English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 846-856 DOI: 10.7536/PC210445 前一篇   后一篇

• 综述 •

纳米零价铁去除水体中砷的效能与机理

李美蓉1,2, 唐晨柳1,2, 张伟贤1,2, 凌岚1,2,*()   

  1. 1 同济大学环境科学与工程学院 上海 200092
    2 污染控制与资源化研究国家重点实验室 上海 200092
  • 收稿日期:2021-04-25 修回日期:2021-08-03 出版日期:2022-04-24 发布日期:2021-12-02
  • 通讯作者: 凌岚
  • 基金资助:
    国家自然科学优秀青年基金项目(21822607); 国家自然科学基金项目(22176147); 同济大学青年百人项目(22120200178)

Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron

Meirong Li1,2, Chenliu Tang1,2, Weixian Zhang1,2, Lan Ling1,2()   

  1. 1 College of Environmental Science and Engineering, Tongji University,Shanghai 200092, China
    2 State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, China
  • Received:2021-04-25 Revised:2021-08-03 Online:2022-04-24 Published:2021-12-02
  • Contact: Lan Ling
  • Supported by:
    National Science Fund for Excellent Young Scholars(21822607); National Natural Science Foundation of China(22176147); 100 Talents Program of Tongji University(22120200178)

全球超过一亿人受到高毒性、难处理的砷污染引发的饮用水安全的威胁,解决砷污染问题迫在眉睫而又任重道远。纳米零价铁(nZVI)能高效去除重(类)金属、硝酸盐、磷酸盐、高氯酸盐、卤代物、多环芳烃、偶氮染料和苯酚等污染物,成为广泛应用的工程纳米材料之一,在全球已有近60例的环境原位修复和废水处理工程案例。其独特的纳米级核壳结构和表面性质使其能够通过吸附、还原和沉淀等多种作用高效去砷。本文综述了近年来nZVI及其改性材料去除水中砷的研究进展,探讨了nZVI去除水中As(Ⅲ)和As(Ⅴ)的反应机理,归纳了不同反应条件(初始pH值、反应时间、nZVI投加量、砷初始浓度、共存离子和有机质)对去除效果的影响,总结了nZVI改性材料(多孔材料负载改性nZVI、金属掺杂改性nZVI、表面稳定剂改性nZVI和绿色合成nZVI)对砷的去除效率,展望了纳米零价铁去除砷的发展方向和所面临的挑战。

Over 100 million people around the world are at the risk of the drinking arsenic-contaminated water. It is urgent to solve this severe security issue of drinking water caused by arsenic which is highly toxic and difficult to dispose of. Nanoscale zero-valent iron (nZVI) is one of the most extensively applied nanomaterials due to its efficient removal of pollutants such as, heavy metals, nitrates, phosphates, perchlorates, halides, polycyclic aromatic hydrocarbons and phenols. nZVI-based remediation has grown into a prominent sub-field of environmental nanotechnology, with nearly 60 in-situ remediation projects, pilot and full-scale wastewater treatment projects conducted worldwide. Its unique core-shell structure and surface properties enable nZVI to remove arsenic efficiently through adsorption, co-precipitation and reduction process. Herein, the latest progress of nZVI and various nZVI-based materials for arsenic contaminated water remediation is reviewed. The removal behavior and its influence by initial solution pH, contact time, dosage of nZVI, arsenic initial concentration, coexisting ions and organic matters are presented, with special emphasis on the removal mechanism. The iron oxide/hydroxide on the surface of nZVI rapidly adsorbs the arsenic in the solution and transforms to arsenic-iron co-precipitation. If the As solution is deoxygenated, reduction of As(Ⅲ) and As(Ⅴ) to As(0) occur during the adsorbed arsenic diffuse into the iron oxide. In addition, the research progress of four kinds of nZVI-based materials for arsenic removal are summarized, including nZVI supported with porous materials, rare metals loaded nZVI, nZVI surface modified with stabilizer and green synthesis nZVI. Finally, possible improvement of remediating arsenic contaminated water with nZVI and nZVI-based materials are also proposed.

