English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 787-800 DOI: 10.7536/PC210437 前一篇   后一篇

• 综述 •

发光液晶高分子:分子构筑、结构与性能及其应用

李振兴1, 骆支旺1, 王平1, 余振强2, 陈尔强3, 谢鹤楼1,*()   

  1. 1 湘潭大学化学学院 环境友好化学及应用教育部重点实验室 湘潭 411105
    2 深圳大学化学与环境工程学院 深圳 518060
    3 北京大学化学分子工程学院 北京 100871
  • 收稿日期:2021-04-22 修回日期:2021-06-25 出版日期:2022-04-24 发布日期:2021-09-30
  • 通讯作者: 谢鹤楼
  • 基金资助:
    国家自然科学基金项目(21975215)

Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications

Zhenxing Li1, Zhiwang Luo1, Ping Wang1, Zhenqiang Yu2, Erqiang Chen3, Helou Xie1()   

  1. 1 Key Lab of Environment-friendly Chemistry and Application in Ministry of Education, College of Chemistry, Xiangtan University,Xiangtan 411105, China
    2 School of Chemistry and Environmental Engineering, Shenzhen University,Shenzhen 518060, China
    3 College of Chemistry and Molecular Engineering, Peking University,Beijing 100871, China
  • Received:2021-04-22 Revised:2021-06-25 Online:2022-04-24 Published:2021-09-30
  • Contact: Helou Xie
  • Supported by:
    National Natural Science Foundation of China(21975215)

发光液晶高分子结合了液晶高分子的有序性、稳定性、力学性能和发光分子的发光特性,有着广阔的应用前景。为了获得高效的发光液晶高分子,不同结构的发光液晶高分子被成功地设计与合成,包括主链型、侧链型、“甲壳”型发光液晶高分子、发光液晶高分子网络等。同时,分子结构、液晶相结构与光物理性质的关系也得到了相应的深入研究。本文总结了发光液晶高分子的最新研究进展,详细介绍了不同类型发光液晶高分子的分子结构设计合成、结构与性能、相关应用,并对其发展前景进行了展望。

Luminescent liquid crystalline polymers (LLCPs), combining the ordering, stability, mechanical properties of the liquid crystalline polymer with the luminescent properties of chromophores, show broad applications. In order to obtain high-efficiency LLCPs, various LLCPs with different structures have been successfully designed and synthesized, including main-chain, side-chain, mesogen-jacketed LLCPs and LLCP network, etc. Meanwhile, interaction of the molecular structure, liquid crystalline phase structure and optical physical properties, has also been carefully investigated. In this paper, the latest progress of LLCPs is summarized, including the molecular design and synthesis, structure and properties, and their applications. At last, a brief outlook on the future development in this field is presented.

