English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 973-982 DOI: 10.7536/PC210429 前一篇   后一篇

• 综述 •

后处理技术提升燃料电池催化剂稳定性

刘洋洋1,2, 赵子刚1,2, 孙浩3, 孟祥辉3, 邵光杰1, 王振波2,3,*()   

  1. 1 燕山大学环境与化学工程学院 秦皇岛 066004
    2 哈尔滨工业大学化学与化工学院 哈尔滨 150001
    3 山东奥冠新能源科技有限公司 德州 253000
  • 收稿日期:2021-04-20 修回日期:2021-08-23 出版日期:2022-04-24 发布日期:2021-09-06
  • 通讯作者: 王振波
  • 基金资助:
    国家自然科学基金项目(21673064); 国家自然科学基金项目(51802059); 国家自然科学基金项目(21905070); 国家自然科学基金项目(22075062); 黑龙江省“百千万”工程科技重大专项(2019ZX09A02); 山东省泰山产业领军人才项目(2017TSCYCX-33)

Post-Treatment Technology Improves Fuel Cell Catalyst Stability

Yangyang Liu1,2, Zigang Zhao1,2, Hao Sun3, Xianghui Meng3, Guangjie Shao1, Zhenbo Wang2,3()   

  1. 1 College of Environment and Chemical Engineering, Yanshan University,Qinhuangdao 066004, China
    2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology,Harbin 150001, China
    3 Shandong ALLGRAND New Energy Technology Co., Ltd,Dezhou 253000, China
  • Received:2021-04-20 Revised:2021-08-23 Online:2022-04-24 Published:2021-09-06
  • Contact: Zhenbo Wang
  • Supported by:
    National Natural Science Foundation of China(21673064); National Natural Science Foundation of China(51802059); National Natural Science Foundation of China(21905070); National Natural Science Foundation of China(22075062); Heilongjiang Province “Hundred Million” Major Project of Engineering Science and Technology(2019ZX09A02); Shandong Taishan Industry Leading Talent Project(2017TSCYCX-33)

燃料电池属于一种可再生的新能源技术,不经过热机过程,不受卡诺循环限制,通过电极和电解质界面的化学反应直接将燃料的化学能转化为电能,所以能量转化效率高,且没有噪声和污染。质子交换膜燃料电池(PEMFC)是燃料电池中应用最广泛的一类,但PEMFC仍然存在一些问题,如成本高、功率密度低和催化剂稳定性差等。因此实现质子交换膜燃料电池大规模应用,研究开发高活性和高稳定性的催化剂是重中之重。针对燃料电池催化剂高活性和高稳定性的要求,本文综述了燃料电池催化剂的研究进展和性能改进方法。从活性组分和载体两个角度对提升燃料电池稳定性的方法展开论述。通过减小活性组分颗粒的直径、制备具有特定取向表面的铂颗粒、铂与过渡金属的合金化、载体的改性等方式来改善催化剂的性能。最后提出了燃料电池催化剂未来的发展方向以及在实际应用过程中面临的主要问题。

Fuel cell is a kind of renewable new energy technology, which can directly convert the chemical energy of fuel into electric energy through the chemical reaction at the interface of electrode and electrolyte. Because energy conversion efficiency is high, no noise and pollution.Proton exchange membrane fuel cell (PEMFC) is one of the most widely used fuel cells, but PEMFC still has some problems to be solved, such as high cost, low power density and poor catalyst stability. Therefore, to achieve the large-scale application of proton exchange membrane fuel cell, research and development of high activity and high stability catalyst is the top priority. In order to meet the requirements of high activity and high stability of fuel cell catalysts, this paper reviews the research progress and performance improvement methods of catalysts for fuel cells. The methods to improve the stability of fuel cell were discussed from the perspectives of active components and carrier. The performance of catalyst was improved by reducing the diameter of active component particles, preparing platinum particles with specific orientation surface, alloying platinum with transition metals and the modification of carrier also had a significant impact on the stability of catalyst. Finally, the future development direction of fuel cell catalysts and the main problems in practical application are proposed.

