulfided Catalyst in Hydrodesulfurization and Hydrogen Evolution by Electrolysis of Water

Changle Yue1, Wenjing Bao1, Jilei Liang3, Yunqi Liu1, Daofeng Sun1,2, Yukun Lu1()   

  1. 1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China),Qingdao 266580, China
    2. College of Materials Science and Engineering, China University of Petroleum (East China),Qingdao 266580, China
    3. College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University,Taizhou 225300, China
  • Received:2021-06-08 Revised:2021-08-28 Online:2022-05-24 Published:2021-12-02
  • Contact: Yukun Lu
  • Supported by:
    National Natural Science Foundation of China(21878336); National Natural Science Foundation of China(22078227); Shandong Provincial Natural Science Foundation, China(ZR2018MB035); Applied Basic Research Projects of Qingdao(19-6-2-27-cg); State Key Laboratory of Heavy Oil Processing(20CX02213A); State Key Laboratory of Heavy Oil Processing(SKLOP201902005)

油品加氢脱硫(HDS)和电解水析氢(HER)是解决目前石油引起的能源环境问题的有效途径,开发高效且低成本的非贵金属催化材料是实现工业化的关键步骤。由于硫化态过渡金属具有高价态、独特的晶体结构和热稳定性,目前已证明MoS2和WS2是同时实现HDS和HER的理想材料。多酸作为一种由多种过渡金属和氧原子组成的结构明确的无机纳米簇,是制备过渡金属硫化态材料的合适前体。近年来,多酸制备硫化态催化剂成为绿色化学的研究热点。本文综述了基于多酸的硫化态催化剂在HDS和HER领域的研究进展,介绍了两类过程的工作原理和相互关联,总结并讨论了基于多酸的硫化态催化剂的催化机理、结构优势和存在问题,并对其应用前景进行了展望。

Facing the challenge of severe environmental pollution caused by petroleum and the development of new energy, the desulfurization of petroleum fuels and sustainable clean alternative energy are regarded as important solutions. As a clean and sustainable energy carrier, hydrogen (H2) is considered one of the most promising alternatives to carbon fuels. Therefore, hydrodesulfurization (HDS) and electrolysis of hydrogen evolution reaction (HER) are effective ways to solve the current energy and environmental problems caused by petroleum, and the development of high-efficiency and low-cost non-precious metal-based catalytic materials is a key step to achieve industrialization. Sulfided transition metals have high valence, unique crystal structure and thermal stability. Among them, MoS2 and WS2 are a type of band gap two-dimensional semiconductors with high planar carrier mobility and are used as non-noble metal sulfided catalysts representative material. It is worth noting that MoS2 and WS2 can realize HDS and HER processes at the same time. They not only serve as high-performance HDS catalysts to reduce the sulfur content of petroleum, but also shine in sustainable and clean green hydrogen production. Polyoxometalates (POMs), as a kind of inorganic nanoclusters with a clear structure composed of a variety of transition metals and oxygen atoms, are suitable precursors for preparing transition metal sulfided electrode materials. The sulfided catalyst can exhibit electrocatalytic performance close to that of noble metal-based catalysts, realizing green and efficient energy production and processing. Therefore, in recent years, sulfided catalysts prepared by POMs have become a research hotspot in green chemistry. This paper reviews the research progress of POMs-based sulfided catalysts in the HDS and HER fields, focusing on the working principles and interrelationships of the two types of processes. The catalytic mechanism, structural advantages and existing problems of POMs-based sulfided catalysts are summarized and discussed. Finally, some prospective of POMs-based sulfided catalysts for their application in those fields are proposed.