Contents

1 Introduction

2 Molecular design of luminescent liquid crystalline polymers

2.1 Main-chain luminescent liquid crystalline polymers

2.2 Side-chain luminescent liquid crystalline polymers

2.3 Mesogen-jacketed luminescent liquid crystalline polymers

3 Applications of luminescent liquid crystalline polymers

3.1 Polarized luminescence

3.2 Anti-counterfeiting

3.3 Optical information storage

4 Conclusions and outlook

()
图1 (a)P1~P6的化学结构;(b)铕离子对P1~P6的相转变和分解温度的影响,其中Tg, ΔT, Ti和Td分别表示玻璃化转变温度、液晶温度区间、各向同性转变温度和分解温度[28]
Fig. 1 (a) Chemical structures of P1-P6. (b) Effects of europium ions on phase transition and decomposition temperatures of P1-P6, where Tg, ΔT, Ti and Td represent the glass transition temperature, mesophase temperature ranges, mesophase-isotropic phase transition temperatures and decomposition temperature, respectively[28]. Copyright 2016, Taylor & Francis
图2 (a)P7~P12的化学结构;(b)P8的变温XRD图;(c)P8的PLM图;(d)P12的变温XRD图;(e)P12的PLM图[31]
Fig. 2 (a) Chemical structures of P7-P12. (b) XRD images of P8. (c) PLM images of P8. (d) XRD images of P12. (e) PLM images of P12[31]. Copyright 2011, American Chemical Society
图3 (a)P13~P20的化学结构;(b)P13~P20的固态荧光量子产率[35,36]
Fig. 3 (a) Chemical structures of P13-P20. (b) Solid state fluorescence quantum yield of P13-P16[36]. (Copyright 2018, The Royal Society of Chemistry) and P17-P20[35]. (Copyright 2019, The Royal Society of Chemistry)
图4 (a)P21~P26的化学结构;(b)退火后的XRD图;(c)近晶相和六方柱状相结构模型示意图[37]
Fig. 4 (a) Chemical structures of P21~P26. (b) XRD profiles after thermal annealing. (c) Schematic illustration of structure model of Smectic and ΦH phases[37]. Copyright 2020, The Royal Society of Chemistry
图5 (a)P27~P31的化学结构;(b)间隔基长度与柱状相尺寸以及二维柱状相之间相关长度的关系,插图表示柱截面[38]
Fig. 5 (a) Molecular structures of P27-P31. (b) Effect of spacer length on columnar dimensions and two-dimensional inter-columnar correlation lengths, insets images are column cross section[38]. Copyright 2021, Wiley-VCH
图6 (a)P32~P34的化学结构[39];(b)P33(x = 0.8)制备的薄膜分别在紫外光辐照和热处理后的双折射,相结构以及荧光特性示意图[40]
Fig. 6 (a) Chemical structures of P32[39] (Copyright 2014, The Royal Society of Chemistry), P33 and P34; (b) birefringence, phase structures, and fluorescence properties of P33 (x = 0.8) thin film upon UV irradiation and thermal treatment, respectively[40]. Copyright 2018, American Chemical Society
图7 (a)共聚物P35~P37的化学结构;(b)三类共聚物的XRD图;(c)三类共聚物在高温下的PLM图[41]
Fig. 7 (a) Chemical structures of the copolymers P35, P36 and P37. (b) XRD patterns of the three copolymers. (c) PLM images of the three copolymers at high temperatures[41]. Copyright 2021, Wiley-VCH
图8 (a)P38~P43的化学结构;(b)P38和P43代表性PLM织构示意图;(c)P38~P43的量子产率与间隔长度之间的关系图[44]
Fig. 8 (a) Chemical structures of P38~P43. (b) Representative PLM textures of P38 and P43. (c) The relationship of P38~P43 between the quantum yields and the spacer length[44]. Copyright 2017, American Chemical Society
图9 (a)P44~P49的化学结构,R和M分别代表相应的基团,红线表示基团所连接的位置;(b)P44~P49代表性PLM织构示意图[45];(c)P48和P49退火前后荧光强度光谱对比图[46]
Fig. 9 (a) Chemical structures of P44~P49, where R and M represent the corresponding groups, and the red lines indicate the positions to which the groups are connected. (b) Representative PLM textures of P44~P47[45] (Copyright 2019, American Chemical Society) and representative PLM textures of P48 and P49. (c) The fluorescence intensity spectra of P48 and P49 before and after annealing, respectively[46]. Copyright 2019, The Royal Society of Chemistry
图10 (a)P50的化学结构;(b)P50手性近晶C相代表性PLM纹理图;(c)在5CB中不同含量的PT-Chol的XRD图[47]
Fig. 10 (a) Chemical structure of P50. (b) Representative PLM textures of SmC* in P50. (c) XRD profiles of the mixtures containing different contents of PT-Chol and 5CB[47]. Copyright 2020, American Chemical Society
