English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 665-682 DOI: 10.7536/PC210301 前一篇   后一篇

• 综述 •

MXenes的制备、结构调控及电化学储能应用

管可可, 雷文, 童钊明, 刘海鹏, 张海军*()   

  1. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
  • 收稿日期:2021-03-01 修回日期:2021-07-09 出版日期:2021-12-02 发布日期:2021-12-02
  • 通讯作者: 张海军

Synthesis, Structure Regulating and the Applications in Electrochemical Energy Storage of MXenes

Keke Guan, Wen Lei, Zhaoming Tong, Haipeng Liu, Haijun Zhang()   

  1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology,Wuhan 430081, China
  • Received:2021-03-01 Revised:2021-07-09 Online:2021-12-02 Published:2021-12-02
  • Contact: Haijun Zhang

MXenes因其独特的二维层状结构、较高的比表面积、优异的导电性、良好的表面亲水性和化学稳定性,受到国内外研究者的广泛关注。近年来,研究者普遍采用含氟刻蚀剂(HF与LiF-HCl等)选择性刻蚀MAX相中的A位元素,制备带有丰富表面基团的多层MXenes材料。由于含氟刻蚀剂的污染问题,当前采用更为绿色环保的无氟刻蚀剂(NaOH与ZnCl2等)刻蚀MAX相的研究报道越来越多。MXenes的性能与其结构密切相关,不同制备方法对MXenes的层间距和表面基团的影响很大,进而也影响其性能。基于此,本文总结对比了文献中MXenes的制备方法,概述了MXenes层间距和表面基团的调控方法,同时介绍了MXenes在电化学储能方面的应用,最后对今后MXenes研究所面临的挑战和发展方向进行了展望。

MXenes have attracted intensive research attention owing to its unique two-dimensional layered structure, high specific surface area, excellent conductivity, superior surface hydrophilicity and chemical stability. In recent years, selectively etching the A element layers from MAX phases by fluoride-containing etchants (HF, LiF-HCl, etc) is a common method to prepare multilayer MXenes with plentiful surface terminations. Due to the pollution problems of fluoride-containing etchants, at present, many studies have been reported on the use of more green and environmentally friendly fluorine-free etchants (NaOH, ZnCl2, etc) to etch MAX phases. The properties of MXenes are closely related to its structure. Additionally, it is found that the preparation methods have great impacts on the layer spacing and surface terminations of MXenes, consequently affecting its performance. Hence, this paper summarizes and compares the research progress of the preparation strategies, layer spacing and surface terminations regulation of MXenes. Then the applications of MXenes in electrochemical energy storage are outlined. Finally, the challenges and prospects for the future development of MXenes are also proposed.

