English
新闻公告
More
化学进展 2022, Vol. 34 Issue (5): 1026-1041 DOI: 10.7536/PC210501 前一篇   后一篇

• 综述 •

以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理

张明珏1,*(), 凡长坡1, 王龙1, 吴雪静1, 周瑜2, 王军2,*()   

  1. 1.东南大学成贤学院制药与化学化工学院 南京 210088
    2.南京工业大学化工学院 南京 210009
  • 收稿日期:2021-05-03 修回日期:2021-09-06 出版日期:2022-05-24 发布日期:2021-12-02
  • 通讯作者: 张明珏, 王军
  • 基金资助:
    国家自然科学基金项目(22072065); 国家自然科学基金项目(U1662107); 国家自然科学基金项目(21476109); 东南大学成贤学院青年教师科研发展基金(z0003)

Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants

Mingjue Zhang1(), Changpo Fan1, Long Wang1, Xuejing Wu1, Yu Zhou2, Jun Wang2()   

  1. 1. Department of Chemical and Pharmaceutical Engineering, Southeast University ChengXian College,Nanjing 210088, China
    2. College of Chemical Engineering, Nanjing Tech University,Nanjing 210009, China
  • Received:2021-05-03 Revised:2021-09-06 Online:2022-05-24 Published:2021-12-02
  • Contact: Mingjue Zhang, Jun Wang
  • Supported by:
    National Natural Science Foundation of China(22072065); National Natural Science Foundation of China(U1662107); National Natural Science Foundation of China(21476109); Youth Foundation of Southeast University ChengXian College(z0003)

C—H键的活化是有机合成中最重要的科学问题之一。以环境友好的双氧水或者氧气为氧化剂的苯羟基化制备苯酚的反应,不仅涉及苯环的$\text C_{\text s \text p^{2}}— \text H $活化这一基础问题,还涉及双氧水或氧气的活化,以及双氧水的分解、苯酚的深度氧化等副反应,几十年来一直是有机合成领域的一大挑战。更重要的是,在大力倡导绿色化工的背景之下,该反应愈加受到工业界的青睐,期望它能够取代异丙苯法成为苯酚生产的绿色新工艺。本文以苯羟基化制备苯酚的催化反应机理为线索,综述近年来金属基催化剂以及处于起步阶段的非金属催化剂的最新研究进展,着重从自由基机理和非自由基机理两个方面详细归纳分析催化剂的组成结构与其反应的活性和选择性之间的构效关系,并就该领域未来的发展动向及需要关注的问题给出了展望和建议,期望有助于深化对催化机理的认识,并为进一步研发更高活性和稳定性的苯羟基化催化剂提供有益借鉴。

Activation of C—H bond is one of the most important scientific topics in organic synthesis area. Hydroxylation of benzene to phenol with environmentally friendly oxidants like H2O2 and O2 is a challenge in this filed for tens of years, since it involves not only the fundamental issue of the $\text C_{\text s \text p^{2}}— \text H $ bond activation for benzene, but also other issues such as the activation of H2O2/O2, decomposition of H2O2, and deep oxidation of phenol product. More importantly, in the context of green chemical industry, this green process becomes more attractive due to the promising alternative to replace the current cumene route. In this review, recent researches on metal-based catalysts and newly emerging non-metal catalysts are summarized, clued by the catalytic reaction mechanism of hydroxylation of benzene to phenol. The structure-activity relationship between catalysts’ composition and structure with their reactive activity and selectivity is analyzed in detail based on radical and non-radical mechanisms. Outlook and suggestions on the further development of rational design of catalysts and deeper insights into reaction mechanism in this field are proposed. This review is hopefully to benefit the exploring of novel catalysts with higher activity and better stability for hydroxylation of benzene to phenol.

