English
新闻公告
More
化学进展 2021, Vol. 33 Issue (6): 1044-1058 DOI: 10.7536/PC200947 前一篇   

• 综述 •

基于红外隐身及多波段兼容隐身材料

冯利利1, 刘一曼1,2, 姚琳2,*(), 孙蕊1,2, 贺军辉2,*   

  1. 1 中国矿业大学(北京)化学与环境工程学院 北京 100083
    2 中国科学院理化技术研究所 北京 100190
  • 收稿日期:2020-09-23 修回日期:2020-11-27 出版日期:2021-06-20 发布日期:2020-12-22
  • 通讯作者: 姚琳, 贺军辉
  • 基金资助:
    国家重点研发计划项目(2017YFA0207102); 国家自然科学(21271177); 国家自然科学(21571182); 中央高校基本科研业务费项目(2021YJSHH23); 中国科学院光化学转换与功能材料重点实验室

Infrared Stealth and Multi-Band Compatible Stealth Materials

Lili Feng1, Yiman Liu1,2, Lin Yao2,*(), Rui Sun1,2, Junhui He2,*   

  1. 1 College of Chemistry and Environmental Engineering, China University of Mining and Technology(Beijing), Beijing 100083, China
    2 Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-09-23 Revised:2020-11-27 Online:2021-06-20 Published:2020-12-22
  • Contact: Lin Yao, Junhui He
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key Research and Development Program of China(2017YFA0207102); National Natural Science Foundation of China(21271177); National Natural Science Foundation of China(21571182); Fundamental Research Funds for the Central Universities(2021YJSHH23); Key Laboratory of Photochemical Conversion and Optoelectronic Materials, CAS

随着探测系统的快速发展和探测精度的提高,隐身技术的需求日益迫切。由于传统的红外隐身材料面临着多途径目标探测的严峻挑战,因此开发既能满足红外隐身要求又能满足雷达隐身、可见光隐身、激光隐身要求的新型兼容隐身材料具有重要意义。红外隐身材料主要针对目标的红外辐射特征进行材料、结构设计,降低目标在背景中热红外辐射信号的突出性以及被热红外制导武器命中的概率。本综述概述了红外隐身及兼容材料的工作原理、制备方法及最新研究进展。首先介绍了最具有发展前景的红外隐身材料包括光子晶体、掺杂半导体、相变材料和纳米材料的结构特性、隐身机理和研究成果,重点关注了实现红外隐身的材料以及具体的隐身特性,讨论了红外兼容雷达、红外兼容可见光、红外兼容激光以及多波段兼容等材料的兼容隐身条件,并对其最新研究进展进行了系统的总结。最后,梳理了目前红外隐身材料以及各兼容材料所存在的不足及面临的困难,并对未来的研究方向进行了展望。

With the rapid development of detection system and the improvement of detection accuracy, the demand for stealth technology is increasingly urgent. As the traditional infrared stealth materials are facing the severe challenge of multi-channel target detection, it is of great significance to develop new compatible stealth materials which can meet the requirements of infrared stealth, radar stealth, visible light stealth and laser stealth. The infrared stealth materials mainly aim at the infrared radiation characteristics of the target to design the material and structure, so as to reduce the prominence of the thermal infrared radiation signal in the background and the hit probability of the target by the thermal infrared guided weapon. This review summarizes the working principle, preparation methods and latest research progress of infrared stealth and compatible materials. Firstly, the structural characteristics, stealth mechanism and research results of the most promising infrared stealth materials, including photonic crystals, doped semiconductors, phase change materials and nano materials, are introduced. The materials to achieve infrared stealth and the specific stealth characteristics are focused. Secondly, infrared/radar compatible, infrared/visible light compatible, infrared/laser compatible and multi band compatible materials are discussed. In addition, the latest research progress is systematically summarized. Finally, the shortcomings and difficulties of infrared stealth materials and compatible materials are summarized, and the future research direction is prospected.