Contents

1 Introduction

2 Preparation of MXenes

2.1 Preparation of MXenes by fluoride-containing etchants

2.2 Preparation of MXenes by fluoride-free etchants

3 Structure regulating of MXenes

3.1 Interlayer spacing regulating of MXenes

3.2 Surface terminations controlling of MXenes

4 The applications of MXenes in electrochemical energy storage

4.1 Supercapacitors

4.2 Lithium-ion batteries

4.3 Non-lithium-ion batteries

5 Conclusion and outlook

()
图1 (a)元素周期表中合成MXenes的元素分布[22];(b) MAX相和对应MXenes的结构示意图[21]
Fig.1 (a) The chemical elements for the synthesis of MXenes[22]; (b) Structure of MAX phases and the corresponding MXenes[21]
表1 常见的二维MXenes制备工艺条件
Table 1 The preparation process conditions for common 2D MXenes
Precursor MXenes Etchant Concentration T ( ℃) Time (h) Yield ref
Ti2AlC Ti2CTx HF 10 wt% RT 10 60% 30
V2AlC V2CTx HF 50 wt% RT 90 60% 31
Nb2AlC Nb2CTx HF 40 wt% 60 72 NA 32
Mo2Ga2C Mo2CTx HF 48wt%~51 wt% 55 160 NA 33
Mo2Ga2C Mo2CTx HF 48 wt% 140 96 NA 34
Ti2AlN Ti2NTx HF 5 wt% RT 24 NA 17
Ti3AlC2 Ti3C2Tx HF 10 wt% RT 24 NA 35
Ti3AlC2 Ti3C2Tx HF 50 wt% RT 2 100% 23,30
Ti3AlCN Ti3CNTx HF 30 wt% RT 18 80% 30
Zr3Al3C5 Zr3C2Tx HF 50 wt% RT 60 NA 36
Hf3Al(Si)4C6 Hf3C2Tx HF 35 wt% RT 60 73% 37
Mo2TiAlC2 Mo2TiC2Tx HF 50 wt% RT 48 100% 38
Mo2ScAlC2 (Mo2Sc)C2Tx HF 48 wt% 50 16 NA 39
V4AlC3 V4C3Tx HF 40 wt% RT 165 NA 40
Nb4AlC3 Nb4C3Tx HF 50 wt% RT 96 77% 41
Ta4AlC3 Ta4C3Tx HF 50 wt% RT 72 90% 30
Mo2Ti2AlC3 Mo2Ti2C3Tx HF 50 wt% 55 90 100% 38
Ti2AlN Ti2NTx HCl-KF 6 M HCl-7.0 mol KF 40 1 87% 17
V2AlC V2CTx HCl-NaF 12 M HCl-3.4 mol NaF 90 72 > 90% 42
Nb2AlC Nb2CTx HCl-NaBF4 12 M HCl-3.1 mol NaBF4 180 20 NA 32
Mo2Ga2C Mo2CTx HCl-LiF 12 M HCl-3 mol LiF 35 384 NA 43
Ti3AlCN Ti3CNTx HCl-LiF 6 M HCl-7.5 mol LiF 30 12 NA 44
Cr2TiAlC2 Cr2TiC2Tx HCl-LiF 6 M HCl-5 mol LiF 55 42 80% 38
Ti3AlC2 Ti3C2Tx HCl-LiF 6 M HCl-5 mol LiF 35 24 NA 45
Ti3AlC2 Ti3C2Tx HCl-LiF 6 M HCl-7.5 mol LiF 35 24 NA 45
Ti3AlC2 Ti3C2Tx HCl-LiF 9 M HCl-7.5 mol LiF 35 24 NA 46
Ti3AlC2 Ti3C2Tx HCl-LiF 9 M HCl-5 mol LiF 35 24 NA 47
Ti3AlC2 Ti3C2Tx HCl-LiF 6 M HCl-10 mol LiF 35 24 NA 48
Ti3AlC2 Ti3C2Tx HCl-LiF 9 M HCl-12 mol LiF 35 24 NA 14
Ti3AlC2 Ti3C2Tx HCl-NaBF4 12 M HCl-5.3 mol NaBF4 180 16 NA 32
Ti3AlC2 Ti3C2Tx NaHF2, KHF2, NH4HF2 1 M 60 8 NA 49,50
Ti4AlN3 Ti4N3Tx KF-LiF-NaF 59 wt% KF + 29 wt% LiF +
12 wt% NaF
550 0.5 NA 51
Ti3AlC2 Ti3C2Tx NaOH 27.5 M 270 12 92% 52
Ti3AlC2 Ti3C2Tx NH4Cl-TMA·OH 1 M NH4Cl + 0.2 M TMA·OH RT NA > 90% 53
Precursor MXenes Etchant Concentration T ( ℃) Time (h) Yield ref
Ti3AlC2,Ti2AlC, Ti2AlN, V2AlC Ti3C2Cl2, Ti2CCl2, Ti2NCl2, V2CCl2 ZnCl2 MAX:ZnCl2 = 1:6 (molar ratio) 550 5 NA 54
Ti3SiC2 Ti3C2Cl2 CuCl2 MAX:CuCl2 = 1:3 (molar ratio) 750 24 NA 55
Ti2AlC Ti2CCl2 CdCl2 MAX:CdCl2 = 1:3 (molar ratio) 650 - NA
Ta2AlC, Nb2AlC Ta2CCl2, Nb2CCl2 AgCl MAX:AgCl = 1:5 (molar ratio) 700 - NA
Ti3AlC2, Ti3ZnC2 Ti3C2Cl2 FeCl2, CoCl2, NiCl2, CuCl2, MAX :Salt = 1:3 (molar ratio) 700 - NA
Ti3AlC2 Ti3C2I, Ti3C2Br2 CuI, CuBr2 MAX:Salt = 1:6, 1:4 (molar ratio) 700 - NA
图2 (a) Ti3AlC2 MAX相被HF刻蚀前后(i, ii)以及剥离后Ti3C2Tx MXene纳米片(iii)的XRD图谱[23];(b)Ti3AlC2刻蚀前的SEM照片[30];(c)HF刻蚀Ti3AlC2后的SEM照片[30];(d)以HCl-LiF为蚀刻剂合成Ti3C2Tx MXene的两种不同的刻蚀路径[45];(e) Ti3AlC2和氟氢化物的反应机理图[49];(f)熔融氟盐刻蚀Ti4AlN3制备Ti4N3Tx的合成机理图[51]
Fig.2 (a) XRD pattern for Ti3AlC2 MAX before (i) and after (ii) HF treatment, and the exfoliated Ti3C2Tx MXene nanosheets (iii)[23]; (b) SEM micrograph of Ti3AlC2 MAX before HF treatment[30]; (c) SEM micrograph of Ti3AlC2 MAX after HF treatment[30]; (d) Synthesis of Ti3C2Tx via two different routes using HCl-LiF as the etching solution[45]; (e) Schematic illustration of reaction between Ti3AlC2 and bifluorides[49]; (f) Schematic illustration of the synthesis of Ti4N3Tx by etching Ti4AlN3 in molten salts[51]
图3 (a)水热辅助碱刻蚀法制备无氟MXenes;(b)不同水热温度和NaOH浓度下合成产物Ti3C2Tx MXene的示意图(红圈:MXene;黑色方块:MAX;蓝色三角形:钛酸钠(NTOs))[52]
Fig.3 (a) Hydrothermal method in alkali for fluorine-free MXenes; (b) Formation of Ti3C2Tx MXene under various hydrothermal temperatures and NaOH concentrations (Red circles: MXene; black squares: MAX; blue triangles: sodium titanate (NTOs))[52]