Contents

1 Introduction

2 Metal-based catalysts for hydroxylation of benzene

2.1 H2O2-mediated radical mechanism

2.2 H2O2-mediated non-radical mechanism

2.3 O2-mediated radical mechanism

2.4 O2-mediated non-radical mechanism

2.5 O2-mediated synergistic catalytic mechanism

3 Non-metal materials for catalyzing hydroxylation of benzene

3.1 Radical mechanism over carbon materials catalysts

3.2 Radical mechanism over polymers catalysts

4 Conclusion and outlook

()
表1 不同反应机理的苯羟基化反应金属基催化剂的活性对比
Table 1 Comparison of activities of metal-based catalysts for hydroxylation of benzene via different reaction mechanism
Mechanism Catalyst Reaction condition Activitya ref
H2O2-mediated
radical
NaVO3 C6H6 11.3 mmol, H2O2 19.4 mmol, catalyst 0.2 mmol, 25 ℃, 13 h Y 13.5%, S 94.0% 38
[Cu2(μ-OH)(6-hpa)](ClO4)3 C6H6 60 mmol, H2O2 120 mmol, catalyst 1 μmol,50 ℃, 40 h X 22.0%, S 95.2% 12
Fe(DS)3 C6H6 11.3 mmol, H2O2 11.3 mmol, catalyst 0.05 mmol,
50 ℃, 6 h
Y 54.0%, S 100% 40
[Dmim]2.5PMoV C6H6 10 mmol, H2O2 30 mmol, catalyst 100 mg, 70 ℃, 4 h Y 26.5%, S 100% 25
[C3CNpy]4HPMoV2 C6H6 10 mmol, H2O2 30 mmol, catalyst 100 mg, 60 ℃, 2 h Y 31.4%, S 95.8% 27
P-[DVB-VBIM]5PMoV2 C6H6 10 mmol, H2O2 30 mmol, catalyst 100 mg, 55 ℃, 6 h Y 23.7%, S 100% 41
[VO(acac)2]-
grafted PMO
C6H6 4 mmol, H2O2 12 mmol, catalyst 300 mg, 50 ℃, 8 h X 27.4%, S 100% 19
POM@OMP C6H6 6 mmol, H2O2 18 mmol, catalyst 50 mg, 80 ℃, 10 h Y 33.0%, S 100% 42
Cu2O-rGO C6H6 1 mmol, H2O2 2 mmol, catalyst 1 mg, 40 ℃, 12 h Y 21.2%, S 85.5% 22
FeOCl C6H6 10 mmol, H2O2 10 mmol, catalyst 100 mg, 60 ℃, 4 h Y 43.5%, S 100% 23
H2O2-mediated non-radical [Ni(tepa)]2+ C6H6 5 μmol, H2O2 2.5 mmol, catalyst 0.5 μmol, 60 ℃, 5 h Y 21.0%, S 91.3% 43
[Co(L3)Cl]Ph4B C6H6 5 mmol, H2O2 25 mmol, catalyst 5 μmol, 60 ℃, 5 h Y 29.0%, S 97.0% 44
Fe-N4 C6H6 4.5 mmol, H2O2 55 mmol, catalyst 50 mg, 30 ℃, 24 h Y 78.4%, S 100% 45
V-Si-ZSM-22 C6H6 5 mmol, H2O2 5 mmol, catalyst 100 mg, 80 ℃, 30 s Y 30.8%, S> 99% 13
O2-mediated
radical
VxOy@C-S C6H6 11.3 mmol, O2 3.0 MPa, catalyst 50 mg, ascorbic acid
0.8 g, 80 ℃, 4 h
Y 9.3%, S 96.0% 9
V/UiO-66-NH2 C6H6 11.3 mmol, O2 3.0 MPa, catalyst 50 mg, ascorbic acid
0.7 g, 60 ℃, 21 h
Y 22.0%, S 98.1% 46
VOC2O4-N-5 C6H6 11.3 mmol, O2 1.0 MPa, catalyst 100 mg, 150 ℃, 10 h X 4.2%, S 96.3% 47
O2-mediated non-radical H7PMo8V4O40 C6H6 2 mmol, Air 1.5 MPa, catalyst 55 mg, CO 0.5 MPa,
90 ℃, 15 h
Y 28.1%, S 59.3% 28
POM@MOF@SBA-15 C6H6 10 mmol, O2 2.0 MPa, catalyst 200 mg,ascorbic acid
0.9 g, 80 ℃, 20 min
Y 6.0%, S> 99% 48
PMoV@PCIF-1 C6H6 22.5 mmol, O2 2.0 MPa, catalyst 300 mg, ascorbic acid 0.8 g, 100 ℃, 10 h Y 12.0%, S 100% 49
PdII(bpym) C6H6 5.6 mmol, O2 2.0 MPa, catalyst 0.02 mmol,Al(OTf)3 0.04 mmol, 100 ℃, 16 h Y 3.7%, S 79.7% 31
H5PV2Mo10O40 C6H6 0.5 mmol, O2 1.0 MPa, catalyst 800 mg, 50% H2SO4
5 mL, 170 ℃, 6 h
X 65.0%, S 95.0% 50
O2-mediated synergistic catalysis HMS-HPA(V2)+
Pd(OAc)2
C6H6 22.5 mmol, O2 2.0 MPa, catalyst 500 mg+10 mg, LiOAc 0.2 g, 120 ℃, 10 h X 12.2%, S 75.6% 29
C3N4(580)+PMoV2 C6H6 45 mmol, O2 2.0 MPa, catalyst 100 mg+400 mg, LiOAc 0.6 g, 130 ℃, 4.5 h Y 13.6%, S 100% 26