Contents

1 Introduction

2 Infrared stealth materials

2.1 Photonic crystals

2.2 Doped semiconductor

2.3 Phase change materials

2.4 Nano materials

2.5 Other materials

3 Compatible stealth

3.1 Infrared radar compatibility

3.2 Infrared and visible light compatibility

3.3 Infrared laser compatibility

3.4 Multi-band compatibility

4 Conclusion and outlook

()
图1 电磁波谱图
Fig.1 Electromagnetic wave spectrum
图2 三维光子晶体的红外光谱:(a) 1.00 μm三维光子晶体,(b) 1.20 μm三维光子晶体 [39];(c) 三维密集叠层光子晶体模型;(d) 玻璃基上的光子晶体[40]
Fig.2 Infrared spectra of phCs:(a) 1.0 μm-PS-3D,(b) 1.20 μm-PS-3D [39];(c) Three-dimensional densely stacked photonic crystal model;(d) A single layer of photonic crystal on a glass substrate[40]
图3 (a) ZAO/CNTAs/PI织物的制备工艺;红外热像图:(b) PI织物,(c) ZAO/PI织物,(d) CNTAs/PI织物,(e) ZAO/CNTAs/PI织物[52]
Fig.3 (a) The process of the preparation of ZAO/CNTAs/PI fabric; The IR thermal images:(b) PI fabric,(c) ZAO/PI fabric,(d) CNTAs/PI fabric,(e) ZAO/CNTAs/PI fabric[52]
图4 (a) ITO薄膜富氧层和贫氧层的分布示意图;(b) ITO薄膜的SEM图和三维形貌;(c) 横截面的SEM形貌;(d) 不同样品的光电性能,包括电阻率、载流子浓度和迁移率[55]
Fig.4 (a) Schematic diagram of interlayer structure thin film, and O distribution of oxygen-rich layer and the oxygen-poor layer of ITO thin film;(b) SEM top-images and 3D morphology;(c) SEM section morphology;(d) Electrical properties of different samples, including resistivity, carrier concentration and mobility[55]
图5 (a) 红外隐身织物的制备;(b) 红外隐身织物、未加工织物和空白对照样品的红外热成像;(c) 红外隐身织物的机理;(d) 人体皮肤、棉织物和红外伪装织物的发射率[71]
Fig.5 (a) Preparation of an infrared camouflage fabric;(b) Infrared thermal imaging of infrared camouflage fabric, unfinished fabric and blank control sample;(c) Mechanism of infrared camouflage fabric;(d) The emissivity of human skin, cotton fabric and infrared camouflage fabric[71]
图6 (a) 纯VO2薄膜和掺W的VO2薄膜XRD曲线;(b) 纯VO2薄膜和W掺杂VO2薄膜可见光和近红外透射光谱[83]
Fig.6 (a) XRD curves of pure and W-doped VO2 films;(b) Visible and near-infrared transmission spectra of pure and W-doped VO2 films[83]
图7 (a) 聚合物的形态模型;(b) 聚合物螺旋结构示意图及可能的红外吸收机理[101];(c) PU-ATO复合纤维的红外和热辐射屏蔽性能;(d) PU-ATO复合纤维的疏水性能;(e) 被水润湿的PU-ATO复合纤维织物在40 ℃加热1 min后的红外图像[102]
Fig.7 (a) The existent morphology models;(b) The schematic diagram and possible infrared absorption mechanism[101];(c) Infrared and thermal radiation shielding performance of PU-ATO composite fiber;(d) Hydrophobic performance of PU-ATO composite fiber;(e) Infrared image of PU-ATO composite fiber fabric wetted by water after heating for 1 minute at 40 ℃[102]
图8 (a) AAO材料制作过程示意图;(b) 纳米多孔硅表面AAO模板中炭黑的SEM图;(c) AAO模板在纳米多孔硅上的反射率;(d) 炭黑在纳米多孔硅AAO模板上的反射率[108];(e) 10 min溅射时间下的SEM图。不同条件下人体手臂的红外热图像:(f) 无遮盖的手臂,(g) 芳纶织物无铜溅射包覆臂,(h) 手臂被镀铜10 min的芳纶织物覆盖[109]
Fig.8 (a) Schematic diagram of the whole fabrication process;(b) Cross-sectional SEM image of carbon black in AAO templates on nanoporous Si;(c) Measured reflectivity of AAO templates on nanoporous Si;(d) Reflectivity of carbon black onto AAO templates on nanoporous Si[108];(e) SEM image of sputtering time of 10 min; Infrared thermal images of human arm under various conditions:(f) the arm without covering,(g) the arm covered by aramid fabric without copper sputtering,(h) the arm covered by aramid fabric with copper sputtering for 10 min[109]