图11 (a)P51的化学结构;(b)P51柱状液晶相分子模型;(c)P51的XRD图和重构的相对电子密度图[48]
Fig. 11 (a) Chemical structure of RTP polymers P51; (b) molecular model of P51 in columnar LC phase; (c) XRD pattern and reconstructed relative electron density map of P51[48]. Copyright 2019, American Chemical Society
图12 (a)P52-x和P53-x的化学结构,红色虚线表示氢键连接的方向;(b)P52-x在室温下的XRD图[49];(c)P53-x退火后在室温下的XRD图;(d)不同的溶液熏制5 s,P53-x试样条在365 nm紫外光下的荧光图像: (1) 空白,(2) 乙醇,(3) 氨水,(4) 苯酚,(5) 乙酸,(6) 甲酸,(7) 氢氟酸,(8)三氟乙酸,(9) 盐酸[29]
Fig. 12 (a) Chemical structures of P52-x and P53-x, where red dotted line indicates the direction of hydrogen bonding. (b) The XRD profiles of P52-x at room temperature[49]. Copyright 2019, American Chemical Society. (c) The XRD profiles of P53-x at room temperature after annealing. (d) Fluorescent images of P53-x test strips under 365 nm UV light after fuming with different solutions for 5 s: (1) blank, (2) ethanol, (3) aqueous ammonia, (4) phenol, (5) acetic acid, (6) formic acid, (7) hydrofluoric acid, (8) trifluoroacetic acid, (9) hydrochloric acid[29]. Copyright 2020, The Royal Society of Chemistry
图13 (a)单体M1~M3的化学结构;(b)单轴取向发光液晶高分子网络的PLM图以及X射线束沿x方向的XRD谱图[50];(c)光诱导取向和光固化流程制备LCP薄膜的原理示意图[51]
Fig. 13 (a) Chemical structures of monomers M1~M3. (b) PLM images of the uniaxial oriented luminescent liquid crystal polymer network and XRD patterns with the X-ray beam along the x-direction[50]. Copyright 2020, The Royal Society of Chemistry. (c) Schematic diagram of the photoalignment and photo-curing process of the LCP film[51]. Copyright 2019, American Chemical Society
图14 (a)液晶单体M4和交联剂分子M5的化学结构;(b)ADMET聚合的原理示意图;(c)在室温下液晶高分子网络的PLM图[52]
Fig. 14 (a) Chemical structures of monomer M4 and Crosslinker M5. (b) Schematic diagram of ADMET polymerization. (c) PLM images of the liquid polymer network measured at room temperature[52]. Copyright 2018, American Chemical Society
图15 (a)摩擦取向方向平行和垂直于偏振轴时自支撑薄膜的PL光谱;(b)不同偏振角度下526 nm处自支撑薄膜的PL强度[50];(c)不同含量的PT-Chol与glum的关系图;(d)在5CB中30%含量PT-Chol的CPL和glum谱图[47]
Fig. 15 (a) PL spectra of the free-standing film with the RD parallel and perpendicular to the polarizer axis. (b) The PL intensities of the free-standing film at 526 nm with the different polarization angles[50]. Copyright 2020, The Royal Society of Chemistry. (c) Plot of glum values vs. the different contents of PT-Chol. (d) CPL spectra and glum of PT-Chol-30% + 5CB[47]. Copyright 2020, American Chemical Society
图16 (a)由光诱导取向和光异构化技术制备的防伪二维码[51];(b)初始薄膜和用三氟乙酸熏制后的荧光图像,(i) 不用偏振器的荧光图像,(ii) 平行于偏振轴的荧光图像,(iii) 垂直于偏振轴的荧光图像[50];(c)基于上转换荧光技术制备的二维码图案和对应荧光图像[54]
Fig. 16 (a) QR code prepared by the photoalignment technology and photoisomerization for anti-counterfeiting[51]. Copyright 2019, American Chemical Society. (b) Fluorescence images of the original film and that after being treated with TFA, fluorescence images without polarizer (i) and parallel (ii) and perpendicular (iii) to the polarizer axis, respectively[50]. Copyright 2020, The Royal Society of Chemistry. (c) Photograph and luminescent image of QR code based on up-conversion luminescent technology[54]. Copyright 2017, Wiley-VCH
图17 (a)P47制备的二维荧光图案[45];(b)P24薄膜分别在365和254 nm紫外光灯辐照下的前后荧光图片[37];(c)在不同掩膜下书写和擦除多重荧光图像流程图[29]
Fig. 17 (a) Two-dimensional fluorescent pattern prepared by P47[45]. Copyright 2019, American Chemical Society. (b) Fluorescence pictures of P24 film irradiated with 365 nm UV light and then 254 nm[37]. Copyright 2020, The Royal Society of Chemistry. (c) Procedures of writing and erasing multicolor luminescent images with different masks[29]. Copyright 2020, The Royal Society of Chemistry
[1]
Lu Y Q, Li Y. Light. Sci. Appl., 2021, 10: 122.