g-C3N4+Ch5PMoV2 C6H6 5 mmol, O2 2.0 MPa, catalyst 12 mg+30 mg,LiOAc
0.06 g, 120 ℃, 4.5 h
Y 10.7%, S> 99% 51
SFNC(800)+Ch5PMoV2 C6H6 5 mmol, O2 2.0 MPa, catalyst 10 mg+30 mg,LiOAc
0.06 g, 120 ℃, 3 h
Y 11.2%, S> 99% 52
[DiBimCN]2HPMoV2
@NC580
C6H6 45 mmol, O2 2.2 MPa, catalyst 550 mg, LiOAc
0.6 g,140 ℃, 17 h
Y 10.5%, S 100% 53
FeC(5) C6H6 45 mmol, O2 2.2 MPa, catalyst 200 mg,LiOAc 0.6 g,
150 ℃, 30 h
Y 14.2%, S 100% 54
图1 H2O2为氧化剂的金属基催化剂催化苯羟基化反应的自由基反应机理
Fig. 1 Radical reaction mechanism catalyzed by metal-based catalysts for the hydroxylation of benzene to phenol with H2O2
图2 双核铜配合物活化H2O2和催化苯羟基化反应的自由基机理[12]
Fig. 2 Radical mechanism of H2O2 activation and benzene hydroxylation catalyzed by dicopper core[12]
图3 Cu2O-rGO催化的苯羟基化反应的自由基机理[22]
Fig. 3 Radical mechanism of benzene hydroxylation over the Cu2O-rGO catalyst[22]
图4 非均相FeOCl催化的苯羟基化的自由基机理[23]
Fig. 4 Illustration of benzene hydroxylation of radical mechanism using heterogeneous FeOCl[23]
图5 H2O2在过渡金属活化下产生羟基自由基的一般过程
Fig. 5 The general process for generation of hydroxyl radical from H2O2 activated by transition metal catalysts
图6 一种典型的双氧水为氧化剂的苯羟基化非自由基反应机理
Fig. 6 A typical non-radical reaction mechanism for hydroxylation of benzene with H2O2
图7 [NiⅡ(tepa)]2+引导的亲电取代氧化反应机理[43]
Fig. 7 Proposed catalytic mechanism of electrophilic substitution catalyzed by [NiⅡ(tepa)]2+[43]
图8 V-Si-ZSM-22催化剂的结构及其催化苯羟基化的反应路径[13]:(a)结构和反应机理;(b)物种D异裂后亲核氧化芳烃生成苯酚
Fig. 8 Structure and reaction path of V-Si-ZSM-22 in the hydroxylation of arenes[13]: (a) Structure and proposed reaction mechanism; (b) Heterolysis of species D and nucleophilic interaction with arene to produce phenol
图9 O2为氧化剂的苯羟基化反应的自由基反应机理: (a)过程中生成H2O2[1];(b)过程中未生成H2O2
Fig. 9 Radical mechanism for the hydroxylation of benzene with O2: (a) H2O2 is formed during the reaction[1]; (b) No H2O2 is formed during the reaction
图10 氧气为氧化剂的苯羟基化的超氧自由基机理[47]
Fig. 10 Superoxide radical mechanism for the hydroxylation of benzene with O2[47]
图11 牺牲性还原剂条件下的O2为氧化剂苯羟基化反应的反应机理
Fig. 11 Reaction mechanism for the hydroxylation of benzene with O2 under sacrificial reducing agent
图12 H5PV2Mo10O40在无牺牲性还原剂条件下氧化苯环生成苯酚的可能途径[50]
Fig. 12 Possible pathway for hydroxylation of benzene to phenol by H5PV2Mo10O40 in the absence of sacrificial reducing agent[50]
图13 C3N4-PMoV2催化液相氧气氧化苯制苯酚的双活性中心催化机理[26]
Fig. 13 Dual-catalysis mechanism for C3N4-PMoV2 catalyzed aerobic oxidation of benzene to phenol[26]
表2 非金属材料催化的苯羟基化反应活性对比
Table 2 Comparison of activities of non-metal catalysts for hydroxylation of benzene
图14 双氧水为氧化剂的CCG上的苯羟基化反应机理[11]
Fig. 14 The proposed mechanism of the oxidation of benzene with H2O2 on CCG[11]
图15 双氧水为氧化剂的活性炭催化苯羟基化反应路径[86]
Fig. 15 Reaction pathway for the hydroxylation of benzene over activated carbon with H2O2[86]
图16 氧气为氧化剂的NOCs碳材料催化苯羟基化的路径[72]
Fig. 16 Reaction pathway for NOCs carbon-catalyzed hydroxylation of benzene to phenol with O2[72]
附表 催化剂缩写的英文全称说明
Supplementary Table Abbreviation for catalyst and corresponding English full name
[1]
Wang W T, Yao M, Ma Y M, Zhang J. Progress in Chemistry, 2014, 26(10): 1665.
(王伟涛, 姚敏, 马养民, 张金. 化学进展, 2014, 26(10): 1665.)
[2]
Jiang T, Wang W T, Han B X. New J. Chem., 2013, 37(6): 1654.