Contents

1 Introduction

2 Aqueous arsenic removal with nanoscale zero-valent iron

2.1 Nanoscale zero-valent iron

2.2 Removal mechanism of aqueous arsenic with nZVI

2.3 Influencing factors of removal efficiency

3 Aqueous arsenic removal with nZVI-based materials

3.1 nZVI supported with porous materials

3.2 Metal loaded nZVI

3.3 Surface stabilizers modified nZVI

3.4 Green synthesis nZVI

4 Conclusion and outlook

()
图1 中国已知和潜在的受砷污染影响的地区[2]
Fig. 1 Location of known and potential arsenic-affected basins in China[2]. Copyright 2013, American Association for the Advancement of Science
图2 (a) 与As(Ⅴ)反应后的nZVI的原子分辨率扫描透射电镜高角环形暗场像[28];(b) 与As(Ⅴ)反应后的nZVI的原子分辨率扫描透射电镜明场像[28];(c) 无氧条件下nZVI与As(Ⅴ)的反应机理图[28];(d) 无氧条件下nZVI与As(Ⅲ)的反应机理图[44];(e) As在nZVI上的分布图[50]
Fig. 2 (a) Atomic-resolution STEM HAADF image of spent nZVI[28]; (b) atomic-resolution STEM BF image of spent nZVI[28]; (c) schematic diagram summarizing processes responsible for arsenic removal in the As(Ⅴ)-nZVI system in anoxic conditions[28]; Copyright 2017, American Chemical Society. (d) Schematic diagram of As(Ⅲ) removal with nZVI in anoxic conditions[44]; copyright 2012, American Chemical Society. (e) Schematic illustrations of depth distribution of arsenic species in nZVI[50]. Copyright 2010,The Royal Society of Chemistry
图3 (a) nZVI与As(Ⅴ)反应后STEM-XEDS 元素面分布图[51];(b) As(Ⅴ)和nZVI反应48 h后产物的三维重构模型[28]
Fig. 3 (a) STEM-XEDS images of spent nZVI after reaction with As(Ⅴ)[51]. Copyright 2017, American Chemical Society. (b) 3D chemical mapping of spent nZVI after reaction with arsenate[28]. Copyright 2017, American Chemical Society
图4 As-O-H体系Eh-pH图[52]
Fig. 4 Eh-pH diagram for the system As-O-H at 25℃ and 1 bar. Gray shaded area denotes the solid phase[52]. Copyright 2011, Springer
图5 nZVI的改性方法: (a) 多孔材料负载改性nZVI;(b) 金属掺杂改性nZVI;(c) 表面稳定剂改性nZVI;(d) 绿色合成nZVI
Fig. 5 Diagram of nZVI modification methods. (a) Porous materials supported nZVI; (b) metal loaded nZVI; (c) surface stabilizers modified nZVI; (d) green synthesis nZVI
图6 (a) Ac[66],(b) nZVI/AC[66],(c) nZVI/rGOs的扫描电子显微镜图[68];(d) nZVI/rGOs的透射电镜图[68];(e) Pd-nZVI的STEM二次电子像[75];(f) Pd-nZVI的STEM明场像[75];(g) Pd-nZVI的STEM高角环形暗场像[75];(h) PVA-nZVI的扫描电子显微镜图[81];(i), (j) 绿茶绿色合成nZVI(GT-Fe NPs)的透射电子显微镜图[87];(k) GT-Fe NPs的XEDS谱图[87]
Fig. 6 (a) SEM image of AC[66]; (b) SEM image of nZVI/AC[66]; Copyright 2014, Elsevier. (c) SEM image of nZVI/rGOs[68]; (d) TEM image of nZVI/rGOs[68]; Copyright 2019, Elsevier. (e) Secondary electron (SE) image of Pd-nZVI[75]; (f) BF image of Pd-nZVI[75]; (g) HAADF image of Pd-nZVI[75]; Copyright 2014, The Royal Society of Chemistry.(h) SEM image of PVA-nZVI[81]; Copyright 2014, Elsevier. (i), (j) TEM images of GT-Fe NP[87]; (k) XEDS spectrum of GT-Fe NPs[87]; Copyright 2010, Elsevier
[1]
Guo G L, Zhou Q X, Ma L Q. Environ. Monit. Assess., 2006, 116(1/3): 513.