图4 (a) Ti2AlC在盐酸水溶液中的电化学腐蚀原理图[66];(b) Ti3AlC2在NH4Cl和TMA·OH溶液中的电化学刻蚀[53]
Fig.4 (a) Schematic mechanism for etching of Ti2AlC in HCl aqueous electrolyte[66]; (b) Electrochemical etching of bulk Ti3AlC2 in the electrolyte of NH4Cl and tetramethylammonium hydroxide (TMA·OH)[53]
图5 路易斯酸熔盐刻蚀法制备无氟MXenes的示意图[54]
Fig.5 Schematic illustration of etching effect of Lewis acid in molten salts for fluoride-free MXenes[54]
表2 不同刻蚀方法制备MXenes的优缺点对比
Table 2 Advantages and disadvantages comparison of MXenes prepared by different etching methods
表3 不同插层剂作用后Ti3C2Tx晶格常数c的对比
Table 3 The comparison of lattice parameter (c) of Ti3C2Tx via different intercalations
图6 (a) TMA·OH插入Ti3C2Tx层间示意图[74];(b)阳离子插层Ti3C2Tx MXenes示意图[79];(c)阳离子插层和离子交换法改性MXene[78]:(i) V2AlC的蚀刻和阳离子插层示意图,(ii) V2AlC、(iii) V2CTx、(iv)碱化后V2CTx和(v) Ca2+插层后的V2CTx对应的(002)面XRD衍射峰和SEM图像;(d) MXene纳米片(i, ii)、真空干燥的致密MXene (D-MF)膜(iii)、冷冻干燥的三维多孔MXene (3D-PMF)膜(iv)和冷冻干燥的三维多孔MXene/碳纳米管(3D-PMCF)膜(v)的制备流程图,以及(vi)三种膜对应的XRD图谱[86]
Fig.6 (a) Schematic illustration of the intercalation of TMA·OH between Ti3C2Tx layers[74]; (b) Schematic illustration of cation-intercalated Ti3C2Tx MXenes[79]; (c) Modified MXene by the cation intercalation and ion-exchange method[78]: (i) schematic illustration of the etching process of V2AlC and the cation intercalation behaviors, the corresponding (002) diffraction peaks of XRD and the SEM images of (ii) V2AlC, (iii) V2CTx, (iv) alkalizated V2CTx, and (v) V2CTx after Ca2+ intercalation; (d) Schematic illustration of the fabrication process of MXene nanosheets (i, ii), vacuum-dried dense MXene (D-MF) film (iii), freeze-dried porous MXene (3D-PMF) film (iv), and freeze-dried 3D porous MXene/CNTs (3D-PMCF) film (v), and (vi) XRD patterns corresponding to the three films[86]
表4 MXenes的表面基团调控方法
Table 4 Summary of surface termination regulation methods for MXenes
图7 (a)正丁基锂和碱溶液调控MXenes表面基团示意图[46];(b)含氧基团修饰的MXenes分解示意图[97]
Fig.7 (a) Schematic of n-butyllithium and alkali modified the surface terminations of MXene[46]; (b) Schematic illustration of the decomposition of O terminated MXenes[97]
图8 (a) K+插层和表面基团改性Ti3C2Tx MXene原理图;(b) 1 M H2SO4中,不同MXene基电极在1 mV·s-1扫描速率下的循环伏安曲线;(c) 1 mV·s-1的扫描速率时,不同MXene基材料的插层赝电容和表面电容的贡献量;(d) 400-KOH-Ti3C2电极在1M H2SO4中的容量保持率测试,插图对应1 A·g-1电流密度下的恒流充放电图[101]
Fig.8 (a) Schematic of K+ intercalation with surface terminations to modify Ti3C2Tx; (b) cycle voltammetry profiles at 1 mV·s-1 for different MXene-based electrodes in 1 M H2SO4; (c) Comparison of capacitance for MXene sheets (at scan rate of 1 mV·s-1 ), the total capacitance is separated into intercalation pseudocapacity and surface capacitive contributions; (d) capacitance retention test of 400-KOH-Ti3C2 electrode in 1 M H2SO4, inset shows galvanostatic cycling data collected 1 A·g-1[101]
图9 (a) PVP-Sn(IV)@Ti3C2纳米复合材料的制备工艺示意图;(b) PVP-Sn(Ⅳ)@Ti3C2电极在216.5 mA·cm-3 (0.1 A· g - 1) 电流密度下的充放电曲线;(c)不同电极在216.5 mA·cm-3 (0.1 A·g-1)电流密度下的循环性能和库仑效率;(d) PVP-Sn(IV)@Ti3C2电极的倍率性能[77]
Fig.9 (a) Schematic illustration of the fabrication process of PVP-Sn(Ⅳ)@Ti3C2 nanocomposites; (b) Charge-discharge profiles of the PVP-Sn(Ⅳ)@Ti3C2 electrode at different cycles with a current density of 216.5 mA·c m - 3 (0.1 A· g - 1); (c) Cycling performance and Coulombic efficiency of different electrodes at a current density of 216.5 mA·c m - 3 (0.1 A·g-1); (d) Rate performance of the PVP-Sn(Ⅳ)@Ti3C2 electrode[77]
图10 (a) S原子嵌入Ti3C2 MXene的合成示意图;(b) Ti3C2、CTAB处理的Ti3C2 (CT-Ti3C2)和CTAB处理后再经450 ℃热处理S原子插层的Ti3C2 (CT-S@Ti3C2-450)电极在0.1 A·g-1电流密度下的循环性能;(c) CT-S@Ti3C2-450在不同电流密度下的速率性能;(d) CT-S@Ti3C2-450电极在10 A·g-1电流密度下的长循环性能[125]
Fig.10 (a) Schematic illustration of the synthesis of S atoms intercalated Ti3C2 MXene; (b) The cycling performance of Ti3C2, CTAB-Ti3C2, and CTAB-S@Ti3C2-450 electrodes at a current density of 0.1 A·g-1; (c) Rate performance of CT-S@Ti3C2-450 at different current densities; (d) The long cycling performance of CT-S@Ti3C2-450 at a current density of 10 A·g-1[125]
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Nature, 2005, 438(7065): 197.