doi: 10.1038/s41377-021-00567-w     URL    
[2]
Pastoor S, Wöpking M. Displays, 1997, 17(2): 100.

doi: 10.1016/S0141-9382(96)01040-2     URL    
[3]
De J, Yang W Y, Bala I, Gupta S P, Yadav R A K, Dubey D K, Chowdhury A, Jou J H, Pal S K. ACS Appl. Mater. Interfaces, 2019, 11(8): 8291.

doi: 10.1021/acsami.8b18749     URL    
[4]
Farinola G M, Ragni R. Chem. Soc. Rev., 2011, 40(7): 3467.

doi: 10.1039/c0cs00204f     URL    
[5]
Sagara Y, Kato T. Angew. Chem. Int. Ed., 2011, 50(39): 9128.

doi: 10.1002/anie.201100914     URL    
[6]
Akagi K. Bull. Chem. Soc. Jpn., 2019, 92(9): 1509.

doi: 10.1246/bcsj.20190092     URL    
[7]
Han J M, Guo S, Lu H, Liu S J, Zhao Q, Huang W. Adv. Opt. Mater., 2018, 6(17): 1800538.

doi: 10.1002/adom.201800538     URL    
[8]
San Jose B A, Matsushita S, Moroishi Y, Akagi K. Macromolecules, 2011, 44(16): 6288.

doi: 10.1021/ma201229g     URL    
[9]
Schadt M. Liq. Cryst., 1993, 14(1): 73.

doi: 10.1080/02678299308027305     URL    
[10]
Yamane S, Sagara Y, Mutai T, Araki K, Kato T. J. Mater. Chem. C, 2013, 1(15): 2648.

doi: 10.1039/c3tc00861d     URL    
[11]
Zhang T, Chen H, Ma X, Tian H. Ind. Eng. Chem. Res., 2017, 56(11): 3123.

doi: 10.1021/acs.iecr.7b00149     URL    
[12]
Martínez-Abadía M, GimÉnez R, Ros M B. Adv. Mater., 2018, 30: 1704161.

doi: 10.1002/adma.201704161     URL    
[13]
Galyametdinov Y G, Knyazev A A, Dzhabarov V I, Cardinaels T, Driesen K, Görller-Walrand C, Binnemans K. Adv. Mater., 2008, 20(2): 252.

doi: 10.1002/adma.200701714     URL    
[14]
Grell M, Bradley D D C, Inbasekaran M, Woo E P. Adv. Mater., 1997, 9(10): 798.

doi: 10.1002/adma.19970091006     URL    
[15]
Kozhevnikov V, Donnio B, Bruce D. Angew. Chem. Int. Ed., 2008, 47(33): 6286.

doi: 10.1002/anie.200802101     pmid: 18615415
[16]
Misaki M, Ueda Y, Nagamatsu S, Yoshida Y, Tanigaki N, Yase K. Macromolecules, 2004, 37(18): 6926.

doi: 10.1021/ma049051x     URL    
[17]
Chen G, Li W B, Zhou T R, Peng Q, Zhai D, Li H X, Yuan W Z, Zhang Y M, Tang B Z. Adv. Mater., 2015, 27(30): 4496.

doi: 10.1002/adma.201501981     URL    
[18]
Jakubiak R, Collison C J, Wan W C, Rothberg L J, Hsieh B R. J. Phys. Chem. A, 1999, 103(14): 2394.

doi: 10.1021/jp9839450     URL    
[19]
Wang P, Collison C J, Rothberg L J. J. Photochem. Photobiol. A Chem., 2001, 144(1): 63.

doi: 10.1016/S1010-6030(01)00518-4     URL    
[20]
Dong Y Q, Lam J W Y, Tang B Z. J. Phys. Chem. Lett., 2015, 6(17): 3429.

doi: 10.1021/acs.jpclett.5b01090     URL    
[21]
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115(21): 11718.

doi: 10.1021/acs.chemrev.5b00263     pmid: 26492387
[22]
Zhang F X, Ma Y S, Chi Y H, Yu H H, Li Y N, Jiang T Y, Wei X F, Shi J M. Sci. Rep., 2018, 8: 8208.