doi: 10.1007/s10661-006-7668-4     URL    
[2]
Rodríguez-Lado L, Sun G F, Berg M, Zhang Q, Xue H B, Zheng Q M, Johnson C A. Science, 2013, 341(6148): 866.

doi: 10.1126/science.1237484     pmid: 23970694
[3]
Smedley P L, Kinniburgh D G. Appl. Geochem., 2002, 17(5): 517.

doi: 10.1016/S0883-2927(02)00018-5     URL    
[4]
Vahidnia A, van der Voet G B, de Wolff F A. Hum. Exp. Toxicol., 2007, 26(10): 823.

pmid: 18025055
[5]
Han C Y, Li H Y, Pu H P, Yu H L, Deng L, Huang S, Luo Y M. Chem. Eng. J., 2013, 217: 1.

doi: 10.1016/j.cej.2012.11.087     URL    
[6]
Andrianisa H A, Ito A, Sasaki A, Aizawa J, Umita T. Water Res., 2008, 42(19): 4809.

doi: 10.1016/j.watres.2008.08.027     URL    
[7]
Donia A M, Atia A A, Mabrouk D H. J. Hazard. Mater., 2011, 191(1/3): 1.

doi: 10.1016/j.jhazmat.2011.01.056     URL    
[8]
Figoli A, Cassano A, Criscuoli A, Mozumder M S I, Uddin M T, Islam M A, Drioli E. Water Res., 2010, 44(1): 97.

doi: 10.1016/j.watres.2009.09.007     URL    
[9]
Singh R, Singh S, Parihar P, Singh V P, Prasad S M. Ecotoxicol. Environ. Saf., 2015, 112: 247.

doi: 10.1016/j.ecoenv.2014.10.009     URL    
[10]
Yamani J S, Lounsbury A W, Zimmerman J B. Water Res., 2016, 88: 889.

doi: 10.1016/j.watres.2015.11.017     URL    
[11]
Kang M, Kawasaki M, Tamada S, Kamei T, Magara Y. Desalination, 2000, 131(1/3): 293.

doi: 10.1016/S0011-9164(00)90027-4     URL    
[12]
Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50(14): 7290.

doi: 10.1021/acs.est.6b01897     URL    
[13]
Wang Y L, Lin D H. Progress in Chemistry, 2017, 29(9): 1072.
(王艳龙, 林道辉. 化学进展, 2017, 29(9): 1072.).

doi: 10.7536/PC170526    
[14]
Wang W. Doctor Dissertation of Tongji University, 2016.
(王伟. 同济大学博士论文, 2016.).
[15]
Karn B, Kuiken T, Otto M. Environ. Heal. Perspect., 2009, 117(12): 1813.

doi: 10.1289/ehp.0900793     URL    
[16]
Yan W L, Lien H L, Koel B E, Zhang W X. Environ. Sci.: Processes Impacts, 2013, 15(1): 63.
[17]
Fan J, Guo Y H, Wang J J, Fan M H. J. Hazard. Mater., 2009, 166(2/3): 904.

doi: 10.1016/j.jhazmat.2008.11.091     URL    
[18]
Li X Q, Zhang W X. Langmuir, 2006, 22(10): 4638.

doi: 10.1021/la060057k     URL    
[19]
Keenan C R, Sedlak D L. Environ. Sci. Technol., 2008, 42(4): 1262.

doi: 10.1021/es7025664     URL    
[20]
Lee H, Lee H J, Kim H E, Kweon J, Lee B D, Lee C H. J. Hazard. Mater., 2014, 265: 201.

doi: 10.1016/j.jhazmat.2013.11.066     URL    
[21]
Li S L, Yan W L, Zhang W X. Green Chem., 2009, 11(10): 1618.