Contents

1 Introduction

2 HDS and HER

2.1 HDS

2.2 HER

3 HDS application of MS2 with POMs precursors

3.1 HDS catalysts based on Keggin-type POMs

3.2 HDS catalysts based on Anderson-type POMs

3.3 HDS catalysts based on Waugh-type POMs

3.4 HDS catalysts based on Strandberg-type POMs

3.5 HDS catalysts based on new type POMs

4 HER applications of MS2 with POMs precursors

4.1 HER catalysts based on MoS2

4.2 HER catalysts based on WS2

5 Conclusion and outlook

()
图1 (a)Co/Ni掺杂MoS2的原子球模型示意图及(b、c)STM照片[11]
Fig. 1 Schematic diagram (a) and STM picture (b, c) of the Co/Ni-doped MoS2 atomic sphere[11]. Copyright 2019, MDPI
图2 MoS2团簇的形态和Co掺杂MoS2团簇的形态[27]
Fig. 2 The morphology of MoS2 clusters and the morphology of Co-doped MoS2 clusters[27]. Copyright 2018, RightsLink
图式1 苯并噻吩的HDS原理示意图
Scheme 1 Schematic diagram of the hydrodesulfurization of benzothiophene
图3 纳米颗粒MoS2和纯金属吸附氢原子的吉布斯自由能函数火山图[24]
Fig. 3 Volcano plot of Gibbs free energy of adsorbed atomic hydrogen for MoS2 nanoparticle and the pure metals[24]. Copyright 2007, RightsLink
图4 Keggin型POMs的一级和二级结构[67]
Fig. 4 Primary and secondary structure of Keggin POMs[67]. Copyright 2013, RightsLink
图5 (A) Ni3POW/Al2O3 pH = 7-S, (B) Ni3POW/Al2O3 pH = 9-S, (C) Ni4POW/Al2O3 pH = 7-S, (D) Ni4POW/Al2O3 pH = 9-S的TEM图像[72]
Fig. 5 TEM images of (A) Ni3POW/Al2O3 pH = 7-S, (B) Ni3POW/Al2O3 pH = 9-S, (C) Ni4POW/Al2O3 pH = 7-S, (D) Ni4POW/Al2O3 pH = 9-S[72]. Copyright 2019, RightsLink
图6 (a)[XMo6O24H6]3-(Co2+,5H2O) (X=Al或Co)的杂多酸结构示意图。(H2O1-5用于构成Co1配位八面体,H2Oa-g表示与Mo-OH2键长短于4Å的溶质水分子。标签1~24代表O或OH);(b)H2Oa-g水分子(灰色圆圈)包裹杂多酸的结构示意图[76]
Fig. 6 (a) [XMo6O24H6]3-(Co2+,5H2O) heteropolyanion (X = Al or Co) label scheme. H2O1-5 form the Co1 coordination octahedron. H2Oa-g are the solvate water molecules represented with Mo-OH2 broken lines bonds shorter than 4 Å. Labels 1~24 stand for O or OH. (b) The eight equivalent heteropolyanion according to the Pcab symmetry, surrounded by the H2Oa-g hydration molecules (gray circles)[76]. Copyright 2004, RightsLink
图7 Waugh型多酸NiMo9结构及Ni2+-N H 4 +交换示意图[79]
Fig. 7 Structure of Waugh-type POMs NiMo9 and schematic diagram of Ni2+-N H 4 + exchange[79]. Copyright 2014, RightsLink
图8 P2Mo5为前驱体制备HDS催化剂的合成策略示意图[81]
Fig. 8 Schematic diagram of the synthetic strategy for preparing HDS catalysts with P2Mo5 as precursor[81]. Copyright 2018, RightsLink
图9 双金属硫化物M-Mo-S/CC(M = Co,Ni,Fe)合成与形态示意图[120]
Fig. 9 Schematic diagram of synthesis and morphology of bimetallic sulfide M-Mo-S/CC (M = Co, Ni, Fe)[120]. Copyright 2018, RightsLink
图10 POMs前驱体(a、b、c)和XO@1T-MoS2纳米片制备(d)示意图[122]
Fig. 10 Schematic diagram of (a, b, c) POMs precursors and (d) preparation of the XO@1T-MoS2 nanosheets[122]. Copyright 2019, RightsLink
图11 MoS2/N-RGO-T纳米复合材料的制备流程[124]
Fig. 11 Schematic preparation process of MoS2/N-RGO-T nanocomposite[124]. Copyright 2016, RightsLink
图12 CoMoS/CC纳米复合材料的制备流程[127]
Fig. 12 Schematic preparation process of CoMoS/CC nanocomposite[127]. Copyright 2021, RightsLink
图13 O-CoMoS异质纳米片列在碱性溶液中的全解水[128]
Fig. 13 Overall water splitting by use of O-CoMoS heteronanosheet arrays as the anode and cathode in alkaline solution[128]. Copyright 2018, RightsLink
图14 左:Mo/WS2粒子的球状模型图;右:氢气吸附的差分自由能示意图[36]
Fig. 14 Left: ball model of a Mo/WS2 particle exposing both S-edge and Mo/W-edge. Right: differential free energies of hydrogen adsorption[36]. Copyright 2009, RightsLink
[1]
Huang L B, Zhao L, Zhang Y, Chen Y Y, Zhang Q H, Luo H, Zhang X, Tang T, Gu L, Hu J S. Adv. Energy Mater., 2018, 8(21): 1800734.

doi: 10.1002/aenm.201800734     URL    
[2]
Huang T T, Peng Q Y, Gai H J, Fan Y. Energy Fuels, 2021, 35(3): 2402.

doi: 10.1021/acs.energyfuels.0c03364     URL    
[3]
Taylor M J, Durndell L J, Isaacs M A, Parlett C M A, Wilson K, Lee A F, Kyriakou G. Appl. Catal. B: Environ., 2016, 180: 580.

doi: 10.1016/j.apcatb.2015.07.006     URL    
[4]
Nogueira A, Znaiguia R, Uzio D, Afanasiev P, Berhault G. Appl. Catal. A: Gen., 2012, 429/430: 92.

doi: 10.1016/j.apcata.2012.04.013     URL    
[5]
Pecoraro T A, Chianelli R R. J. Catal., 1981, 67(5): 430.