doi: 10.1038/s41598-018-26502-5     URL    
[23]
Zhelev Z, Ohba H, Bakalova R. J. Am. Chem. Soc., 2006, 128(19): 6324.

doi: 10.1021/ja061137d     URL    
[24]
Koo J, Lim S I, Lee S H, Kim J S, Yu Y T, Lee C R, Kim D Y, Jeong K U. Macromolecules, 2019, 52(4): 1739.

doi: 10.1021/acs.macromol.8b02513     URL    
[25]
Geng Y H, Culligan S W, Trajkovska A, Wallace J U, Chen S H. Chem. Mater., 2003, 15(2): 542.

doi: 10.1021/cm0208859     URL    
[26]
Yasuda T, Ooi H, Morita J, Akama Y, Minoura K, Funahashi M, Shimomura T, Kato T. Adv. Funct. Mater., 2009, 19(3): 411.

doi: 10.1002/adfm.200801268     URL    
[27]
Zabulica A, Perju E, Bruma M, Marin L. Liq. Cryst., 2014, 41(2): 252.

doi: 10.1080/02678292.2013.852258     URL    
[28]
Yao B, Cong Y H, Zhang B Y. Liq. Cryst., 2016, 43(9): 1190.

doi: 10.1080/02678292.2016.1162860     URL    
[29]
Tao L, Luo Z W, Lan K, Wang P, Guan Y, Shen Z H, Xie H L. Polym. Chem., 2020, 11(39): 6288.

doi: 10.1039/D0PY00907E     URL    
[30]
Yao B, Lin P C, Sun H, Wang S F, Luo C C, Li Z, Du X H, Ding Y, Xu Y, Wan H R, Zhu W Y. Adv. Optical Mater., 2021, 9(5): 2001434.

doi: 10.1002/adom.202001434     URL    
[31]
Yuan W Z, Yu Z Q, Tang Y H, Lam J W Y, Xie N, Lu P, Chen E Q, Tang B Z. Macromolecules, 2011, 44(24): 9618.

doi: 10.1021/ma2021979     URL    
[32]
Finkelmann H, Rehage G. Makromol. Chem., Rapid Commun., 1980, 1(1): 31.
[33]
Craig A A, Imrie C T. J. Mater. Chem., 1994, 4(11): 1705.

doi: 10.1039/jm9940401705     URL    
[34]
Duran R, Guillon D, Gramain P, Skoulios A. Makromol. Chem., Rapid Commun., 1987, 8(4): 181.
[35]
Yuan Y J, He L F, Li J D, Zhang H L. Polym. Chem., 2019, 10(21): 2706.

doi: 10.1039/C9PY00339H     URL    
[36]
Yuan Y J, Li J D, He L F, Liu Y W, Zhang H L. J. Mater. Chem. C, 2018, 6(26): 7119.

doi: 10.1039/C8TC01641K     URL    
[37]
Wu Y J, Zhang S S, Pei J W, Chen X F. J. Mater. Chem. C, 2020, 8(19): 6461.

doi: 10.1039/D0TC00069H     URL    
[38]
Mu B, Zhang Z L, Zhao Y, Hao X N, Tian W. Chin. J. Chem., 2021, 39(7): 2009.

doi: 10.1002/cjoc.202100051     URL    
[39]
Wang S J, Zhao R Y, Yang S, Yu Z Q, Chen E Q. Chem. Commun., 2014, 50(61): 8378.

doi: 10.1039/C4CC03113J     URL    
[40]
Zhu Y L, Zheng M Q, Tu Y Y, Chen X F. Macromolecules, 2018, 51(9): 3487.

doi: 10.1021/acs.macromol.8b00347     URL    
[41]
Li X S, Wu Y, Zhao Y R, Yu Z Q. Adv. Optical Mater., 2021, 9(6): 2001893.

doi: 10.1002/adom.202001893     URL    
[42]
Zhou Q F, Zhu X L, Wen Z Q. Macromolecules, 1989, 22(1): 491.

doi: 10.1021/ma00191a094     URL    
[43]
Zhou Q F, Li H M, Feng X D. Macromolecules, 1987, 20(1): 233.