Contents

1 Introduction

2 Fuel cell electrocatalyst

3 Post-processing technology

3.1 Active component angle improves stability

3.2 Carrier angle improves stability

4 Conclusion and prospect

()
图1 Pt3Ni(a)和Pt1.5Ni(b)气凝胶TEM图像,插图为相对应的纳米链直径分布[18];(c)控制PtNi3尺寸生长机制的示意图[19]
Fig. 1 TEM images of Pt3Ni (a) and Pt1.5Ni (b) aerogel,insets show the corresponding distributions of nanochain diameters[18];(c) schematic illustration of the revealed size-controlled growth mechanism of PtN i3[19]
图2 不同极化电压下Pt晶面曝光示意图:(a) 1.5 V,(b) 1.7 V,(c) 2.2 V[29]
Fig. 2 Schematic illustration of the selectively Pt facet exposure under different anodization voltages of (a) 1.5 V, (b) 1.7 V and (c) 2.2 V[29]
图3 (A)Au33Pt67与Pt/C催化剂的H2O2产率和转移电子数[32];(B)Au33Pt67样品和Pt/C催化剂相应的Tafel图[32];(C)微波辅助快速加热合成PtAu合金示意图[34];(D)Pt-Au/GNs (1:0.05) (a),Pt-Au/GNs (1:0.1) (b),Pt-Au/GNs (1:0.3) (c),Pt/GNs (1:0.6) (d),Pt /GNs (e),PtRu/C-JM (f)在1600 r/min转速下ORR极化曲线,在O2饱和的H2SO4中,扫描速率为5 mV·s-1[35]
Fig. 3 (A) Plots of H2O2 yield and electron transfer numbers and (B) the corresponding Tafel plots of the Au33Pt67 sample and Pt/C catalyst[32];(C) schematic illustration of major states involved the synthesis of PtAu alloy through a microwave-assisted flash heating[34];(D) ORR polarization curves for Pt-Au/GNs (1:0.05) (a), Pt-Au/GNs (1:0.1) (b), Pt-Au/GNs (1:0.3) (c), Pt/GNs (1:0.6) (d), Pt/GNs (e) and PtRu/C-JM (f) at rotation rate of 1600 r/min, with the scan rate of 5 mV·s-1 in O2 saturated 0.5 mol/L H2SO4 solution[35]
图4 (a)PtNi催化剂在催化过程中的电化学腐蚀[41];(b)Au-Pt3Ni纳米线合成步骤[44]
Fig. 4 (a) The corrosion electrochemistry of PtNi alloy electrocatalysts during its catalytic ORR process[41];(b) illustrations of the synthesis of Au-Pt3Ni nanowires[44]
图5 FeSAs/PTF框架结构示意图[51]
Fig. 5 Schematic illustration of the formation of FeSAs/PTF[51]
图6 Pt-Co菱形十二面体结构[62]
Fig. 6 Structures of Pt-Co rhombic dodecahedra[62]
图7 (a)微流法制备PtFe-PtxFeyCezOj催化剂示意图[71];(b)Pt/TiO2@CNT合成示意图[73];(c)Pt/TiO2-C制备工艺[74]
Fig. 7 (a) Schematic diagram for preparation of PtFe-PtxFeyCezOj catalyst by microfluidic method[71];(b) schematic illustration of Pt/TiO2@CNT synthesis[73];(c) the fabrication process of Pt/TiO2-C catalysts[74]
[1]
Jiao Y, Zheng Y, Jaroniec M, Qiao S Z. Chem. Soc. Rev., 2015, 44(8): 2060.

doi: 10.1039/c4cs00470a     pmid: 25672249
[2]
Ren X F, Lv Q Y, Liu L F, Liu B H, Wang Y R, Liu A M, Wu G. Sustain. Energy Fuels, 2020, 4(1): 15.

doi: 10.1039/C9SE00460B     URL    
[3]
Li J Z, Zhang H G, Samarakoon W, Shan W T, Cullen D A, Karakalos S, Chen M J, Gu D M, More K, Wang G F, Feng Z X, Wang Z B, Wu G. Angew. Chem. Int. Ed., 2019, 58:18971.

doi: 10.1002/anie.201909312     URL    
[4]
Gong W H, Jiang Z, Wu R F, Liu Y, Huang L, Hu N, Tsiakaras P, Shen P K. Appl. Catal. B Environ., 2019, 246: 277.