doi: 10.1016/0021-9517(81)90303-1     URL    
[6]
Zeng K, Zhang D K. Prog. Energy Combust. Sci., 2010, 36(3): 307.

doi: 10.1016/j.pecs.2009.11.002     URL    
[7]
Rausch B, Symes M D, Chisholm G, Cronin L. Science, 2014, 345(6202): 1326.

doi: 10.1126/science.1257443     URL    
[8]
Wang J H, Yan M Y, Zhao K N, Liao X B, Wang P Y, Pan X L, Yang W, Mai L Q. Adv. Mater., 2017, 29(7): 1604464.

doi: 10.1002/adma.201604464     URL    
[9]
Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I, Nørskov J K. J. Am. Chem. Soc., 2005, 127(15): 5308.

pmid: 15826154
[10]
Deng X H, Xu G Y, Zhang Y J, Wang L, Zhang J J, Li J F, Fu X Z, Luo J L. Angew. Chem. Int. Ed., 2021, 60(37): 20535.

doi: 10.1002/anie.202108955     URL    
[11]
Díaz de LeÓn J, Ramesh Kumar C, Antúnez-García J, Fuentes-Moyado S. Catalysts, 2019, 9(1): 87.

doi: 10.3390/catal9010087     URL    
[12]
Sobczynski A, Yildiz A, Bard A J, Campion A, Fox M A, Mallouk T, Webber S E, White J M. J. Phys. Chem., 1988, 92(8): 2311.

doi: 10.1021/j100319a042     URL    
[13]
Voiry D, Yamaguchi H, Li J W, Silva R, Alves D C B, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nat. Mater., 2013, 12(9): 850.

doi: 10.1038/nmat3700     URL    
[14]
Yang J, Voiry D, Ahn S J, Kang D, Kim A Y, Chhowalla M, Shin H S. Angew. Chem. Int. Ed., 2013, 52(51): 13751.

doi: 10.1002/anie.201307475     URL    
[15]
Lukowski M A, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J, Jin S. Energy Environ. Sci., 2014, 7(8): 2608.

doi: 10.1039/C4EE01329H     URL    
[16]
Duan J J, Chen S, Chambers B A, Andersson G G, Qiao S Z. Adv. Mater., 2015, 27(28): 4234.

doi: 10.1002/adma.201501692     URL    
[17]
Ambrosi A, Sofer Z, Pumera M. Chem. Commun., 2015, 51(40): 8450.

doi: 10.1039/C5CC00803D     URL    
[18]
Zhang J, Wang Q, Wang L H, Li X A, Huang W. Nanoscale, 2015, 7(23): 10391.

doi: 10.1039/c5nr01896j     pmid: 25994213
[19]
Cheng L, Huang W J, Gong Q F, Liu C H, Liu Z, Li Y G, Dai H J. Angew. Chem. Int. Ed., 2014, 53(30): 7860.

doi: 10.1002/anie.201402315     URL    
[20]
Xu K, Wang F M, Wang Z X, Zhan X Y, Wang Q S, Cheng Z Z, Safdar M, He J. ACS Nano, 2014, 8(8): 8468.

doi: 10.1021/nn503027k     URL    
[21]
Zhang X, Lai Z C, Tan C L, Zhang H. Angew. Chem. Int. Ed., 2016, 55(31): 8816.

doi: 10.1002/anie.201509933     URL    
[22]
Zhang G, Liu H J, Qu J H, Li J H. Energy Environ. Sci., 2016, 9(4): 1190.

doi: 10.1039/C5EE03761A     URL    
[23]
Helveg S, Lauritsen J V, Lægsgaard E, Stensgaard I, Nørskov J K, Clausen B S, Topsøe H, Besenbacher F. Phys. Rev. Lett., 2000, 84(5): 951.

pmid: 11017413
[24]
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Science, 2007, 317(5834): 100.

pmid: 17615351
[25]
Kibsgaard J, Lauritsen J V, Lægsgaard E, Clausen B S, Topsøe H, Besenbacher F. J. Am. Chem. Soc., 2006, 128(42): 13950.

pmid: 17044723
[26]
Brorson M, Carlsson A, Topsøe H. Catal. Today, 2007, 123(1/4): 31.

doi: 10.1016/j.cattod.2007.01.073     URL    
[27]
Grønborg S S, Salazar N, Bruix A, Rodríguez-Fernández J, Thomsen S D, Hammer B, Lauritsen J V. Nat. Commun., 2018, 9(1): 2211.

doi: 10.1038/s41467-018-04615-9     pmid: 29880841
[28]
Lauritsen J V, Helveg S, Lægsgaard E, Stensgaard I, Clausen B S, Topsøe H, Besenbacher F. J. Catal., 2001, 197(1): 1.

doi: 10.1006/jcat.2000.3088     URL    
[29]
Byskov L S, Nørskov J K, Clausen B S, Topsøe H. J. Catal., 1999, 187(1): 109.