doi: 10.1039/c3nj41163j     URL    
[3]
Zhang H B. Economic Analysis of Petroleum and Chemical Industry in China, 2017, (8): 57.
(张宏斌. 中国石油和化工经济分析, 2017, (8): 57.)
[4]
Jiang S Y, Kong Y, Wu C, Xu Z, Zhu H Y, Wang C Y, Wang J, Yan Q J. Chinese Journal of Catalysis, 2006, 27(5): 421.
(蒋斯扬, 孔岩, 吴丞, 徐铮, 朱海洋, 王春燕, 王军, 颜其洁. 催化学报, 2006, 27(5): 421.)
[5]
Zhang X F. Prog. Chem., 2008, 20(S1): 386.
(张雄福. 化学进展, 2008, 20(S1): 386.)
[6]
Chem F S, Yang T, Hu H N. Fine Chemicals, 2018, 35(9): 1535.
(陈福山, 杨涛, 胡华南. 精细化工, 2018, 35(9): 1535.)
[7]
Ren Y L, Mi Z T. Chemical Industry and Engineering Progress, 2002, 21(11): 827.
(任永利, 米镇涛. 化工进展, 2002, 21(11): 827.)
[8]
Wang W T, Li N, Shi L L, Ma Y M, Yang X F. Appl. Catal. A Gen., 2018, 553: 117.

doi: 10.1016/j.apcata.2018.01.005     URL    
[9]
Wang W T, Shi L L, Li N, Ma Y M. RSC Adv., 2017, 7(21): 12738.

doi: 10.1039/C6RA28768A     URL    
[10]
Zhao P P, Zhou Y, Liu Y Q, Wang J. Chin. J. Catal., 2013, 34(11): 2118.

doi: 10.1016/S1872-2067(12)60631-7     URL    
[11]
Yang J H, Sun G, Gao Y J, Zhao H B, Tang P, Tan J, Lu A H, Ma D. Energy Environ. Sci., 2013, 6(3): 793.

doi: 10.1039/c3ee23623d     URL    
[12]
Tsuji T, Zaoputra A A, Hitomi Y, Mieda K R, Ogura T, Shiota Y, Yoshizawa K, Sato H, Kodera M. Angew. Chem. Int. Ed., 2017, 56(27): 7779.

doi: 10.1002/anie.201702291     URL    
[13]
Zhou Y, Ma Z P, Tang J J, Yan N, Du Y H, Xi S B, Wang K, Zhang W, Wen H M, Wang J. Nat. Commun., 2018, 9: 2931.

doi: 10.1038/s41467-018-05351-w     pmid: 30050071
[14]
Acharyya S S, Ghosh S, Yoshida Y, Kaneko T, Sasaki T, Iwasawa Y. Chem. Rec., 2019, 19(9): 2069.

doi: 10.1002/tcr.201900023    
[15]
Lyu Y J, Qi T, Yang H Q, Hu C W. Catal. Sci. Technol., 2018, 8(1): 176.

doi: 10.1039/C7CY01648D     URL    
[16]
Ottenbacher R V, Talsi E P, Bryliakov K P. Appl. Organomet. Chem., 2020, 34(11): e5900.
[17]
Balducci L, Bianchi D, Bortolo R, D'Aloisio R, Ricci M, Tassinari R, Ungarelli R. Angew. Chem. Int. Ed., 2003, 42(40): 4937.

doi: 10.1002/anie.200352184     URL    
[18]
Han H L, Jiang T, Wu T B, Yang D X, Han B X. ChemCatChem, 2015, 7(21): 3526.

doi: 10.1002/cctc.201500639     URL    
[19]
Borah P, Ma X, Nguyen K T, Zhao Y L. Angew. Chem. Int. Ed., 2012, 51(31): 7756.