doi: 10.1016/j.apcatb.2019.01.061     URL    
[5]
Jiang M, Fu C P, Yang J, Liu Q, Zhang J, Sun B D. Energy Storage Mater., 2019, 18: 34.
[6]
Zhang Z J, Zhou D B, Bao X J, Yu H Z, Huang B Y. Int. J. Hydrog. Energy, 2018, 43(45): 20734.

doi: 10.1016/j.ijhydene.2018.09.153     URL    
[7]
Wang Q C, Ji Y J, Lei Y P, Wang Y B, Wang Y D, Li Y Y, Wang S Y. ACS Energy Lett., 2018, 3(5): 1183.

doi: 10.1021/acsenergylett.8b00303     URL    
[8]
Jiang H, Gu J X, Zheng X S, Liu M, Qiu X Q, Wang L B, Li W Z, Chen Z F, Ji X B, Li J. Energy Environ. Sci., 2019, 12(1): 322.

doi: 10.1039/C8EE03276A     URL    
[9]
Zhang L, Xiong J, Qin Y H, Wang C W. Carbon, 2019, 150: 475.

doi: 10.1016/j.carbon.2019.05.044    
[10]
Shao Y Y, Yin G P, Gao Y Z. J. Power Sources, 2007, 171(2): 558.

doi: 10.1016/j.jpowsour.2007.07.004     URL    
[11]
Li C L, Tan H B, Lin J J, Luo X L, Wang S P, You J, Kang Y M, Bando Y, Yamauchi Y, Kim J. Nano Today, 2018, 21: 91.

doi: 10.1016/j.nantod.2018.06.005     URL    
[12]
Becknell N, Kang Y J, Chen C, Resasco J, Kornienko N, Guo J H, Markovic N M, Somorjai G A, Stamenkovic V R, Yang P D. J. Am. Chem. Soc., 2015, 137(50): 15817.

doi: 10.1021/jacs.5b09639     pmid: 26652294
[13]
Fang Z C, Wang Y C, Liu C X, Chen S, Sang W, Wang C, Zeng J. Small, 2015, 11(22): 2593.

doi: 10.1002/smll.201402799     URL    
[14]
Bing Y H, Liu H S, Zhang L, Ghosh D, Zhang J J. Chem. Soc. Rev., 2010, 39(6): 2184.

doi: 10.1039/b912552c     URL    
[15]
Yi S J, Jiang H, Bao X J, Zou S Q, Liao J J, Zhang Z J. J. Electroanal. Chem., 2019, 848: 113279.
[16]
Wang Y J, Zhao N N, Fang B Z, Li H, Bi X T, Wang H J. Chem. Rev., 2015, 115(9): 3433.

doi: 10.1021/cr500519c     URL    
[17]
Huang S Y, Shan A X, Wang R M. Catalysts, 2018, 8(11): 538.

doi: 10.3390/catal8110538     URL    
[18]
Henning S, Kühn L, Herranz J, Durst J, Binninger T, Nachtegaal M, Werheid M, Liu W, Adam M, Kaskel S, Eychmüller A, Schmidt T J. J. Electrochem. Soc., 2016, 163(9): F998.

doi: 10.1149/2.0251609jes     URL    
[19]
Gan L, Rudi S, Cui C H, Heggen M, Strasser P. Small, 2016, 12(23): 3189.

doi: 10.1002/smll.201600027     URL    
[20]
Bhunia K, Khilari S, Pradhan D. Dalton Trans., 2017, 46(44): 15558.

doi: 10.1039/C7DT02608K     URL    
[21]
Lin R, Cai X, Zeng H, Yu Z P. Adv. Mater., 2018, 30(17): 1705332.
[22]
Choi D S, Robertson A W, Warner J H, Kim S O, Kim H. Adv. Mater., 2016, 28(33): 7115.

doi: 10.1002/adma.201600469    
[23]
Huang X Q, Zhao Z P, Cao L, Chen Y, Zhu E B, Lin Z Y, Li M F, Yan A M, Zettl A, Wang Y M, Duan X F, Mueller T, Huang Y. Science, 2015, 348(6240): 1230.

doi: 10.1126/science.aaa8765     URL    
[24]
Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K. Nat. Chem., 2009, 1(7): 552.

doi: 10.1038/nchem.367     pmid: 21378936
[25]
Jinnouchi R, Toyoda E, Hatanaka T, Morimoto Y. J. Phys. Chem. C, 2010, 114(41): 17557.