doi: 10.1006/jcat.1999.2598     URL    
[30]
Toh R J, Sofer Z, Luxa J, Sedmidubský D, Pumera M. Chem. Commun., 2017, 53(21): 3054.

doi: 10.1039/C6CC09952A     URL    
[31]
Enyashin A N, Yadgarov L, Houben L, Popov I, Weidenbach M, Tenne R, Bar-Sadan M, Seifert G. J. Phys. Chem. C, 2011, 115(50): 24586.

doi: 10.1021/jp2076325     URL    
[32]
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nat. Chem., 2013, 5(4): 263.

doi: 10.1038/nchem.1589     pmid: 23511414
[33]
Lin Y C, Dumcenco D O, Huang Y S, Suenaga K. Nat. Nanotechnol., 2014, 9(5): 391.

doi: 10.1038/nnano.2014.64     URL    
[34]
Wypych F, Solenthaler C, Prins R, Weber T. J. Solid State Chem., 1999, 144(2): 430.

doi: 10.1006/jssc.1999.8193     URL    
[35]
Heising J, Kanatzidis M G. J. Am. Chem. Soc., 1999, 121(4): 638.

doi: 10.1021/ja983043c     URL    
[36]
Bonde J, Moses P G, Jaramillo T F, Nørskov J K, Chorkendorff I. Faraday Discuss., 2009, 140: 219.

doi: 10.1039/B803857K     URL    
[37]
Horn M R, Singh A, Alomari S, Goberna-FerrÓn S, Benages-Vilau R, Chodankar N, Motta N, Ostrikov K K, MacLeod J, Sonar P, Gomez-Romero P, Dubal D. Energy Environ. Sci., 2021, 14(4): 1652.

doi: 10.1039/D0EE03407J     URL    
[38]
Breysse M, Furimsky E, Kasztelan S, Lacroix M, Perot G. Catal. Rev., 2002, 44(4): 651.

doi: 10.1081/CR-120015483     URL    
[39]
Chianelli R R, Berhault G, Raybaud P, Kasztelan S, Hafner J, Toulhoat H. Appl. Catal. A: Gen., 2002, 227(1-2): 83.

doi: 10.1016/S0926-860X(01)00924-3     URL    
[40]
Han X B, Tang X Y, Lin Y, Gracia-Espino E, Liu S G, Liang H W, Hu G Z, Zhao X J, Liao H G, Tan Y Z, Wagberg T, Xie S Y, Zheng L S. J. Am. Chem. Soc., 2019, 141(1): 232.

doi: 10.1021/jacs.8b09076     URL    
[41]
Carlsson A, Brorson M, Topsøe H. J. Catal., 2004, 227(2): 530.

doi: 10.1016/j.jcat.2004.08.031     URL    
[42]
Cui T Y, Rajendran A, Fan H X, Feng J, Li W Y. Ind. Eng. Chem. Res., 2021, 60(8): 3295.

doi: 10.1021/acs.iecr.0c06234     URL    
[43]
Startsev A N. Catal. Rev., 1995, 37(3): 353.
[44]
Puello polo E, Romero Baños M, Fals J F. Prospectiva, 2017, 16(1): 34.

doi: 10.15665/rp.v16i1.1298     URL    
[45]
Srivastava V C. RSC Adv., 2012, 2(4): 759.

doi: 10.1039/C1RA00309G     URL    
[46]
Li D D. Chinese Journal of Catalysis, 2013, 34(1): 48.

doi: 10.1016/S1872-2067(11)60508-1     URL    
(李大东. 催化学报, 2013, 34(1): 48.)
[47]
Zhu Q L, Zhao X T, Zhao Z X, Ma H J, Deng Y Q. Molecular Catalysis, 2006, 20(4): 372.
(朱全力, 赵旭涛, 赵振兴, 马洪江, 邓友全. 分子催化, 2006, 20(4): 372.)
[48]
Bello S S, Wang C, Zhang M J, Gao H, Han Z N, Shi L, Su F B, Xu G W. Energy Fuels, 2021, 35(14): 10998.

doi: 10.1021/acs.energyfuels.1c01015     URL    
[49]
Song C S. Catal. Today, 2003, 86(1/4): 211.

doi: 10.1016/S0920-5861(03)00412-7     URL    
[50]
Ding L H, Zheng Y, Zhang Z S, Ring Z, Chen J W. J. Catal., 2006, 241(2): 435.

doi: 10.1016/j.jcat.2006.05.004     URL    
[51]
Conway B E, Tilak B V. Electrochimica Acta, 2002, 47(22/23): 3571.

doi: 10.1016/S0013-4686(02)00329-8     URL    
[52]
Lyon Y A, Roberts A A, McMillin D R. J. Chem. Educ., 2015, 92(12): 2130.

doi: 10.1021/acs.jchemed.5b00189     URL    
[53]
Morales-Guio C G, Stern L A, Hu X L. Chem. Soc. Rev., 2014, 43(18): 6555.