doi: 10.1039/b913056j     URL    
[22]
Crane R A, Dickinson M, Popescu I C, Scott T B. Water Res., 2011, 45(9): 2931.

doi: 10.1016/j.watres.2011.03.012     pmid: 21470652
[23]
Karlsson M N A, Deppert K, Wacaser B A, Karlsson L S, Malm J O. Appl. Phys. A, 2005, 80(7): 1579.

doi: 10.1007/s00339-004-2987-1     URL    
[24]
Yoo B Y, Hernandez S C, Koo B, Rheem Y, Myung N V. Water Sci. Technol., 2007, 55(1/2): 149.
[25]
Lawrinenko M, Wang Z J, Horton R, Mendivelso-Perez D, Smith E A, Webster T E, Laird D A, van Leeuwen J H. ACS Sustainable Chem. Eng., 2017, 5(2): 1586.

doi: 10.1021/acssuschemeng.6b02375     URL    
[26]
Wang C B, Zhang W X. Environ. Sci. Technol., 1997, 31(7): 2154.

doi: 10.1021/es970039c     URL    
[27]
Huang X Y, Wang W, Ling L, Zhang W X. Acta Chim. Sinica, 2017, 75(6): 529.

doi: 10.6023/A17020051     URL    
(黄潇月, 王伟, 凌岚, 张伟贤. 化学学报, 2017, 75(6): 529.).

doi: 10.6023/A17020051    
[28]
Ling L, Zhang W X. Environ. Sci. Technol., 2017, 51(4): 2288.

doi: 10.1021/acs.est.6b04315     pmid: 28081365
[29]
Liu A R, Zhang W X. Anal., 2014, 139(18): 4512.

doi: 10.1039/C4AN00679H     URL    
[30]
Wang C M, Baer D R, Amonette J E, Engelhard M H, Antony J, Qiang Y. J. Am. Chem. Soc., 2009, 131(25): 8824.

doi: 10.1021/ja900353f     URL    
[31]
Ling L, Zhang W X. Environ. Sci. Technol. Lett., 2014, 1(7): 305.

doi: 10.1021/ez5001512     URL    
[32]
Mondal K, Jegadeesan G, Lalvani S B. Ind. Eng. Chem. Res., 2004, 43(16): 4922.

doi: 10.1021/ie030715l     URL    
[33]
Yong X J, Guan C, Zhang H, Jin Z W, Yao M. Environ. Eng., 2020, 38: 14.
(雍晓静, 关翀, 张昊, 金政伟, 姚敏. 环境工程, 2020, 38: 14.).
[34]
Zhang X X, Xia X F, Zhou W, Liu A R. Environmental Science and Technology, 2016, 39: 60.
( 张茜茜, 夏雪芬, 周文, 刘爱荣. 环境科学与技术, 2016, 39: 60.).
[35]
Kanel S R, Manning B, Charlet L, Choi H. Environ. Sci. Technol., 2005, 39(5): 1291.

doi: 10.1021/es048991u     URL    
[36]
Kanel S R, Grenèche J M, Choi H. Environ. Sci. Technol., 2006, 40(6): 2045.

doi: 10.1021/es0520924     URL    
[37]
Jegadeesan G, Mondal K, Lalvani S B. Environ. Prog., 2005, 24(3): 289.

doi: 10.1002/ep.10072     URL    
[38]
Fendorf S, Eick M J, Grossl P, Sparks D L. Environ. Sci. Technol., 1997, 31(2): 315.

doi: 10.1021/es950653t     URL    
[39]
Xia X F, Hua Y L, Huang X Y, Ling L, Zhang W X. Acta Chim. Sinica, 2017, 75(6): 594.

doi: 10.6023/A17030099     URL    
(夏雪芬, 滑熠龙, 黄潇月, 凌岚, 张伟贤. 化学学报, 2017, 75(6): 594.).

doi: 10.6023/A17030099    
[40]
Grossl P R, Eick M, Sparks D L, Goldberg S, Ainsworth C C. Environ. Sci. Technol., 1997, 31(2): 321.