doi: 10.1021/jp106593d     URL    
[26]
Brandiele R, Durante C, Grᶏdzka E, Rizzi G A, Zheng J, Badocco D, Centomo P, Pastore P, Granozzi G, Gennaro A. J. Mater. Chem. A, 2016, 4(31): 12232.

doi: 10.1039/C6TA04498K     URL    
[27]
Tetteh E B, Lee H Y, Shin C H, Kim S H, Ham H C, Tran T N, Jang J H, Yoo S J, Yu J S. ACS Energy Lett., 2020, 5(5): 1601.

doi: 10.1021/acsenergylett.0c00184     URL    
[28]
Tian X L, Xu Y Y, Zhang W Y, Wu T, Xia B Y, Wang X. ACS Energy Lett., 2017, 2(9): 2035.

doi: 10.1021/acsenergylett.7b00593     URL    
[29]
Wang G Z, Yang Z Z, Du Y G, Yang Y. Angew. Chem. Int. Ed., 2019, 58(44): 15848.

doi: 10.1002/anie.201907322     URL    
[30]
Xu S C, Kim Y, Park J, Higgins D, Shen S J, Schindler P, Thian D, Provine J, Torgersen J, Graf T, Schladt T D, Orazov M, Liu B H, Jaramillo T F, Prinz F B. Nat. Catal., 2018, 1(8): 624.

doi: 10.1038/s41929-018-0118-1     URL    
[31]
Chen Y L, Cheng T, Goddard W A. J. Am. Chem. Soc., 2020, 142(19): 8625.

doi: 10.1021/jacs.9b13218     URL    
[32]
Wu W, Tang Z H, Wang K, Liu Z, Li L G, Chen S W. Electrochim. Acta, 2018, 260: 168.

doi: 10.1016/j.electacta.2017.11.057     URL    
[33]
Vitale A, Murad H, Abdelhafiz A, Buntin P, Alamgir F M. ACS Appl. Mater. Interfaces, 2019, 11(1): 1026.

doi: 10.1021/acsami.8b17274     URL    
[34]
Zhang D T, Chen C N, Wang X Y, Guo G S, Sun Y G. Part. Part. Syst. Charact., 2018, 35(5): 1700413.
[35]
Xie Y X, Li Z S, Liu Y, Ye Y X, Zou X H, Lin S. Appl. Surf. Sci., 2020, 508: 145161.
[36]
Shen X C, Dai S, Pan Y B, Yao L B, Yang J L, Pan X Q, Zeng J, Peng Z M. ACS Catal., 2019, 9(12): 11431.

doi: 10.1021/acscatal.9b03430     URL    
[37]
Bu L Z, Feng Y G, Yao J L, Guo S J, Guo J, Huang X Q. Nano Res., 2016, 9(9): 2811.

doi: 10.1007/s12274-016-1170-2     URL    
[38]
Beermann V, Gocyla M, Willinger E, Rudi S, Heggen M, Dunin-Borkowski R E, Willinger M G, Strasser P. Nano Lett., 2016, 16(3): 1719.

doi: 10.1021/acs.nanolett.5b04636     pmid: 26854940
[39]
Escudero-Escribano M, Malacrida P, Hansen M H, Vej-Hansen U G, Velazquez-Palenzuela A, Tripkovic V, Schiotz J, Rossmeisl J, Stephens I E L, Chorkendorff I. Science, 2016, 352(6281): 73.

doi: 10.1126/science.aad8892     pmid: 27034369
[40]
Nie Y, Wei Z D. Prog. Nat. Sci. Mater. Int., 2020, 30(6): 796.

doi: 10.1016/j.pnsc.2020.10.004     URL    
[41]
Huang L, Zaman S, Tian X L, Wang Z T, Fang W S, Xia B Y. Acc. Chem. Res., 2021, 54(2): 311.

doi: 10.1021/acs.accounts.0c00488     URL    
[42]
Lim J, Shin H, Kim M, Lee H, Lee K S, Kwon Y, Song D, Oh S, Kim H, Cho E. Nano Lett., 2018, 18(4): 2450.

doi: 10.1021/acs.nanolett.8b00028     URL    
[43]
Zhang C L, Sandorf W, Peng Z M. ACS Catal., 2015, 5(4): 2296.