doi: 10.1039/c3cs60468c     pmid: 24626338
[54]
Yan Y, Xia B Y, Xu Z C, Wang X. ACS Catal., 2014, 4(6): 1693.

doi: 10.1021/cs500070x     URL    
[55]
Theerthagiri J, Senthil R A, Senthilkumar B, Reddy Polu A, Madhavan J, Ashokkumar M. J. Solid State Chem., 2017, 252: 43.

doi: 10.1016/j.jssc.2017.04.041     URL    
[56]
Benck J D, Hellstern T R, Kibsgaard J, Chakthranont P, Jaramillo T F. ACS Catal., 2014, 4(11): 3957.

doi: 10.1021/cs500923c     URL    
[57]
Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Nørskov J K. Nat. Mater., 2006, 5(11): 909.

pmid: 17041585
[58]
Nørskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S, Stimming U. J. Electrochem. Soc., 2005, 152(3): J23.

doi: 10.1149/1.1856988     URL    
[59]
Greeley J, Nørskov J K, Kibler L A, El-Aziz A M, Kolb D M. ChemPhysChem, 2006, 7(5): 1032.

pmid: 16557633
[60]
Lai W K, Chen Z, Zhu J P, Yang L F, Zheng J B, Yi X D, Fang W P. Nanoscale, 2016, 8(6): 3823.

doi: 10.1039/C5NR08841K     URL    
[61]
Huirache-Acuña R, Nava R, Peza-Ledesma C, Lara-Romero J, Alonso-Núez G, Pawelec B, Rivera-Muñoz E. Materials, 2013, 6(9): 4139.

doi: 10.3390/ma6094139     pmid: 28788323
[62]
Díaz de LeÓn J N. Appl. Catal. B: Environ., 2016, 181: 524.

doi: 10.1016/j.apcatb.2015.08.028     URL    
[63]
Zhou W W, Zhang Y N, Tao X J, Zhou Y S, Wei Q, Ding S J. Fuel, 2018, 228: 152.

doi: 10.1016/j.fuel.2018.04.084     URL    
[64]
Alonso-Núñez G, Bocarando J, Huirache-Acuña R, Álvarez-Contreras L, Huang Z D, Bensch W, Berhault G, Cruz J, Zepeda T A, Fuentes S. Appl. Catal. A: Gen., 2012, 419-420: 95.

doi: 10.1016/j.apcata.2012.01.015     URL    
[65]
van Veen J A R, Hendriks P A J M, Romers E J G M, Andrea R R. J. Phys. Chem., 1990, 94(13): 5275.
[66]
Romero-Galarza A, GutiÉrrez-Alejandre A, Ramírez J. J. Catal., 2011, 280(2): 230.

doi: 10.1016/j.jcat.2011.03.021     URL    
[67]
Zhang H, Yan R Y, Yang L, Diao Y Y, Wang L, Zhang S J. Ind. Eng. Chem. Res., 2013, 52(12): 4484.

doi: 10.1021/ie3032718     URL    
[68]
Griboval A, Blanchard P, Payen E, Fournier M, Dubois J L. Catal. Today, 1998, 45(1/4): 277.

doi: 10.1016/S0920-5861(98)00230-2     URL    
[69]
Alsalme A, Alzaqri N, Alsaleh A, Siddiqui M R H, Alotaibi A, Kozhevnikova E F, Kozhevnikov I V. Appl. Catal. B: Environ., 2016, 182: 102.

doi: 10.1016/j.apcatb.2015.09.018     URL    
[70]
Minaev P P, Nikulshin P A, Kulikova M S, Pimerzin A A, Kogan V M. Appl. Catal. A: Gen., 2015, 505: 456.

doi: 10.1016/j.apcata.2015.05.012     URL    
[71]
Kokliukhin A, Nikulshina M, Mozhaev A, Lancelot C, Lamonier C, Nuns N, Blanchard P, Bugaev A, Nikulshin P. Catal. Today, 2021, 377: 26.

doi: 10.1016/j.cattod.2020.07.018     URL    
[72]
LÓpez-Benítez A, Guevara-Lara A, Berhault G. ACS Catal., 2019, 9(8): 6711.

doi: 10.1021/acscatal.9b01460     URL    
[73]
Kokliukhin A, Nikulshina M, Mozhaev A, Lancelot C, Blanchard P, Briois V, Marinova M, Lamonier C, Nikulshin P. J. Catal., 2021, 403: 141.

doi: 10.1016/j.jcat.2021.02.019     URL    
[74]
Ma Y Q, Liu X P, Li J P, Wang R, Yu M Q. Chem. Pap., 2017, 71(3): 647.

doi: 10.1007/s11696-016-0064-9     URL    
[75]
Nikulshin P, Mozhaev A, Lancelot C, Blanchard P, Payen E, Lamonier C. Comptes Rendus Chimie, 2016, 19(10): 1276.