doi: 10.1021/es950654l     URL    
[41]
Xia X F, Ling L, Zhang W X. Chemosphere, 2017, 168: 1597.

doi: 10.1016/j.chemosphere.2016.11.150     URL    
[42]
Manning B A, Hunt M L, Amrhein C, Yarmoff J A. Environ. Sci. Technol., 2002, 36(24): 5455.

pmid: 12521175
[43]
Su C M, Puls R W. Environ. Sci. Technol., 2001, 35(7): 1487.

pmid: 11348091
[44]
Yan W L, Ramos M A V, Koel B E, Zhang W X. J. Phys. Chem. C, 2012, 116(9): 5303.

doi: 10.1021/jp208600n     URL    
[45]
Ramos M A V, Yan W L, Li X Q, Koel B E, Zhang W X. J. Phys. Chem. C, 2009, 113(33): 14591.

doi: 10.1021/jp9051837     URL    
[46]
Ona-Nguema G, Morin G, Wang Y H, Foster A L, Juillot F, Calas G, Brown G E Jr. Environ. Sci. Technol., 2010, 44(14): 5416.

doi: 10.1021/es1000616     pmid: 20666402
[47]
Tu ček J, Prucek R, Kolařík J, Zoppellaro G, Petr M, Filip J, Sharma V K, Zbořil R. ACS Sustainable Chem. Eng., 2017, 5(4): 3027.

doi: 10.1021/acssuschemeng.6b02698     URL    
[48]
Nurmi J T, Tratnyek P G, Sarathy V, Baer D R, Amonette J E, Pecher K, Wang C M, Linehan J C, Matson D W, Penn R L, Driessen M D. Environ. Sci. Technol., 2005, 39(5): 1221.

doi: 10.1021/es049190u     URL    
[49]
Yan W L, Vasic R, Frenkel A I, Koel B E. Environ. Sci. Technol., 2012, 46(13): 7018.

doi: 10.1021/es2039695     URL    
[50]
Yan W L, Ramos M A V, Koel B E, Zhang W X. Chem. Commun., 2010, 46(37): 6995.

doi: 10.1039/c0cc02311f     URL    
[51]
Ling L, Huang X Y, Li M R, Zhang W X. Environ. Sci. Technol., 2017, 51(24): 14293.

doi: 10.1021/acs.est.7b02233     pmid: 29149555
[52]
Lu P, Zhu C. Environ. Earth Sci., 2011, 62: 1673.

doi: 10.1007/s12665-010-0652-x     URL    
[53]
Kartinen E O Jr, Martin C J. Desalination, 1995, 103(1/2): 79.

doi: 10.1016/0011-9164(95)00089-5     URL    
[54]
Wu C, Tu J W, Liu W Z, Zhang J, Chu S Q, Lu G N, Lin Z, Dang Z. Environ. Sci.: Nano, 2017, 4(7): 1544.
[55]
Wang Y, Sun L, Han T, Si Y B, Wang R F. J. Soils Sediments, 2016, 16(2): 486.

doi: 10.1007/s11368-015-1230-3     URL    
[56]
Su C M, Puls R W. Environ. Sci. Technol., 2001, 35(22): 4562.

pmid: 11757617
[57]
Radu T, Subacz J L, Phillippi J M, Barnett M O. Environ. Sci. Technol., 2005, 39(20): 7875.

doi: 10.1021/es050481s     URL    
[58]
Cheng Z Q, van Geen A, Louis R, Nikolaidis N, Bailey R. Environ. Sci. Technol., 2005, 39(19): 7662.

doi: 10.1021/es050429w     URL    
[59]
Morgada M E, Levy I K, Salomone V, Farías S S, LÓpez G, Litter M I. Catal. Today, 2009, 143(3/4): 261.

doi: 10.1016/j.cattod.2008.09.038     URL    
[60]
Giasuddin A B M, Kanel S R, Choi H. Environ. Sci. Technol., 2007, 41(6): 2022.

pmid: 17410800
[61]
Jiemvarangkul P, Zhang W X, Lien H L. Chem. Eng. J., 2011, 170(2/3): 482.