doi: 10.1021/cs502112g     URL    
[44]
Wu Z F, Su Y Q, Hensen E J M, Tian X L, You C H, Xu Q. J. Mater. Chem. A, 2019, 7(46): 26402.

doi: 10.1039/C9TA08682J     URL    
[45]
Kuttiyiel K A, Kattel S, Cheng S B, Lee J H, Wu L J, Zhu Y M, Park G G, Liu P, Sasaki K, Chen J G, Adzic R R. ACS Appl. Energy Mater., 2018, 1(8): 3771.

doi: 10.1021/acsaem.8b00555     URL    
[46]
He D P, Rong Y Y, Carta M, Malpass-Evans R, McKeown N B, Marken F. RSC Adv., 2016, 6(11): 9315.

doi: 10.1039/C5RA25320A     URL    
[47]
Cheng K, Kou Z K, Zhang J, Jiang M, Wu H, Hu L, Yang X Y, Pan M, Mu S C. J. Mater. Chem. A, 2015, 3(26): 14007.

doi: 10.1039/C5TA02386F     URL    
[48]
Chen S G, Wei Z D, Qi X Q, Dong L C, Guo Y G, Wan L J, Shao Z G, Li L. J. Am. Chem. Soc., 2012, 134(32): 13252.

doi: 10.1021/ja306501x     URL    
[49]
Liu J, Jiao M G, Mei B B, Tong Y X, Li Y P, Ruan M B, Song P, Sun G Q, Jiang L H, Wang Y, Jiang Z, Gu L, Zhou Z, Xu W L. Angew. Chem. Int. Ed., 2019, 58(4): 1163.

doi: 10.1002/anie.201812423     URL    
[50]
Li T F, Liu J J, Song Y, Wang F. ACS Catal., 2018, 8(9): 8450.

doi: 10.1021/acscatal.8b02288     URL    
[51]
Yi J D, Xu R, Wu Q, Zhang T, Zang K T, Luo J, Liang Y L, Huang Y B, Cao R. ACS Energy Lett., 2018, 3(4): 883.

doi: 10.1021/acsenergylett.8b00245     URL    
[52]
Cheng K, Zhu K, Liu S L, Li M X, Huang J H, Yu L H, Xia Z, Zhu C, Liu X B, Li W H, Lu W T, Wei F, Zhou Y H, Zheng W Q, Mu S C. ACS Appl. Mater. Interfaces, 2018, 10(25): 21306.

doi: 10.1021/acsami.8b03832     URL    
[53]
Wang X X, Hwang S, Pan Y T, Chen K T, He Y H, Karakalos S, Zhang H G, Spendelow J S, Su D, Wu G. Nano Lett., 2018, 18(7): 4163.

doi: 10.1021/acs.nanolett.8b00978     URL    
[54]
Wang Q, Zhao Z L, Zhang Z, Feng T L, Zhong R Y, Xu H, Pantelides S T, Gu M. Adv. Sci., 2020, 7(2): 1901279.
[55]
Li J R, Sharma S, Liu X M, Pan Y T, Spendelow J S, Chi M F, Jia Y K, Zhang P, Cullen D A, Xi Z, Lin H H, Yin Z Y, Shen B, Muzzio M, Yu C, Kim Y S, Peterson A A, More K L, Sun S H. Joule, 2019, 3(1): 124.

doi: 10.1016/j.joule.2018.09.016     URL    
[56]
Wang T Y, Liang J S, Zhao Z L, Li S Z, Lu G, Xia Z C, Wang C, Luo J H, Han J T, Ma C, Huang Y H, Li Q. Adv. Energy Mater., 2019, 9(17): 1803771.
[57]
Chung D Y, Jun S W, Yoon G, Kwon S G, Shin D Y, Seo P, Yoo J M, Shin H, Chung Y H, Kim H, Mun B S, Lee K S, Lee N S, Yoo S J, Lim D H, Kang K, Sung Y E, Hyeon T. J. Am. Chem. Soc., 2015, 137(49): 15478.

doi: 10.1021/jacs.5b09653     URL    
[58]
Zhao T, Luo E G, Li Y, Wang X, Liu C P, Xing W, Ge J J. Sci. China Mater., 2021, 64(7): 1671.