doi: 10.1038/nature04233     URL    
[2]
Lin L X, Sherrell P, Liu Y Q, Lei W, Zhang S W, Zhang H J, Wallace G G, Chen J. Adv. Energy Mater., 2020, 10(16): 1903870.

doi: 10.1002/aenm.201903870     URL    
[3]
Tian L, Li J Y, Liang F, Wang J K, Li S S, Zhang H J, Zhang S W. Appl. Catal. B, 2018, 225: 307.

doi: 10.1016/j.apcatb.2017.11.082     URL    
[4]
Liu H P, Lei W, Tong Z M, Li X J, Wu Z X, Jia Q L, Zhang S W, Zhang H J. Adv. Mater. Interfaces, 2020, 7(15): 2000494.

doi: 10.1002/admi.202000494     URL    
[5]
Meng Z, Stolz R M, Mendecki L, Mirica K A. Chem. Rev., 2019, 119(1): 478.

doi: 10.1021/acs.chemrev.8b00311    
[6]
Huang Z, Zhang H J, Zhang S W. CrystEngComm, 2017, 19(22): 2971.

doi: 10.1039/C7CE00549K     URL    
[7]
Guan K K, Li J Y, Lei W, Wang H H, Tong Z M, Jia Q L, Zhang H J, Zhang S W. J. Materiomics, 2021, 7(5): 1131.

doi: 10.1016/j.jmat.2021.01.008     URL    
[8]
Tian L, Li J Y, Liang F, Chang S, Zhang H J, Zhang M Y, Zhang S W. J. Colloid Interface Sci., 2019, 536: 664.

doi: 10.1016/j.jcis.2018.10.098     URL    
[9]
Xuan X Y, Zhang Z H, Guo W L. Nanoscale, 2018, 10(17): 7898.

doi: 10.1039/C8NR00445E     URL    
[10]
Rosa M, Costa Bassetto V, Girault H H, Lesch A, Esposito V. ACS Appl. Energy Mater., 2020, 3(1): 1017.

doi: 10.1021/acsaem.9b02055     URL    
[11]
Sun L Q, Zhao Z C, Li S, Su Y P, Huang L, Shao N N, Liu F, Bu Y B, Zhang H J, Zhang Z T. ACS Appl. Nano Mater., 2019, 2(4): 2144.

doi: 10.1021/acsanm.9b00122     URL    
[12]
Shan Q Y, Guan B, Zhu S J, Zhang H J, Zhang Y X. RSC Adv., 2016, 6(86): 83209.

doi: 10.1039/C6RA18265H     URL    
[13]
Lei W, Xiao J L, Liu H P, Jia Q L, Zhang H J. Tungsten, 2020, 2: 217.

doi: 10.1007/s42864-020-00054-6     URL    
[14]
Zhou Y H, Maleski K, Anasori B, Thostenson J O, Pang Y K, Feng Y Y, Zeng K X, Parker C B, Zauscher S, Gogotsi Y, Glass J T, Cao C Y. ACS Nano, 2020, 14(3): 3576.

doi: 10.1021/acsnano.9b10066     URL    
[15]
Ghidiu M, Naguib M, Shi C, Mashtalir O, Pan L M, Zhang B, Yang J, Gogotsi Y, Billinge S J L, Barsoum M W. Chem. Commun., 2014, 50(67): 9517.

doi: 10.1039/C4CC03366C     URL    
[16]
Li X L, Li M, Yang Q, Li H F, Xu H L, Chai Z F, Chen K, Liu Z X, Tang Z J, Ma L T, Huang Z D, Dong B B, Yin X W, Huang Q, Zhi C Y. ACS Nano, 2020, 14(1): 541.

doi: 10.1021/acsnano.9b06866     URL    
[17]
Soundiraraju B, George B K. ACS Nano, 2017, 11(9): 8892.

doi: 10.1021/acsnano.7b03129     URL    
[18]
Wu Y J, Sun Y J, Zheng J F, Rong J H, Li H Y, Niu L. Chem. Eng. J., 2021, 404: 126565.

doi: 10.1016/j.cej.2020.126565     URL    
[19]
Pang J B, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z F, Rummeli M H. Chem. Soc. Rev., 2019, 48(1): 72.

doi: 10.1039/C8CS00324F     URL    
[20]
Shi J, Jiang B L, Li C, Yan F Y, Wang D, Yang C, Wan J J. Mater. Chem. Phys., 2020, 245: 122533.

doi: 10.1016/j.matchemphys.2019.122533     URL    
[21]
Peng J H, Chen X Z, Ong W J, Zhao X J, Li N. Chem, 2019, 5(1): 18.

doi: 10.1016/j.chempr.2018.08.037     URL    
[22]
Zhang C J, Ma Y L, Zhang X T, Abdolhosseinzadeh S, Sheng H W, Lan W, Pakdel A, Heier J, Nüesch F. Energy Environ. Mater., 2020, 3(1): 29.

doi: 10.1002/eem2.12058     URL    
[23]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306     URL    
[24]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.

doi: 10.1002/adma.201304138     URL    
[25]
Xu C, Wang L B, Liu Z B, Chen L, Guo J K, Kang N, Ma X L, Cheng H M, Ren W C. Nat. Mater., 2015, 14(11): 1135.

doi: 10.1038/nmat4374     URL    
[26]
Geng D C, Zhao X X, Chen Z X, Sun W W, Fu W, Chen J Y, Liu W, Zhou W, Loh K P. Adv. Mater., 2017, 29(35): 1700072.

doi: 10.1002/adma.201700072     URL    
[27]
Hu M M, Hu T, Li Z J, Yang Y, Cheng R F, Yang J X, Cui C, Wang X H. ACS Nano, 2018, 12(4): 3578.

doi: 10.1021/acsnano.8b00676     URL    
[28]
Wang C D, Chen S M, Song L. Adv. Funct. Mater., 2020, 30(47): 2000869.

doi: 10.1002/adfm.202000869     URL    
[29]
Kim H, Wang Z W, Alshareef H N. Nano Energy, 2019, 60: 179.