doi: 10.1016/j.crci.2015.10.006     URL    
[76]
Martin C, Lamonier C, Fournier M, MentrÉ O, HarlÉ V, Guillaume D, Payen E. Inorg. Chem., 2004, 43(15): 4636.

doi: 10.1021/ic0354365     URL    
[77]
Puello-Polo E, Diaz Y, Brito J L. Catal. Commun., 2017, 99: 89.

doi: 10.1016/j.catcom.2017.05.017     URL    
[78]
Nikulshin P A, Salnikov V A, Mozhaev A V, Minaev P P, Kogan V M, Pimerzin A A. J. Catal., 2014, 309: 386.

doi: 10.1016/j.jcat.2013.10.020     URL    
[79]
Liang J L, Liu Y Q, Zhao J C, Li X H, Lu Y K, Wu M M, Liu C G. Catal. Lett., 2014, 144(10): 1735.

doi: 10.1007/s10562-014-1326-1     URL    
[80]
Blanchard P, Lamonier C, Griboval A, Payen E. Appl. Catal. A: Gen., 2007, 322: 33.

doi: 10.1016/j.apcata.2007.01.018     URL    
[81]
Liang J L, Wu M M, Wei P H, Zhao J C, Huang H, Li C F, Lu Y K, Liu Y Q, Liu C G. J. Catal., 2018, 358: 155.

doi: 10.1016/j.jcat.2017.11.026     URL    
[82]
Liang J L, Wu M M, Wang J J, Wei P H, Sun B F, Lu Y K, Sun D F, Liu Y Q, Liu C G. Catal. Sci. Technol., 2018, 8(24): 6330.

doi: 10.1039/C8CY02007H     URL    
[83]
Prins R, de Beer V H J, Somorjai G A. Catal. Rev., 1989, 31(1/2): 1.

doi: 10.1080/01614948909351347     URL    
[84]
Spalvins T. J. Vac. Sci. Technol. A, 1987, 5(2): 212.

doi: 10.1116/1.574106     URL    
[85]
Kibsgaard J, Chen Z B, Reinecke B N, Jaramillo T F. Nat. Mater., 2012, 11(11): 963.

doi: 10.1038/nmat3439     pmid: 23042413
[86]
Deng J, Li H B, Xiao J P, Tu Y C, Deng D H, Yang H X, Tian H F, Li J Q, Ren P J, Bao X H. Energy Environ. Sci., 2015, 8(5): 1594.

doi: 10.1039/C5EE00751H     URL    
[87]
Šarić M, Moses P G, Rossmeisl J. ChemCatChem, 2016, 8(21): 3334.

doi: 10.1002/cctc.201601014     URL    
[88]
Šarić M, Rossmeisl J, Moses P G. Phys. Chem. Chem. Phys., 2017, 19(3): 2017.

doi: 10.1039/C6CP06881B     URL    
[89]
Chen L X, Chen Z W, Wang Y, Yang C C, Jiang Q. ACS Catal., 2018, 8(9): 8107.

doi: 10.1021/acscatal.8b01164     URL    
[90]
Liu Z X, Yuan X M, Yang P. J. Magn. Magn. Mater., 2018, 461(1): 1.

doi: 10.1016/j.jmmm.2018.04.041     URL    
[91]
Yu Y F, Nam G H, He Q Y, Wu X J, Zhang K, Yang Z Z, Chen J Z, Ma Q L, Zhao M T, Liu Z Q, Ran F R, Wang X Z, Li H, Huang X, Li B, Xiong Q H, Zhang Q, Liu Z, Gu L, Du Y H, Huang W, Zhang H. Nat. Chem, 2018, 10(6): 638.

doi: 10.1038/s41557-018-0035-6     URL    
[92]
Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W D, Xie Y. Adv. Mater., 2013, 25(40): 5807.

doi: 10.1002/adma.201302685     URL    
[93]
Guo B J, Yu K, Li H L, Song H L, Zhang Y Y, Lei X, Fu H, Tan Y H, Zhu Z Q. ACS Appl. Mater. Interfaces, 2016, 8(8): 5517.

doi: 10.1021/acsami.5b10252     URL    
[94]
Hu J, Huang B L, Zhang C X, Wang Z L, An Y M, Zhou D, Lin H, Leung M K H, Yang S H. Energy Environ. Sci., 2017, 10(2): 593.

doi: 10.1039/C6EE03629E     URL    
[95]
Zhang J, Wang T, Pohl D, Rellinghaus B, Dong R H, Liu S H, Zhuang X D, Feng X L. Angew. Chem. Int. Ed., 2016, 128(23): 6814.

doi: 10.1002/ange.201602237     URL    
[96]
Guo Y N, Tang J, Qian H Y, Wang Z L, Yamauchi Y. Chem. Mater., 2017, 29(13): 5566.

doi: 10.1021/acs.chemmater.7b00867     URL    
[97]
Yang Y Q, Zhang K, Lin H L, Li X, Chan H C, Yang L C, Gao Q S. ACS Catal., 2017, 7(4): 2357.