doi: 10.1007/s40843-020-1582-3     URL    
[59]
Boone C V, Maia G. Electrochim. Acta, 2019, 303: 192.

doi: 10.1016/j.electacta.2019.02.079     URL    
[60]
Fang D H, Wan L, Jiang Q K, Zhang H J, Tang X J, Qin X P, Shao Z G, Wei Z D. Nano Res., 2019, 12(11): 2766.

doi: 10.1007/s12274-019-2511-8     URL    
[61]
Yang Z Y, Wang M, Liu G C, Chen M, Ye F, Zhang W B, Yang W, Wang X D. Ionics, 2020, 26(1): 293.

doi: 10.1007/s11581-019-03205-z     URL    
[62]
Chen S P, Li M F, Gao M Y, Jin J B, van Spronsen M A, Salmeron M B, Yang P D. Nano Lett., 2020, 20(3): 1974.

doi: 10.1021/acs.nanolett.9b05251     URL    
[63]
Vinayan B P, Nagar R, Rajalakshmi N, Ramaprabhu S. Adv. Funct. Mater., 2012, 22(16): 3519.

doi: 10.1002/adfm.201102544     URL    
[64]
Li M W, Wu X, Zeng J H, Hou Z H, Liao S J. Electrochim. Acta, 2015, 182: 351.

doi: 10.1016/j.electacta.2015.09.122     URL    
[65]
Wang C N, Gao H R, Chen X H, Yuan W Z, Zhang Y M. Electrochim. Acta, 2015, 152: 383.

doi: 10.1016/j.electacta.2014.11.164     URL    
[66]
Wang Y, Jin J H, Yang S L, Li G, Jiang J M. Int. J. Hydrog. Energy, 2016, 41(26): 11174.

doi: 10.1016/j.ijhydene.2016.04.235     URL    
[67]
Wang X X, Sokolowski J, Liu H, Wu G. Chin. J. Catal., 2020, 41(5): 739.

doi: 10.1016/S1872-2067(19)63407-8     URL    
[68]
Liang L H, Jin H H, Zhou H, Liu B S, Hu C X, Chen D, Wang Z, Hu Z Y, Zhao Y F, Li H W, He D P, Mu S C. Nano Energy, 2021, 88: 106221.
[69]
Liang L H, jin H H, Zhou H, Liu B S, Hu C X, Chen D, Zhu J W, Wang Z, Li H W, Liu S L, He D P, Mu S C. J. Energy Chem., 2022, 65: 48.

doi: 10.1016/j.jechem.2021.05.033     URL    
[70]
Huang H, Wang X. J. Mater. Chem. A, 2014, 2: 6266.

doi: 10.1039/C3TA14754A     URL    
[71]
Ma J G, Tong X, Wang J M, Zhang G X, Lv Y P, Zhu Y C, Sun S H, Yang Y C, Song Y J. Electrochim. Acta, 2019, 299: 80.

doi: 10.1016/j.electacta.2018.12.132     URL    
[72]
Wu B H, Liu D Y, Mubeen S, Chuong T T, Moskovits M, Stucky G D. J. Am. Chem. Soc., 2016, 138(4): 1114.

doi: 10.1021/jacs.5b11341     URL    
[73]
Kong J, Qin Y H, Wang T L, Wang C W. Int. J. Hydrog. Energy, 2020, 45(3): 1991.

doi: 10.1016/j.ijhydene.2019.11.016     URL    
[74]
Wang J Y, Xu M, Zhao J Q, Fang H F, Huang Q Z, Xiao W P, Li T, Wang D L. Appl. Catal. B Environ., 2018, 237: 228.

doi: 10.1016/j.apcatb.2018.05.085     URL    
[75]
Komba N, Wei Q L, Zhang G X, Rosei F, Sun S H. Appl. Catal. B Environ., 2019, 243: 373.

doi: 10.1016/j.apcatb.2018.10.070     URL    
[76]
Du C, Liu X L, Ye G H, Gao X H, Zhuang Z H, Li P, Xiang D, Li X K, Clayborne A Z, Zhou X G, Chen W. ChemSusChem, 2019, 12(5): 1017.

doi: 10.1002/cssc.201802960     URL    
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[9] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[10] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[11] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[12] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[13] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[14] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[15] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.