doi: 10.1002/anie.201203275     URL    
[20]
Ding G D, Wang W T, Jiang T, Han B X, Fan H L, Yang G Y. ChemCatChem, 2013, 5(1): 192.

doi: 10.1002/cctc.201200502     URL    
[21]
Farahmand S, Ghiaci M, Razavizadeh J S. Inorganica Chimica Acta, 2019, 484: 174.

doi: 10.1016/j.ica.2018.08.051    
[22]
Sun W, Gao L F, Zheng G X. Chem. Commun., 2019, 55(61): 8915.

doi: 10.1039/C9CC02906K     URL    
[23]
ElMetwally A E, Eshaq G, Yehia F Z, Al-Sabagh A M, Kegnæs S. ACS Catal., 2018, 8(11): 10668.

doi: 10.1021/acscatal.8b03590     URL    
[24]
Wang H F, Wang C Y, Zhao M, Yang Y F, Fang L P, Wang Y J. Chem. Eng. Sci., 2018, 177: 399.

doi: 10.1016/j.ces.2017.11.023     URL    
[25]
Leng Y, Wang J, Zhu D R, Shen L, Zhao P P, Zhang M J. Chem. Eng. J., 2011, 173(2): 620.

doi: 10.1016/j.cej.2011.08.013     URL    
[26]
Long Z Y, Zhou Y, Chen G J, Ge W L, Wang J. Sci. Rep., 2015, 4: 3651.

doi: 10.1038/srep03651     URL    
[27]
Zhao P P, Wang J, Chen G J, Zhou Y, Huang J. Catal. Sci. Technol., 2013, 3(5): 1394.

doi: 10.1039/c3cy20796j     URL    
[28]
Tani M, Sakamoto T, Mita S C, Sakaguchi S, Ishii Y. Angew. Chem. Int. Ed., 2005, 44(17): 2586.

doi: 10.1002/anie.200462769     URL    
[29]
Liu Y Y, Murata K, Inaba M. J. Mol. Catal. A Chem., 2006, 256(1/2): 247.

doi: 10.1016/j.molcata.2006.05.015     URL    
[30]
Mita S C, Sakamoto T, Yamada S, Sakaguchi S, Ishii Y. Tetrahedron Lett., 2005, 46(45): 7729.
[31]
Guo H J, Chen Z Q, Mei F M, Zhu D J, Xiong H, Yin G C. Chem. Asian J., 2013, 8(5): 888.

doi: 10.1002/asia.201300003     URL    
[32]
Murata K, Yanyong R, Inaba M. Catal. Lett., 2005, 102(3/4): 143.

doi: 10.1007/s10562-005-5846-6     URL    
[33]
Liu Y Y, Murata K, Inaba M. Catal. Commun., 2005, 6(10): 679.

doi: 10.1016/j.catcom.2005.06.015     URL    
[34]
Yuzawa H, Yoshida H. Chem. Commun., 2010, 46(46): 8854.

doi: 10.1039/c0cc03551c     URL    
[35]
Navalon S, Alvaro M, Garcia H. Appl. Catal. B Environ., 2010, 99(1/2): 1.

doi: 10.1016/j.apcatb.2010.07.006     URL    
[36]
Bokare A D, Choi W. J. Hazard. Mater., 2014, 275: 121.

doi: 10.1016/j.jhazmat.2014.04.054     pmid: 24857896
[37]
Niwa shu-ichi, Eswaramoorthy M, Nair J, Raj A, Itoh N, Shoji H, Namba T, Mizukami F. Science, 2002, 295(5552): 105.

doi: 10.1126/science.1066527     URL    
[38]
Jian M, Zhu L F, Wang J Y, Zhang J, Li G Y, Hu C W. J. Mol. Catal. A Chem., 2006, 253(1/2): 1.

doi: 10.1016/j.molcata.2006.02.054     URL    
[39]
Garcia-Bosch I, Siegler M A. Angew. Chem. Int. Ed., 2016, 55(41): 12873.

doi: 10.1002/anie.201607216     pmid: 27610603
[40]
Peng J J, Shi F, Gu Y L, Deng Y Q. Green Chem., 2003, 5(2): 224.

doi: 10.1039/b211239f     URL    
[41]
Zhao P P, Leng Y, Wang J. Chem. Eng. J., 2012, 204/206: 72.

doi: 10.1016/j.cej.2012.07.097     URL    
[42]
Leng Y, Jiang Y C, Peng H G, Zhang Z H, Liu M M, Jie K C, Zhang P F, Dai S. Catal. Sci. Technol., 2019, 9(9): 2173.