doi: 10.1016/j.nanoen.2019.03.020     URL    
[30]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W. ACS Nano, 2012, 6(2): 1322.

doi: 10.1021/nn204153h     URL    
[31]
VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. ACS Nano, 2017, 11(11): 11135.

doi: 10.1021/acsnano.7b05350     pmid: 29039915
[32]
Peng C, Wei P, Chen X, Zhang Y L, Zhu F, Cao Y H, Wang H J, Yu H, Peng F. Ceram. Int., 2018, 44(15): 18886.

doi: 10.1016/j.ceramint.2018.07.124     URL    
[33]
Fredrickson K D, Anasori B, Seh Z W, Gogotsi Y, Vojvodic A. J. Phys. Chem. C, 2016, 120(50): 28432.

doi: 10.1021/acs.jpcc.6b09109     URL    
[34]
Deeva E B, Kurlov A, Abdala P M, Lebedev D, Kim S M, Gordon C P, Tsoukalou A, Fedorov A, Müller C R. Chem. Mater., 2019, 31(12): 4505.

doi: 10.1021/acs.chemmater.9b01105     URL    
[35]
Wang H W, Naguib M, Page K, Wesolowski D J, Gogotsi Y. Chem. Mater., 2016, 28(1): 349.

doi: 10.1021/acs.chemmater.5b04250     URL    
[36]
Zhou J, Zha X H, Chen F Y, Ye Q, Eklund P, Du S Y, Huang Q. Angew. Chem., 2016, 128(16): 5092.

doi: 10.1002/ange.201510432     URL    
[37]
Zhou J, Zha X H, Zhou X B, Chen F Y, Gao G L, Wang S W, Shen C, Chen T, Zhi C Y, Eklund P, Du S Y, Xue J M, Shi W Q, Chai Z F, Huang Q. ACS Nano, 2017, 11(4): 3841.

doi: 10.1021/acsnano.7b00030     pmid: 28375599
[38]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10): 9507.

doi: 10.1021/acsnano.5b03591     pmid: 26208121
[39]
Meshkian R, Tao Q Z, Dahlqvist M, Lu J, Hultman L, Rosen J. Acta Mater., 2017, 125: 476.

doi: 10.1016/j.actamat.2016.12.008     URL    
[40]
Tran M H, Schäfer T, Shahraei A, Dürrschnabel M, Molina-Luna L, Kramm U I, Birkel C S. ACS Appl. Energy Mater., 2018, 1(8): 3908.

doi: 10.1021/acsaem.8b00652     URL    
[41]
Zhao S S, Meng X, Zhu K, Du F, Chen G, Wei Y J, Gogotsi Y, Gao Y. Energy Storage Mater., 2017, 8: 42.
[42]
Liu F F, Zhou J, Wang S W, Wang B X, Shen C, Wang L B, Hu Q K, Huang Q, Zhou A G. J. Electrochem. Soc., 2017, 164(4): A709.

doi: 10.1149/2.0641704jes     URL    
[43]
Halim J, Kota S, Lukatskaya M R, Naguib M, Zhao M Q, Moon E J, Pitock J, Nanda J, May S J, Gogotsi Y, Barsoum M W. Adv. Funct. Mater., 2016, 26(18): 3118.

doi: 10.1002/adfm.201505328     URL    
[44]
Du F, Tang H, Pan L M, Zhang T, Lu H M, Xiong J, Yang J, Zhang C F. Electrochimica Acta, 2017, 235: 690.

doi: 10.1016/j.electacta.2017.03.153     URL    
[45]
Lipatov A, Alhabeb M, Lukatskaya M R, Boson A, Gogotsi Y, Sinitskii A. Adv. Electron. Mater., 2016, 2(12): 1600255.

doi: 10.1002/aelm.201600255     URL    
[46]
Chen X F, Zhu Y Z, Zhang M, Sui J Y, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. ACS Nano, 2019, 13(8): 9449.

doi: 10.1021/acsnano.9b04301     URL    
[47]
Song Y Z, Sun Z T, Fan Z D, Cai W L, Shao Y L, Sheng G, Wang M L, Song L X, Liu Z F, Zhang Q, Sun J Y. Nano Energy, 2020, 70: 104555.

doi: 10.1016/j.nanoen.2020.104555     URL    
[48]
Yu M Z, Zhou S, Wang Z Y, Zhao J J, Qiu J S. Nano Energy, 2018, 44: 181.

doi: 10.1016/j.nanoen.2017.12.003     URL    
[49]
Feng A H, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song L X. Mater. Des., 2017, 114: 161.

doi: 10.1016/j.matdes.2016.10.053     URL    
[50]
Feng A H, Yu Y, Jiang F, Wang Y, Mi L, Yu Y, Song L X. Ceram. Int., 2017, 43(8): 6322.

doi: 10.1016/j.ceramint.2017.02.039     URL    
[51]
Urbankowski P, Anasori B, Makaryan T, Er D Q, Kota S, Walsh P L, Zhao M Q, Shenoy V B, Barsoum M W, Gogotsi Y. Nanoscale, 2016, 8(22): 11385.

doi: 10.1039/c6nr02253g     pmid: 27211286
[52]
Li T F, Yao L L, Liu Q L, Gu J J, Luo R C, Li J H, Yan X D, Wang W Q, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Angew. Chem. Int. Ed., 2018, 57(21): 6115.

doi: 10.1002/anie.201800887     URL    
[53]
Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L. Angew. Chem. Int. Ed., 2018, 57(47): 15491.

doi: 10.1002/anie.201809662     URL    
[54]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P,Persson P O Å Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11): 4730.