doi: 10.1016/j.cej.2011.02.065     URL    
[62]
Phenrat T, Saleh N, Sirk K, Tilton R D, Lowry G V. Environ. Sci. Technol., 2007, 41(1): 284.

doi: 10.1021/es061349a     URL    
[63]
Greenlee L F, Torrey J D, Amaro R L, Shaw J M. Environ. Sci. Technol., 2012, 46(23): 12913.

doi: 10.1021/es303037k     pmid: 23130994
[64]
Sikder M T, Kubota R, Akter M, Rahman M M, Hossain K F B, Rahaman M S, Banik S, Hosokawa T, Saito T, Kurasaki M. Desalination Water Treatment, 2019, 145: 202.

doi: 10.5004/dwt.2019.23660     URL    
[65]
Bhowmick S, Chakraborty S, Mondal P, van Renterghem W, van den Berghe S, Roman-Ross G, Chatterjee D, Iglesias M. Chem. Eng. J., 2014, 243: 14.

doi: 10.1016/j.cej.2013.12.049     URL    
[66]
Sun Y B, Ding C C, Cheng W C, Wang X K. J. Hazard. Mater., 2014, 280: 399.

doi: 10.1016/j.jhazmat.2014.08.023     URL    
[67]
Wang S C, Song Y D, Sun Y K. Progress in Chemistry, 2019, 31(2/3): 422.
(王舒畅, 宋亚丹, 孙远奎. 化学进展, 2019, 31(2/3): 422.).

doi: 10.7536/PC180726    
[68]
Liu X, Lai D, Wang Y. J. Hazard. Mater., 2019, 361: 37.

doi: 10.1016/j.jhazmat.2018.08.082     URL    
[69]
Zhu H J, Jia Y F, Wu X, Wang H. J. Hazard. Mater., 2009, 172(2/3): 1591.

doi: 10.1016/j.jhazmat.2009.08.031     URL    
[70]
Liu M H, Wang Y H, Chen L T, Zhang Y, Lin Z. ACS Appl. Mater. Interfaces, 2015, 7(15): 7961.

doi: 10.1021/am509184e     URL    
[71]
Xiao J N, Gao B Y, Yue Q Y, Gao Y, Li Q. Chem. Eng. J., 2015, 262: 1226.

doi: 10.1016/j.cej.2014.10.080     URL    
[72]
Sheng J, Fu H Y, Wang W, Zhang W X, Ling L. Environmental Chemistry, 2020, 39: 2959.
(盛杰, 傅浩洋, 王伟, 张伟贤, 凌岚. 环境化学, 2020, 39: 2959.).
[73]
Wang C, Luo H J, Zhang Z L, Wu Y, Zhang J, Chen S W. J. Hazard. Mater., 2014, 268: 124.

doi: 10.1016/j.jhazmat.2014.01.009     pmid: 24480523
[74]
Chen C H, Xu J, Yang Z H, Zhang L, Cao C H, Xu Z H, Liu J Y. Appl. Surf. Sci., 2017, 425: 423.

doi: 10.1016/j.apsusc.2017.07.049     URL    
[75]
Ling L, Zhang W X. RSC Adv., 2014, 4(64): 33861.

doi: 10.1039/C4RA04311A     URL    
[76]
Alonso F, Beletskaya I P, Yus M. Chem. Rev., 2002, 102(11): 4009.

doi: 10.1021/cr0102967     URL    
[77]
Chun C L, Baer D R, Matson D W, Amonette J E, Penn R L. Environ. Sci. Technol., 2010, 44(13): 5079.

doi: 10.1021/es903278e     URL    
[78]
Zhang W X, Wang C B, Lien H L. Catal. Today, 1998, 40(4): 387.

doi: 10.1016/S0920-5861(98)00067-4     URL    
[79]
Babaee Y, Mulligan C N, Rahaman M S. J. Chem. Technol. Biotechnol., 2018, 93(1): 63.
[80]
Sepúlveda P, Rubio M A, Baltazar S E, Rojas-Nunez J, Sánchez Llamazares J L, Garcia A G, Arancibia-Miranda N. J. Colloid Interface Sci., 2018, 524: 177.