doi: 10.1039/c9cy00288j    
[43]
Morimoto Y, Bunno S, Fujieda N, Sugimoto H, Itoh S. J. Am. Chem. Soc., 2015, 137(18): 5867.

doi: 10.1021/jacs.5b01814     pmid: 25938800
[44]
Anandababu K, Muthuramalingam S, Velusamy M, Mayilmurugan R. Catal. Sci. Technol., 2020, 10(8): 2540.

doi: 10.1039/C9CY02601K     URL    
[45]
Pan Y, Chen Y J, Wu K L, Chen Z, Liu S J, Cao X, Cheong W C, Meng T, Luo J, Zheng L R, Liu C G, Wang D S, Peng Q, Li J, Chen C. Nat. Commun., 2019, 10: 4290.

doi: 10.1038/s41467-019-12362-8     URL    
[46]
Wang W T, Li N, Tang H, Ma Y M, Yang X F. Mol. Catal., 2018, 453: 113.
[47]
Luo G H, Lv X C, Wang X W, Yan S, Gao X H, Xu J, Ma H, Jiao Y J, Li F Y, Chen J Z. RSC Adv., 2015, 5(114): 94164.

doi: 10.1039/C5RA17287J     URL    
[48]
Yang H, Li J, Zhang H Y, Lv Y, Gao S. Microporous Mesoporous Mater., 2014, 195: 87.

doi: 10.1016/j.micromeso.2014.04.023     URL    
[49]
Chen G J, Zhou Y, Wang X C, Li J, Xue S, Liu Y Q, Wang Q, Wang J. Sci. Rep., 2015, 5: 11236.

doi: 10.1038/srep11236     URL    
[50]
Sarma B B, Carmieli R, Collauto A, Efremenko I, Martin J M L, Neumann R. ACS Catal., 2016, 6(10): 6403.

doi: 10.1021/acscatal.6b02083     URL    
[51]
Long Z Y, Chen G J, Liu S, Huang F M, Sun L M, Qin Z L, Wang Q, Zhou Y, Wang J. Chem. Eng. J., 2018, 334: 873.

doi: 10.1016/j.cej.2017.10.083     URL    
[52]
Long Z Y, Zhang Y D, Chen G J, Shang J, Zhou Y, Wang J, Sun L M. ACS Sustainable Chem. Eng., 2019, 7(4): 4230.

doi: 10.1021/acssuschemeng.8b05920     URL    
[53]
Cai X C, Wang Q, Liu Y Q, Xie J Y, Long Z Y, Zhou Y, Wang J. ACS Sustainable Chem. Eng., 2016, 4(9): 4986.

doi: 10.1021/acssuschemeng.6b01357     URL    
[54]
Qin Q, Liu Y Q, Shan W J, Hou W, Wang K, Ling X C, Zhou Y, Wang J. Ind. Eng. Chem. Res., 2017, 56(43): 12289.

doi: 10.1021/acs.iecr.7b02566     URL    
[55]
Leng Y, Ge H Q, Zhou C J, Wang J. Chem. Eng. J., 2008, 145(2): 335.

doi: 10.1016/j.cej.2008.08.015     URL    
[56]
Zhou C J, Ge H Q, Leng Y, Wang J. Chin. J. Catal., 2010, 31(6): 623.

doi: 10.1016/S1872-2067(09)60076-0     URL    
[57]
Leng Y, Liu J, Jiang P P, Wang J. Catal. Commun., 2013, 40: 84.

doi: 10.1016/j.catcom.2013.06.004     URL    
[58]
Long Z Y, Zhou Y, Chen G J, Zhao P P, Wang J. Chem. Eng. J., 2014, 239: 19.

doi: 10.1016/j.cej.2013.10.103     URL    
[59]
Khatri P K, Singh B, Jain S L, Sain B, Sinha A K. Chem. Commun., 2011, 47(5): 1610.

doi: 10.1039/C0CC01941K     URL    
[60]
Mimoun H, Saussine L, Daire E, Postel M, Fischer J, Weiss R. J. Am. Chem. Soc., 1983, 105(10): 3101.

doi: 10.1021/ja00348a025     URL    
[61]
Alekar N A, Indira V, Halligudi S B, Srinivas D, Gopinathan S, Gopinathan C. J. Mol. Catal. A Chem., 2000, 164(1/2): 181.

doi: 10.1016/S1381-1169(00)00374-5     URL    
[62]
Augusti R, Dias A O, Rocha L L, Lago R M. J. Phys. Chem. A, 1998, 102(52): 10723.