图9 (a) 多功能材料结构示意图;(b) 可见光图;(c) TE波和TM波以10°和30°角入射时的吸收率[132];(d) 铝颗粒含量和漂浮速度对涂层红外发射率的影响示意图[133]
Fig.9 (a) Schematic of the multifunctional structure;(b) Visual image;(c) Measured RTAs for TE and TM polarizations at different incident angles of 10° and 30°[132];(d) The effect of the content and floating rate of Al particles on infrared emissivity of the coatings[133]
图10 (a) 雷达红外兼容隐身材料表面示意图;(b) 表面结构的透视图;(c) 微波吸收实验装置;(d) 不同片材电阻的吸收光谱;(e) 不同片材电阻的可见照片;(f) 红外照片[135]
Fig.10 (a) Schematic of an optical transparently radar-IR bi-stealth metasurface;(b) Perspective view of the metasurface structure;(c) Real pictures of the experimental setup for the microwave absorption;(d) Measured absorption spectra for different sheet resistances;(e) Visible photographs of different sheet resistance;(f) IR photographs[135]
图11 (a) ZnS/Ag/ZnS薄膜的光谱特性,左插图为薄膜横截面的SEM图,右插图为玻璃基板(左)和带有该薄膜的基板(右);(b) 沙绿色和黄绿色涂层的可见光反射率,插图显示了两个分别覆盖着样品的伪装涂层[143];(c) 4种不同颜色Ge/ZnS一维PC照片;(d) 横截面的SEM图[144]
Fig.11 (a) Spectral properties of the ZnS/Ag/ZnS film. The left inset shows an SEM image of the cross-section of the film, and the right inset shows the glass substrate(left) and the substrate with this film(right);(b) Visible reflectance of the sample and sandy and yellow-green camouflage coatings, as well as the coatings covered with the sample. The insets show two camouflage coatings covered with the sample, respectively[143];(c) Photographs of one-dimensional PCs with 4 different colors;(d) Cross-sectional SEM image[144]
图12 (a) 温度从30 ℃到55 ℃到30 ℃样品的颜色;(b) 在3~5 μm范围内BCG/CaCl 2/PEG-g-CDA复合材料的红外发射率;(c)内酯和醌结构的可逆结构转变[146]
Fig.12 (a) The color of sample with temperature heating(H) from 30 ℃ to 55 ℃ and cooling(C) back to 30 ℃;(b) Infrared emissivity of BCG/CaCl2 /PEG-g-CDA composites in 3~5 μm;(c) Reversible structural transformations of lactone and quinone structure [146]
图13 (a) 黑体、吸收体和涂层的光谱辐射出射度;(b) 不同温度下3~5 μm和8~14 μm辐射能的折减率;(c) 不同损耗角正切下的吸收光谱;(d) 不同介质层厚度下的吸收光谱 [154]
Fig.13 (a) The spectral radiant exitance of blackbody, absorber and coating;(b) The reduction ratio of radiant energy in 3~5 μm and 8~14 μm at different temperature;(c) Absorption spectra for different loss tangent;(d) Absorption spectra for different dielectric layer thickness [154]
图14 (a) 多波段兼容隐身和热管理概念;(b) SEM俯视图;(c) SEM截面图;(d) 垂直入射时的模拟光谱发射率;(e) 不同硅厚度下可见光的反射光谱,插图是与Si厚度相对应的计算颜色[159]
Fig.14 (a) Concept of multi-band MIR-compatible camouflage and thermal management;(b) Top-view SEM images;(c) Cutaway SEM image;(d) Simulated spectral emissivity at normal incidence;(e) Simulated reflection spectra in the visible regime for different Si thicknesses. Inset is the calculated colors corresponding to the thicknesses of the Si[159]
[1]
Guo R W, Jiang L Y, Zhu W N. Inter. Conf. Appl. Sci., 2016,0265.
[2]
Zhou C L, Xu S P, Pi P H, Cheng J, Wang L, Yang J X, Wen X F. Prog. Org. Coat., 2018, 121:30.
[3]
Yu Q, Luo J. Appl. Photo. tech., 2018, 33(4):16.
[4]
Lin C, Ren Q T, Zhuang H Y. Mater. Dev. Appl., 2018, 33(4):126.
[5]
Bychanok D, Li S, Sanchez-Sanchez A, Gorokhov G, Kuzhir P, Ogrin F Y, Pasc A, Ballweg T, Mandel K, Szczurek A, Fierro V, Celzard A. Appl. Phys. Lett., 2016, 108(1):013701.