doi: 10.1016/j.jcis.2018.03.113     URL    
[81]
Zhao X Q, Dou X M, Mohan D, Pittman C U Jr, Ok Y S, Jin X. Chem. Eng. J., 2014, 247: 250.

doi: 10.1016/j.cej.2014.02.096     URL    
[82]
Kanel S R, Goswami R R, Clement T P, Barnett M O, Zhao D. Environ. Sci. Technol., 2008, 42(3): 896.

pmid: 18323119
[83]
Suguna M, Kumar N S, Sreenivasulu V, Krishnaiah A. Sep. Sci. Technol., 2014, 49(10): 1613.

doi: 10.1080/01496395.2014.901361     URL    
[84]
Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T, Wang X K. Environ. Sci. Technol., 2016, 50(14): 7290.

doi: 10.1021/acs.est.6b01897     URL    
[85]
Azzam A M, Shenashen M A, Selim M M, Yamaguchi H, El-Sewify I M, Kawada S, Alhamid A A, El-Safty S A. J. Phys. Chem. Solids, 2017, 109: 78.

doi: 10.1016/j.jpcs.2017.05.017     URL    
[86]
Kim K R, Lee B T, Kim K W. J. Geochem. Explor., 2012, 113: 124.

doi: 10.1016/j.gexplo.2011.07.002     URL    
[87]
Shahwan T, Sirriah S A, Nairat M, Boyacı E, Eroğlu A E, Scott T B, Hallam K R. Chem. Eng. J., 2011, 172(1): 258.

doi: 10.1016/j.cej.2011.05.103     URL    
[88]
Chrysochoou M, Johnston C P, Dahal G. J. Hazard. Mater., 2012, 201/202: 33.

doi: 10.1016/j.jhazmat.2011.11.003     URL    
[89]
Nadagouda M N, Castle A B, Murdock R C, Hussain S M, Varma R S. Green Chem., 2010, 12(1): 114.

doi: 10.1039/B921203P     URL    
[90]
Poguberović S S, Krčmar D M, Maletić S P, Kónya Z, Pilipović D D T, Kerkez D V, Rončević S D. Ecol. Eng., 2016, 90: 42.

doi: 10.1016/j.ecoleng.2016.01.083     URL    
[1] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[2] 王艳龙, 林道辉*. 纳米零价铁与土壤组分的相互作用及其环境效应[J]. 化学进展, 2017, 29(9): 1072-1081.
[3] 朱瑾, 楼子墨, 王卓行, 徐新华. 铁锰氧化物/碳基复合材料的制备及其对水中砷的去除[J]. 化学进展, 2014, 26(09): 1551-1561.
[4] 邱心泓 方战强. 修饰型纳米零价铁降解有机卤化物的研究*[J]. 化学进展, 2010, 22(0203): 291-297.
[5] 杨楠,孙红哲. 砷、锑、铋类药物的应用历史和现状[J]. 化学进展, 2009, 21(05): 856-865.
[6] 苑春刚,X.Chris Le. 砷形态分析[J]. 化学进展, 2009, 21(0203): 467-473.
[7] 胡立刚,蔡勇. 砷的生物地球化学[J]. 化学进展, 2009, 21(0203): 458-466.
[8] 陈保卫,那仁满都拉,吕美玲,X.,Chris,Le. 砷的代谢机制、毒性和生物监测[J]. 化学进展, 2009, 21(0203): 474-482.
[9] 张志朋,钟国清,蒋琪英. 砷、锑、铋配合物的生物活性*[J]. 化学进展, 2008, 20(09): 1315-1323.
[10] 李新贵,封皓,黄美荣. 汞离子天然吸附剂[J]. 化学进展, 2008, 20(0203): 233-238.
[11] 周瑛,叶丽,竹鑫平. HPLC-ICP-MS在食品中硒和砷形态分析及其生物有效性研究中的应用*[J]. 化学进展, 2007, 19(06): 982-995.