doi: 10.1021/jp983256o     URL    
[63]
Honda K, Cho J, Matsumoto T, Roh J, Furutachi H, Tosha T, Kubo M, Fujinami S, Ogura T, Kitagawa T, Suzuki M. Angew. Chem. Int. Ed., 2009, 48(18): 3304.

doi: 10.1002/anie.200900222     URL    
[64]
Zhou H, Zhao Y F, Gan J, Xu J, Wang Y, Lv H W, Fang S, Wang Z Y, Deng Z L, Wang X Q, Liu P G, Guo W X, Mao B Y, Wang H J, Yao T, Hong X, Wei S Q, Duan X Z, Luo J, Wu Y E. J. Am. Chem. Soc., 2020, 142(29): 12643.

doi: 10.1021/jacs.0c03415     URL    
[65]
Wu K L, Zhan F, Tu R Y, Cheong W C, Cheng Y S, Zheng L R, Yan W S, Zhang Q H, Chen Z, Chen C. Chem. Commun., 2020, 56(63): 8916.

doi: 10.1039/D0CC03620J     URL    
[66]
Zhu Y Q, Sun W M, Luo J, Chen W X, Cao T, Zheng L R, Dong J C, Zhang J, Zhang M L, Han Y H, Chen C, Peng Q, Wang D S, Li Y D. Nat. Commun., 2018, 9: 3861.

doi: 10.1038/s41467-018-06296-w     URL    
[67]
Roduner E, Kaim W, Sarkar B, Urlacher V B, Pleiss J, Gläser R, Einicke W D, Sprenger G A, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu S F, Plietker B, Laschat S. ChemCatChem, 2013, 5(1): 82.

doi: 10.1002/cctc.201200266     URL    
[68]
Wang W T, Ding G D, Jiang T, Zhang P, Wu T B, Han B X. Green Chem., 2013, 15(5): 1150.

doi: 10.1039/c3gc00084b     URL    
[69]
Laufer W, Niederer J, Hoelderich W. Adv. Synth. Catal., 2002, 344(10): 1084.

doi: 10.1002/1615-4169(200212)344:10【-逻*辑*与-】#x00026;lt;1084::AID-ADSC1084【-逻*辑*与-】#x00026;gt;3.0.CO;2-B     URL    
[70]
Sumimoto S, Tanaka C, Yamaguchi S T, Ichihashi Y, Nishiyama S, Tsuruya S. Ind. Eng. Chem. Res., 2006, 45(22): 7444.

doi: 10.1021/ie060743e     URL    
[71]
Guo C, Du W D, Chen G, Shi L, Sun Q. Catal. Commun., 2013, 37: 19.

doi: 10.1016/j.catcom.2013.03.018     URL    
[72]
Shan W J, Li S, Cai X C, Zhu J, Zhou Y, Wang J. ChemCatChem, 2018: 1076.
[73]
Shang S S, Chen B, Wang L Y, Dai W, Zhang Y, Gao S. RSC Adv., 2015, 5(40): 31965.

doi: 10.1039/C5RA04836B     URL    
[74]
Neumann R. Inorg. Chem., 2010, 49(8): 3594.

doi: 10.1021/ic9015383     pmid: 20380461
[75]
Khenkin A M, Weiner L, Wang Y, Neumann R. J. Am. Chem. Soc., 2001, 123(35): 8531.

pmid: 11525661
[76]
Sakamoto T, Takagaki T, Sakakura A, Obora Y, Sakaguchi S, Ishii Y. J. Mol. Catal. A Chem., 2008, 288(1/2): 19.

doi: 10.1016/j.molcata.2008.04.002     URL    
[77]
Long Z Y, Liu Y Q, Zhao P P, Wang Q, Zhou Y, Wang J. Catal. Commun., 2015, 59: 1.

doi: 10.1016/j.catcom.2014.09.031     URL    
[78]
Farahmand S, Ghiaci M, Vatanparast M, Razavizadeh J S. New J. Chem., 2020, 44(18): 7517.

doi: 10.1039/D0NJ00928H     URL    
[79]
Zhang M J, Zhao P P, Leng Y, Chen G J, Wang J, Huang J. Chem. Eur. J., 2012, 18(40): 12773.

doi: 10.1002/chem.201201338     URL    
[80]
Gong Y Q, Zhong H, Liu W H, Zhang B B, Hu S Q, Wang R H. ACS Appl. Mater. Interfaces, 2018, 10(1): 776.

doi: 10.1021/acsami.7b16794     URL    
[81]
Wang Q, Hou W, Li S, Xie J Y, Li J, Zhou Y, Wang J. Green Chem., 2017, 19(16): 3820.