doi: 10.1021/jacs.9b00574     URL    
[55]
Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B,Persson P O Å Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Piñero E, Taberna P L, Simon P, Huang Q. Nat. Mater., 2020, 19(8): 894.

doi: 10.1038/s41563-020-0657-0     URL    
[56]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2): 16098.

doi: 10.1038/natrevmats.2016.98     URL    
[57]
Zhan X X, Si C, Zhou J, Sun Z M. Nanoscale Horiz., 2020, 5(2): 235.

doi: 10.1039/C9NH00571D     URL    
[58]
Sun Z M, Li S, Ahuja R, Schneider J M. Solid State Commun., 2004, 129(9): 589.

doi: 10.1016/j.ssc.2003.12.008     URL    
[59]
Tang Y, Zhu J F, Yang C H, Wang F. J. Electrochem. Soc., 2016, 163(9): A1975.

doi: 10.1149/2.0921609jes    
[60]
Xu K. Chem. Rev., 2014, 114 (23): 11503.

doi: 10.1021/cr500003w     URL    
[61]
Natu V, Pai R, Sokol M, Carey M, Kalra V, Barsoum M W. Chem, 2020, 6(3): 616.

doi: 10.1016/j.chempr.2020.01.019     URL    
[62]
Naguib M, Presser V, Tallman D, Lu J, Hultman L, Gogotsi Y, Barsoum M W. J. Am. Ceram. Soc., 2011, 94(12): 4556.

doi: 10.1111/j.1551-2916.2011.04896.x     URL    
[63]
Dong Y F, Wu Z S, Zheng S H, Wang X H, Qin J Q, Wang S, Shi X Y, Bao X H. ACS Nano, 2017, 11(5): 4792.

doi: 10.1021/acsnano.7b01165     URL    
[64]
Liu Y, Li Y X, Li F, Liu Y Z, Yuan X Y, Zhang L F, Guo S W. Electrochimica Acta, 2019, 295: 599.

doi: 10.1016/j.electacta.2018.11.003    
[65]
Lukatskaya M R, Halim J, Dyatkin B, Naguib M, Buranova Y S, Barsoum M W, Gogotsi Y. Angew. Chem., 2014, 126(19): 4977.

doi: 10.1002/ange.201402513     URL    
[66]
Sun W, Shah S A, Chen Y, Tan Z, Gao H, Habib T, Radovic M, Green M J. J. Mater. Chem. A, 2017, 5(41): 21663.

doi: 10.1039/C7TA05574A     URL    
[67]
Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H. J. Am. Chem. Soc., 2019, 141(24): 9610.

doi: 10.1021/jacs.9b02578     URL    
[68]
Fashandi H, Dahlqvist M, Lu J, Palisaitis J, Simak S I, Abrikosov I A, Rosen J, Hultman L, Andersson M, Lloyd Spetz A, Eklund P. Nat. Mater., 2017, 16(8): 814.

doi: 10.1038/nmat4896     pmid: 28459444
[69]
Wang S, Cheng J, Zhu S Y, Ma J Q, Qiao Z H, Yang J, Liu W M. Scr. Mater., 2017, 131: 80.

doi: 10.1016/j.scriptamat.2017.01.013     URL    
[70]
Mashtalir O, Naguib M, Mochalin V N, Dall'Agnese Y, Heon M, Barsoum M W, Gogotsi Y. Nat. Commun., 2013, 4(1): 1716.

doi: 10.1038/ncomms2664     URL    
[71]
Mashtalir O, Lukatskaya M R, Kolesnikov A I, Raymundo-Piñero E, Naguib M, Barsoum M W, Gogotsi Y. Nanoscale, 2016, 8(17): 9128.

doi: 10.1039/c6nr01462c     pmid: 27088300
[72]
Mashtalir O, Lukatskaya M R, Zhao M Q, Barsoum M W, Gogotsi Y. Adv. Mater., 2015, 27(23): 3501.

doi: 10.1002/adma.201500604     URL    
[73]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chem. Mater., 2017, 29(18): 7633.

doi: 10.1021/acs.chemmater.7b02847     URL    
[74]
Wang Z Q, Xuan J N, Zhao Z G, Li Q W, Geng F X. ACS Nano, 2017, 11(11): 11559.

doi: 10.1021/acsnano.7b06476     URL    
[75]
Luo J M, Zhang W K, Yuan H D, Jin C B, Zhang L Y, Huang H, Liang C, Xia Y, Zhang J, Gan Y P, Tao X Y. ACS Nano, 2017, 11(3): 2459.

doi: 10.1021/acsnano.6b07668     URL    
[76]
Lukatskaya M R, Mashtalir O, Ren C E, Dall'Agnese Y, Rozier P, Taberna P L, Naguib M, Simon P, Barsoum M W, Gogotsi Y. Science, 2013, 341(6153): 1502.

doi: 10.1126/science.1241488     pmid: 24072919
[77]
Luo J M, Tao X Y, Zhang J, Xia Y, Huang H, Zhang L Y, Gan Y P, Liang C, Zhang W K. ACS Nano, 2016, 10(2): 2491.

doi: 10.1021/acsnano.5b07333     URL    
[78]
Lu M, Zhang Y P, Chen J N, Han W J, Zhang W, Li H B, Zhang X, Zhang B S. J. Energy Chem., 2020, 49: 358.

doi: 10.1016/j.jechem.2020.03.002     URL    
[79]
Al-Temimy A, Prenger K, Golnak R, Lounasvuori M, Naguib M, Petit T. ACS Appl. Mater. Interfaces, 2020, 12(13): 15087.