doi: 10.1021/ma00167a042     URL    
[44]
Guo Y, Shi D, Luo Z W, Xu J R, Li M L, Yang L H, Yu Z Q, Chen E Q, Xie H L. Macromolecules, 2017, 50(24): 9607.

doi: 10.1021/acs.macromol.7b01605     URL    
[45]
Zhu J C, Han T, Guo Y, Wang P, Xie H L, Meng Z G, Yu Z Q, Tang B Z. Macromolecules, 2019, 52(10): 3668.

doi: 10.1021/acs.macromol.9b00221     URL    
[46]
Zhu J C, Guan Y, Luo Z W, Li Z X, Huang H H, Wang P, Shen Z H, Xie H L. Polym. Chem., 2019, 10(46): 6342.

doi: 10.1039/C9PY01290G     URL    
[47]
Luo Z W, Tao L, Zhong C L, Li Z X, Lan K, Feng Y, Wang P, Xie H L. Macromolecules, 2020, 53(22): 9758.

doi: 10.1021/acs.macromol.0c02246     URL    
[48]
Zhang Y F, Wang Y C, Yu X S, Zhao Y, Ren X K, Zhao J F, Wang J, Jiang X Q, Chang W Y, Zheng J F, Yu Z Q, Yang S, Chen E Q. Macromolecules, 2019, 52(6): 2495.

doi: 10.1021/acs.macromol.9b00171    
[49]
Tao L, Li M L, Yang K P, Guan Y, Wang P, Shen Z H, Xie H L. ACS Appl. Mater. Interfaces, 2019, 11(16): 15051.

doi: 10.1021/acsami.9b01476     URL    
[50]
Tao L, Lan K, Zhong C L, Zhou Y J, Wang P, Fan F, Shen Z H, Xie H L. J. Mater. Chem. C, 2020, 8(46): 16561.

doi: 10.1039/D0TC04406G     URL    
[51]
He Y R, Li J T, Li J, Zhu C, Guo J B. ACS Appl. Polym. Mater., 2019, 1(4): 746.

doi: 10.1021/acsapm.8b00276     URL    
[52]
Liu L, Wang M, Guo L X, Sun Y, Zhang X Q, Lin B P, Yang H. Macromolecules, 2018, 51(12): 4516.

doi: 10.1021/acs.macromol.8b00677     URL    
[53]
Chen Y D, Lu P, Yuan Y J, Zhang H L. J. Mater. Chem. C, 2020, 8(39): 13632.

doi: 10.1039/D0TC03276J     URL    
[54]
Ye S M, Teng Y X, Juan A, Wei J, Wang L Y, Guo J B. Adv. Opt. Mater., 2017, 5(4): 1600956.

doi: 10.1002/adom.201600956     URL    
[1] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[2] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[3] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[4] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[5] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.
[6] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[7] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[8] 王宏喜, 熊雨婷, 卿光焱*, 孙涛垒*. 生物分子响应性高分子材料[J]. 化学进展, 2017, 29(4): 348-358.
[9] 熊兴泉*, 江云兵. 可逆Diels-Alder反应[J]. 化学进展, 2013, 25(06): 999-1011.
[10] 王文谦, 陈林峰, 温永强*, 张学记, 宋延林, 江雷. 基于介孔二氧化硅纳米颗粒的可控释放体系[J]. 化学进展, 2013, 25(05): 677-691.
[11] 谢锐, 杨眉, 程昌敬, 姜晶, 褚良银. 分子识别与温度响应复合智能材料[J]. 化学进展, 2012, 24(0203): 195-202.
[12] 刘丹, 王涛, 刘新星, 王朝阳, 童真. 基于聚N-异丙基丙烯酰胺的细胞智能分离材料[J]. 化学进展, 2011, 23(11): 2353-2359.
[13] 汪海平, 容敏智, 章明秋. 微胶囊填充型自修复聚合物及其复合材料[J]. 化学进展, 2010, 22(12): 2397-2407.
[14] 罗春华 董秋静 郑朝晖 丁小斌 彭宇行. 智能聚合物包覆的金纳米粒子*[J]. 化学进展, 2009, 21(12): 2674-2681.
[15] 曹良成,王跃川. 紫精类电致变色材料的制备和机理[J]. 化学进展, 2008, 20(09): 1353-1360.