doi: 10.1021/acscatal.6b03192     URL    
[98]
Guo Y X, Gan L F, Shang C S, Wang E K, Wang J. Adv. Funct. Mater., 2017, 27(5): 1602699.

doi: 10.1002/adfm.201602699     URL    
[99]
Miras H N, Vilà-Nadal L, Cronin L. Chem. Soc. Rev., 2014, 43(16): 5679.

doi: 10.1039/C4CS00097H     URL    
[100]
Du D Y, Qin J S, Li S L, Su Z M, Lan Y Q. Chem. Soc. Rev., 2014, 43(13): 4615.

doi: 10.1039/C3CS60404G     URL    
[101]
Wang S S, Yang G Y. Chem. Rev., 2015, 115(11): 4893.

doi: 10.1021/cr500390v     URL    
[102]
Zhao J W, Li Y Z, Chen L J, Yang G Y. Chem. Commun., 2016, 52(24): 4418.

doi: 10.1039/C5CC10447E     URL    
[103]
Jiao L, Seow J Y R, Skinner W S, Wang Z U, Jiang H L. Mater. Today, 2019, 27: 43.

doi: 10.1016/j.mattod.2018.10.038     URL    
[104]
Svatek S A, Antolin E, Lin D Y, Frisenda R, Reuter C, Molina-Mendoza A J, Muñoz M, Agraït N, Ko T S, de Lara D P, Castellanos-Gomez A. J. Mater. Chem. C, 2017, 5(4): 854.

doi: 10.1039/C6TC04699A     URL    
[105]
Bu C H, Liu Y M, Yu Z H, You S J, Huang N, Liang L L, Zhao X Z. ACS Appl. Mater. Interfaces, 2013, 5(15): 7432.

doi: 10.1021/am4017472     URL    
[106]
Jin H Y, Wang J, Su D F, Wei Z Z, Pang Z F, Wang Y. J. Am. Chem. Soc., 2015, 137(7): 2688.

doi: 10.1021/ja5127165     URL    
[107]
Perkins F K, Friedman A L, Cobas E, Campbell P M, Jernigan G G, Jonker B T. Nano Lett., 2013, 13(2): 668.

doi: 10.1021/nl3043079     pmid: 23339527
[108]
Li H, Yin Z Y, He Q Y, Li H, Huang X, Lu G, Fam D W H, Tok A I Y, Zhang Q, Zhang H. Small, 2012, 8(1): 63.

doi: 10.1002/smll.201101016     URL    
[109]
Li L, Li J X, Liu L L, Wang X R, Guo Y, Zhou Y J. ACS Appl. Energy Mater., 2019, 2(2): 1413.

doi: 10.1021/acsaem.8b01993     URL    
[110]
Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J. J. Am. Chem. Soc., 2011, 133(19): 7296.

doi: 10.1021/ja201269b     URL    
[111]
Sun T, Wang J, Chi X, Lin Y X, Chen Z X, Ling X, Qiu C T, Xu Y S, Song L, Chen W, Su C L. ACS Catal., 2018, 8(8): 7585.

doi: 10.1021/acscatal.8b00783     URL    
[112]
Venkateshwaran S, Senthil Kumar S M. ACS Sustainable Chem. Eng., 2019, 7(2): 2008.

doi: 10.1021/acssuschemeng.8b04335     URL    
[113]
Hu Z J, Bao Y J, Li Z W, Gong Y J, Feng R, Xiao Y D, Wu X C, Zhang Z H, Zhu X, Ajayan P M, Fang Z Y. Sci. Bull., 2017, 62(1): 16.

doi: 10.1016/j.scib.2016.11.002     URL    
[114]
Liu K K, Zhang W J, Lee Y H, Lin Y C, Chang M T, Su C Y, Chang C S, Li H, Shi Y M, Zhang H, Lai C S, Li L J. Nano Lett., 2012, 12(3): 1538.

doi: 10.1021/nl2043612     URL    
[115]
Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. J. Am. Chem. Soc., 2013, 135(28): 10274.

doi: 10.1021/ja404523s     pmid: 23790049
[116]
Zhan Y J, Liu Z, Najmaei S, Ajayan P M, Lou J. Small, 2012, 8(7): 966.

doi: 10.1002/smll.201102654     URL    
[117]
Liu Q, Li X L, He Q, Khalil A, Liu D B, Xiang T, Wu X J, Song L. Small, 2015, 11(41): 5556.

doi: 10.1002/smll.201501822     URL    
[118]
Shi Y M, Zhou W, Lu A Y, Fang W J, Lee Y H, Hsu A L, Kim S M, Kim K K, Yang H Y, Li L J, Idrobo J C, Kong J. Nano Lett., 2012, 12(6): 2784.

doi: 10.1021/nl204562j     URL    
[119]
Huang H L, Chen L Q, Liu C H, Liu X S, Fang S X, Liu W P, Liu Y J. J. Mater. Chem. A, 2016, 4(38): 14577.