doi: 10.1021/acsami.9b22122     URL    
[80]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

doi: 10.1038/nature13970     URL    
[81]
Magne D, Mauchamp V, Célérier S, Chartier P, Cabioc'H T. Phys. Chem. Chem. Phys., 2016, 18(45): 30946.

doi: 10.1039/C6CP05985F     URL    
[82]
Zhao M Q, Ren C G, Ling Z, Lukatskaya M R, Zhang C F, van Aken K L, Barsoum M W, Gogotsi Y. Adv. Mater., 2015, 27(2): 339.

doi: 10.1002/adma.201404140     URL    
[83]
Boota M, Anasori B, Voigt C, Zhao M Q, Barsoum M W, Gogotsi Y. Adv. Mater., 2016, 28(7): 1517.

doi: 10.1002/adma.201504705     URL    
[84]
Li J M, Wang H, Xiao X. Energy Environ. Mater., 2020, 3(3): 306.

doi: 10.1002/eem2.12090     URL    
[85]
Sun N, Guan Z, Zhu Q Z, Anasori B, Gogotsi Y, Xu B. Nano Micro Lett., 2020, 12(1): 89.

doi: 10.1007/s40820-020-00426-0     URL    
[86]
Zhang P, Zhu Q Z, Soomro R A, He S Y, Sun N, Qiao N, Xu B. Adv. Funct. Mater., 2020, 30(47): 2000922.

doi: 10.1002/adfm.202000922     URL    
[87]
Zhang P, Soomro R A, Guan Z, Sun N, Xu B. Energy Storage Mater., 2020, 29: 163.
[88]
Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X Q, Nam K W, Yang X Q, Kolesnikov A I, Kent P R C. J. Am. Chem. Soc., 2014, 136(17): 6385.

doi: 10.1021/ja501520b     pmid: 24678996
[89]
Harris K J, Bugnet M, Naguib M, Barsoum M W, Goward G R. J. Phys. Chem. C, 2015, 119(24): 13713.

doi: 10.1021/acs.jpcc.5b03038     URL    
[90]
Hope M A, Forse A C, Griffith K J, Lukatskaya M R, Ghidiu M, Gogotsi Y, Grey C P. Phys. Chem. Chem. Phys., 2016, 18(7): 5099.

doi: 10.1039/C6CP00330C     URL    
[91]
Xu D X, Li Z D, Li L S, Wang J. Adv. Funct. Mater., 2020, 30(47): 2000712.

doi: 10.1002/adfm.202000712     URL    
[92]
Hu T, Li Z J, Hu M M, Wang J M, Hu Q M, Li Q Z, Wang X H. J. Phys. Chem. C, 2017, 121(35): 19254.

doi: 10.1021/acs.jpcc.7b05675     URL    
[93]
Fu Z H, Zhang Q F, Legut D, Si C, Germann T C, Lookman T, Du S Y, Francisco J S, Zhang R F. Phys. Rev. B, 2016, 94(10): 104103.

doi: 10.1103/PhysRevB.94.104103     URL    
[94]
Xie Y, Kent P R C. Phys. Rev. B, 2013, 87(23): 235441.

doi: 10.1103/PhysRevB.87.235441     URL    
[95]
Tang Q, Zhou Z, Shen P W. J. Am. Chem. Soc., 2012, 134(40): 16909.

doi: 10.1021/ja308463r     URL    
[96]
Meng Q Q, Ma J L, Zhang Y H, Li Z, Zhi C Y, Hu A, Fan J. Nanoscale, 2018, 10(7): 3385.

doi: 10.1039/C7NR07649E     URL    
[97]
Xie Y, Dall'Agnese Y, Naguib M, Gogotsi Y, Barsoum M W, Zhuang H L, Kent P R C. ACS Nano, 2014, 8(9): 9606.

doi: 10.1021/nn503921j     pmid: 25157692
[98]
Dall'Agnese Y, Lukatskaya M R, Cook K M, Taberna P L, Gogotsi Y, Simon P. Electrochem. Commun., 2014, 48: 118.

doi: 10.1016/j.elecom.2014.09.002     URL    
[99]
Karlsson L H, Birch J, Halim J, Barsoum M W,Persson P O Å. Nano Lett., 2015, 15(8): 4955.

doi: 10.1021/acs.nanolett.5b00737     pmid: 26177010
[100]
Lai S, Jeon J, Jang S K, Xu J, Choi Y J, Park J H, Hwang E, Lee S. Nanoscale, 2015, 7(46): 19390.

doi: 10.1039/C5NR06513E     URL    
[101]
Li J, Yuan X T, Lin C, Yang Y Q, Xu L, Du X, Xie J L, Lin J H, Sun J L. Adv. Energy Mater., 2017, 7(15): 1602725.

doi: 10.1002/aenm.201602725     URL    
[102]
Peng Q M, Guo J X, Zhang Q R, Xiang J Y, Liu B Z, Zhou A G, Liu R P, Tian Y J. J. Am. Chem. Soc., 2014, 136(11): 4113.

doi: 10.1021/ja500506k     URL    
[103]
Kamysbayev V, Filatov A S, Hu H C, Rui X, Lagunas F, Wang D, Klie R F, Talapin D V. Science, 2020, 369(6506): 979.

doi: 10.1126/science.aba8311     pmid: 32616671
[104]
Wang H B, Wu Y P, Zhang J F, Li G Y, Huang H J, Zhang X, Jiang Q G. Mater. Lett., 2015, 160: 537.

doi: 10.1016/j.matlet.2015.08.046     URL    
[105]
Halim J, Persson I, Eklund P,Persson P O Å Rosen J. RSC Adv., 2018, 8(64): 36785.