doi: 10.1039/C7GC01116D     URL    
[82]
Zhang J, Liu X, Blume R, Zhang A H, Schlögl R, Su D S. Science, 2008, 322(5898): 73.

doi: 10.1126/science.1161916     pmid: 18832641
[83]
Song S Q, Yang H X, Rao R C, Liu H D, Zhang A M. Catal. Commun., 2010, 11(8): 783.

doi: 10.1016/j.catcom.2010.02.015     URL    
[84]
Wen G D, Wu S C, Li B, Dai C L, Su D S. Angew. Chem. Int. Ed., 2015, 54(13): 4105.

doi: 10.1002/anie.201410093     URL    
[85]
Wei Q H, Fan H L, Qin F F, Ma Q X, Shen W Z. Carbon, 2018, 133: 6.

doi: 10.1016/j.carbon.2018.03.009     URL    
[86]
Xu J Q, Liu H H, Yang R G, Li G Y, Hu C W. Chin. J. Catal., 2012, 33(9/10): 1622.

doi: 10.1016/S1872-2067(11)60444-0     URL    
[87]
Zhu J, Li G Q, Wang Q, Zhou Y, Wang J. Ind. Eng. Chem. Res., 2019, 58(44): 20226.

doi: 10.1021/acs.iecr.9b03889     URL    
[88]
Wang W T, Tang H, Jiang X L, Huang F E, Ma Y M. Chem. Commun., 2019, 55(54): 7772.

doi: 10.1039/C9CC03623G     URL    
[89]
Su C L, Acik M, Takai K, Lu J, Hao S J, Zheng Y, Wu P P, Bao Q L, Enoki T, Chabal Y J, Ping Loh K. Nat. Commun., 2012, 3: 1298.

doi: 10.1038/ncomms2315     URL    
[90]
Yu H, Peng F, Tan J, Hu X W, Wang H J, Yang J, Zheng W X. Angew. Chem., 2011, 123(17): 4064.

doi: 10.1002/ange.201007932     URL    
[91]
Gao Y J, Chen X, Zhang J G, Yan N. ChemPlusChem, 2015, 80(10): 1556.

doi: 10.1002/cplu.201500293     URL    
[92]
Radovic L R, Salgado-Casanova A J A. Carbon, 2018, 126: 443.

doi: 10.1016/j.carbon.2017.10.024     URL    
[93]
Walpen N, Getzinger G J, Schroth M H, Sander M. Environ. Sci. Technol., 2018, 52(9): 5236.

doi: 10.1021/acs.est.8b00594     URL    
[94]
Su D S, Wen G D, Wu S C, Peng F, Schlögl R. Angew. Chem. Int. Ed., 2017, 56(4): 936.

doi: 10.1002/anie.201600906     URL    
[95]
Nguyen C V, Liao Y T, Kang T C, Chen J E, Yoshikawa T, Nakasaka Y, Masuda T, Wu K C W. Green Chem., 2016, 18(22): 5957.

doi: 10.1039/C6GC02118B     URL    
[96]
Patel M A, Luo F X, Khoshi M R, Rabie E, Zhang Q, Flach C R, Mendelsohn R, Garfunkel E, Szostak M, He H X. ACS Nano, 2016, 10(2): 2305.

doi: 10.1021/acsnano.5b07054     URL    
[97]
Hu X B, Zhou Z, Lin Q X, Wu Y T, Zhang Z B. Chem. Phys. Lett., 2011, 503(4/6): 287.

doi: 10.1016/j.cplett.2011.01.045     URL    
[98]
Guo X L, Qi W, Liu W, Yan P Q, Li F, Liang C H, Su D S. ACS Catal., 2017, 7(2): 1424.

doi: 10.1021/acscatal.6b02936     URL    
[99]
Qi W, Liu W, Zhang B S, Gu X M, Guo X L, Su D S. Angew. Chem. Int. Ed., 2013, 52(52): 14224.

doi: 10.1002/anie.201306825     URL    
[100]
Zhang J, Su D S, Zhang A H, Wang D, Schlögl R, Hébert C. Angew. Chem. Int. Ed., 2007, 46(38): 7319.

doi: 10.1002/anie.200702466     URL    
[101]
Silveira-Dorta G, Monzón D M, Crisóstomo F P, Martín T, Martín V S, Carrillo R. Chem. Commun., 2015, 51(32): 7027.

doi: 10.1039/C5CC01519G     URL    
[1] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[4] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[5] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[6] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[7] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[8] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[9] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[10] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[11] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[12] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[13] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[14] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[15] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.