doi: 10.1039/C6TA06174E     URL    
[120]
Tang Y J, Zhang A M, Zhu H J, Dong L Z, Wang X L, Li S L, Han M, Xu X X, Lan Y Q. Nanoscale, 2018, 10(18): 8404.

doi: 10.1039/C8NR00925B     URL    
[121]
Zhang J W, Huang Y C, Li G, Wei Y G. Coord. Chem. Rev., 2019, 378: 395.

doi: 10.1016/j.ccr.2017.10.025     URL    
[122]
Huang Y C, Sun Y H, Zheng X L, Aoki T, Pattengale B, Huang J E, He X, Bian W, Younan S, Williams N, Hu J, Ge J X, Pu N, Yan X X, Pan X Q, Zhang L J, Wei Y G, Gu J. Nat. Commun., 2019, 10(1): 982.

doi: 10.1038/s41467-019-08877-9     URL    
[123]
Zhou D, Han B H. Adv. Funct. Mater., 2010, 20(16): 2717.

doi: 10.1002/adfm.200902323     URL    
[124]
Tang Y J, Wang Y, Wang X L, Li S L, Huang W, Dong L Z, Liu C H, Li Y F, Lan Y Q. Adv. Energ. Mater., 2016, 6(12): 1600116.

doi: 10.1002/aenm.201600116     URL    
[125]
Ghosh S, Azad U P, Singh A K, Singh A K, Prakash R. ChemistrySelect, 2017, 2(35): 11590.

doi: 10.1002/slct.201702737     URL    
[126]
Guo S W, Gao Z Y, Song J L, Bulin C K, Zhang B W. Chinese Journal of Inorganic Chemistry, 2019, 35(7): 1195.
(郭树旺, 高占勇, 宋金玲, 布林朝克, 张邦文. 无机化学学报, 2019, 35(7): 1195.)
[127]
Lu Y K, Guo X X, Yang L Y, Yang W F, Sun W T, Tuo Y X, Zhou Y, Wang S T, Pan Y, Yan W F, Sun D F, Liu Y Q. Chem. Eng. J., 2020, 394: 124849.

doi: 10.1016/j.cej.2020.124849     URL    
[128]
Hou J G, Zhang B, Li Z W, Cao S Y, Sun Y Q, Wu Y Z, Gao Z M, Sun L C. ACS Catal., 2018, 8(5): 4612.

doi: 10.1021/acscatal.8b00668     URL    
[129]
Sun H H, Ji X Y, Qiu Y F, Zhang Y Y, Ma Z, Gao G G, Hu P G. J. Alloys Compd., 2019, 777: 514.

doi: 10.1016/j.jallcom.2018.10.364     URL    
[130]
Hou Y, Pang H J, Zhang L, Li B N, Xin J J, Li K Q, Ma H Y, Wang X M, Tan L C. J. Power Sources, 2020, 446: 227319.

doi: 10.1016/j.jpowsour.2019.227319     URL    
[131]
Liu S H, Xu Y X, Yang H. CN 109926069A. 2019.
(刘山虎, 许银霞, 杨浩. CN 109926069A. 2019.).
[1] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[2] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[3] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[4] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[5] 雷立旭, 周益明. 无溶剂或少溶剂的固态化学反应[J]. 化学进展, 2020, 32(8): 1158-1171.
[6] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[7] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[8] 奚清扬, 刘劲松, 李子全, 朱孔军, 台国安, 宋若谷. 二硫化钼薄膜的刻蚀方法及其应用[J]. 化学进展, 2018, 30(6): 847-863.
[9] 曾甜, 尤运城, 王旭峰, 胡廷松, 台国安. 二维硫化钼基原子晶体材料的化学气相沉积法制备及其器件[J]. 化学进展, 2016, 28(4): 459-470.
[10] 王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿. 深共融溶剂在有机合成中的应用[J]. 化学进展, 2014, 26(05): 784-795.
[11] 李雷, 李彦兴, 姚瑶, 姚良宏, 季伟捷, 区泽棠. 核壳结构纳米材料的创制及在催化化学中的应用[J]. 化学进展, 2013, 25(10): 1681-1690.
[12] 刘宁, 王旭珍*, 徐文亚, 郭德才, 汤济洲, 张宝禄. 纳/微米二硫化钼的化学制备及其催化加氢脱硫应用[J]. 化学进展, 2013, 25(05): 726-734.
[13] 尹海亮, 周同娜, 柴永明, 柳云骐, 刘晨光*. 分子筛在加氢脱硫催化剂深度脱硫方面的应用[J]. 化学进展, 2012, 24(07): 1252-1261.
[14] 宋华, 代敏, 宋华林. Ni2P加氢脱硫催化剂[J]. 化学进展, 2012, 24(05): 757-768.
[15] 张建明, 翟尚儒, 黄德智, 翟滨, 安庆大. 固体杂多酸在生物质水解转化中的应用[J]. 化学进展, 2012, 24(0203): 433-444.