doi: 10.1039/C8RA07270A     URL    
[106]
Aslam M K, Niu Y B, Xu M W. Adv. Energy Mater., 2021, 11(2): 2000681.

doi: 10.1002/aenm.202000681     URL    
[107]
Bärmann P, Nölle R, Siozios V, Ruttert M, Guillon O, Winter M, Gonzalez-Julian J, Placke T. ACS Nano, 2021, 15(2): 3295.

doi: 10.1021/acsnano.0c10153     pmid: 33522794
[108]
Cao B, Liu H, Zhang P, Sun N, Zheng B, Li Y, Du H L, Xu B. Adv. Funct. Mater., 2021, 31(32): 2102126.

doi: 10.1002/adfm.202102126     URL    
[109]
Zhao Q, Zhu Q Z, Miao J W, Zhang P, Xu B. Nanoscale, 2019, 11(17): 8442.

doi: 10.1039/C8NR09653H     URL    
[110]
Zhao Q, Zhu Q Z, Liu Y, Xu B. Adv. Funct. Mater., 2021, 31(21): 2100457.

doi: 10.1002/adfm.202100457     URL    
[111]
Xu P, Xiao H, Liang X, Zhang T F, Zhang F C, Liu C H, Lang B B, Gao Q M. Carbon, 2021, 173: 135.

doi: 10.1016/j.carbon.2020.11.010     URL    
[112]
Zhu Q Z, Li J P, Simon P, Xu B. Energy Storage Mater., 2021, 35: 630.
[113]
Yu L Y, Hu L F, Anasori B, Liu Y T, Zhu Q Z, Zhang P, Gogotsi Y, Xu B. ACS Energy Lett., 2018, 3(7): 1597.

doi: 10.1021/acsenergylett.8b00718     URL    
[114]
Liu Y T, Zhang P, Sun N, Anasori B, Zhu Q Z, Liu H, Gogotsi Y, Xu B. Adv. Mater., 2018, 30(23): 1707334.

doi: 10.1002/adma.201707334     URL    
[115]
Zhang P, Zhu Q Z, Guan Z, Zhao Q, Sun N, Xu B. ChemSusChem, 2020, 13(6): 1621.

doi: 10.1002/cssc.201901497     pmid: 31318177
[116]
Zhao J B, Wen J, Xiao J P, Ma X Z, Gao J H, Bai L N, Gao H, Zhang X T, Zhang Z G. J. Energy Chem., 2021, 53: 387.

doi: 10.1016/j.jechem.2020.05.037     URL    
[117]
Dong Y F, Shi H D, Wu Z S. Adv. Funct. Mater., 2020, 30(47): 2000706.

doi: 10.1002/adfm.202000706     URL    
[118]
Hosaka T, Kubota K, Hameed A S, Komaba S. Chem. Rev., 2020, 120(14): 6358.

doi: 10.1021/acs.chemrev.9b00463     URL    
[119]
Liang Y L, Dong H, Aurbach D, Yao Y. Nat. Energy, 2020, 5(9): 646.

doi: 10.1038/s41560-020-0655-0     URL    
[120]
Kajiyama S, Szabova L, Sodeyama K, Iinuma H, Morita R, Gotoh K, Tateyama Y, Okubo M, Yamada A. ACS Nano, 2016, 10(3): 3334.

doi: 10.1021/acsnano.5b06958     pmid: 26891421
[121]
Gentile A, Ferrara C, Tosoni S, Balordi M, Marchionna S, Cernuschi F, Kim M H, Lee H W, Ruffo R. Small Methods, 2020, 4(9): 2000314.

doi: 10.1002/smtd.202000314     URL    
[122]
Liu F F, Liu Y C, Zhao X D, Liu X B, Fan L Z. J. Mater. Chem. A, 2019, 7(28): 16712.

doi: 10.1039/C9TA02212K     URL    
[123]
Li J H, Zhang J, Rui B L, Lin L, Chang L M, Nie P. Progress in Chemistry, 2019, 31(9): 1283.
(李佳慧, 张晶, 芮秉龙, 林丽, 常立民, 聂平. 化学进展, 2019, 31(9): 1283.).

doi: 10.7536/PC190219    
[124]
Zhao R Z, Di H X, Wang C X, Hui X B, Zhao D Y, Wang R T, Zhang L Y, Yin L W. ACS Nano, 2020, 14(10): 13938.

doi: 10.1021/acsnano.0c06360     URL    
[125]
Luo J M, Zheng J H, Nai J W, Jin C B, Yuan H D, Sheng O W, Liu Y J, Fang R Y, Zhang W K, Huang H, Gan Y P, Xia Y, Liang C, Zhang J, Li W Y, Tao X Y. Adv. Funct. Mater., 2019, 29(10): 1808107.

doi: 10.1002/adfm.201808107     URL    
[126]
Sun N, Zhu Q Z, Anasori B, Zhang P, Liu H, Gogotsi Y, Xu B. Adv. Funct. Mater., 2019, 29(51): 1906282.

doi: 10.1002/adfm.201906282     URL    
[127]
Xu M, Lei S L, Qi J, Dou Q Y, Liu L Y, Lu Y L, Huang Q, Shi S Q, Yan X B. ACS Nano, 2018, 12(4): 3733.

doi: 10.1021/acsnano.8b00959     URL    
[1] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[2] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[3] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[4] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[5] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[6] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[7] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[8] 王生杰, 蔡庆伟, 杜明轩, 曹美文, 徐海. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3): 229-241.
[9] 樊希安,官建国,王维,王一龙,童国秀,牟方志. 一维铁磁金属纳米材料的制备、结构调控及其磁性能*[J]. 化学进展, 2009, 21(01): 143-151.