doi: 10.1063/1.4938537     URL    
[6]
Bu H H, Xu G Y, Liu C Y, Guo T C, Tan S J. Infrared Phys. Technol., 2018, 94:280.

doi: 10.1016/j.infrared.2018.09.032     URL    
[7]
Fang K Y, Fang F. Mater. Lett., 2018, 230:279.

doi: 10.1016/j.matlet.2018.07.116     URL    
[8]
Liu B, Pan S B, Yu M X, Zhou G M. Ordn. Mater. Sci. Eng., 2017, 03,143.
[9]
Yuan W, Wu S B, Li S M, Lu H J. Ind. Inform., 2019, 8,82.
[10]
Zhang K, Yu B, Gui T J, Wu L F, Wang X M. MPF, 2019, 22(12):26.
[11]
Wu K H, Cheng K F, Wang J C, Chang Y C. Mater. Express, 2017, 7(6):500.

doi: 10.1166/mex.2017.1400     URL    
[12]
Wu X H, Lyu J, Hong G, Liu X C, Zhang X T. Langmuir, 2018, 34(30):9004.

doi: 10.1021/acs.langmuir.8b01410     URL    
[13]
Yu D, Wang Y, Hao T Q, Wang W, Liu B J. J. Ind. Text., 2018, 47(6):1392.

doi: 10.1177/1528083717692592     URL    
[14]
Salihoglu, Omer, Uzlu, Hasan, Burkay, Yakar. Nano Letters, 2018.
[15]
Kang W B, Zhu D M, Huang Z B, Zhou W C, Luo F. Vacuum, 2017, 145:174.

doi: 10.1016/j.vacuum.2017.08.033     URL    
[16]
Liang J, Li W, Xu G Y, Meng X, Liu K, Tan S J. Prog. Org. Coat., 2018, 115:74.
[17]
Han J H. Doctoral Dissertation of Dalian University of Technology, 2018.
(韩建华. 大连理工大学博士论文, 2018.).
[18]
Li Y, Gao J, An B. Intern. Conf. Num. Simul. Optoelectr. Dev., 2018,41.
[19]
Jiang W J. Doctoral Dissertation of Donghua University, 2016.
(江文杰. 东华大学博士论文, 2016.).
[20]
Zhao L, Liu H, He Z H, Dong S K. Appl. Opt., 2018, 57(8):1757.

doi: 10.1364/AO.57.001757     pmid: 29521956
[21]
Dong H L, Wang J C, Zeng Y R, Chen Z S, Shi J M. Spectr. Spectr. Analys., 2019, 39(10):3007.
[22]
Yu Z L, Yang N, Apostolopoulou-Kalkavoura V, Qin B, Ma Z Y, Xing W Y, Qiao C, Bergström L, Antonietti M, Yu S H. Angew. Chem. Int. Ed., 2018, 57(17):4538.

doi: 10.1002/anie.201711717     URL    
[23]
Apostolopoulou-Kalkavoura V, Gordeyeva K, Lavoine N, Bergström L. Cellulose, 2018, 25(2):1117.

doi: 10.1007/s10570-017-1633-y     URL    
[24]
Kumar R, Agarwal A K, Ramakrishna S A. Opt. Eng., 2018, 57(8):1.
[25]
Chen L, Lu C H, Lu Y, Fang Z G, Ni Y R, Xu Z Z. RSC Adv., 2013, 3(12):3967.

doi: 10.1039/c3ra21711f     URL    
[26]
Wang C W. Doctoral Dissertation of Northwest Normal University, 2015.
(王成伟. 西北师范大学博士论文, 2015.).
[27]
Huang Y J, Pu M B, Zhao Z Y, Li X, Ma X L, Luo X G. Opt. Commun., 2018, 407:204.

doi: 10.1016/j.optcom.2017.09.036     URL    
[28]
Zhang Y D, Peng Z S, Cai C S, Liu Z, Lin Y B, Zheng W H, Yang J Y, Hou L T, Cao Y. J. Mater. Chem. A, 2016, 4(30):11821.

doi: 10.1039/C6TA05249E     URL    
[29]
Yu W J, Jia X, Long Y B, Shen L, Liu Y, Guo W B, Ruan S P. ACS Appl. Mater. Interfaces, 2015, 7(18):9920.

doi: 10.1021/acsami.5b02039     URL    
[30]
Lee H M, Wu J C. J. Appl. Phys., 2010, 107(9):09E149.

doi: 10.1063/1.3362935     URL    
[31]
Hsu H T, Kuo F Y, Wu C J. J. Appl. Phys., 2010, 107(5):053912.

doi: 10.1063/1.3327216     URL    
[32]
Srivastava R, Pati S, Ojha S P. Prog. Electromagn. Res. B, 2008, 1:197.

doi: 10.2528/PIERB07102903     URL    
[33]
He S. Doctoral Dissertation of Nankai University, 2011.
(何嵩. 南开大学博士论文, 2011.).
[34]
Kang Y Q, Liu H M. Superlattices Microstruct., 2018, 114:355.

doi: 10.1016/j.spmi.2017.12.046     URL    
[35]
Ramanujam N R, Wilson K S J. Opt. Commun., 2016, 368:174.

doi: 10.1016/j.optcom.2016.02.018     URL    
[36]
Li K W, Li X C, Chen P A, Chen Y Z, Zhu B Q. Acta Opti. Sin., 2018, 38(9):301.
[37]
Amri R, Sahel S, Gamra D, Lejeune M, Clin M, Zellama K, Bouchriha H. Opt. Mater., 2018, 76:222.

doi: 10.1016/j.optmat.2017.12.041     URL    
[38]
Zhang J K, Shi J M, Zhao D P, Chen Y Z. Opt. Eng, 2017, 56(7):077110.

doi: 10.1117/1.OE.56.7.077110     URL    
[39]
Yan D, Qiu L L, Meng Z H, Xu M, Dong X. Acta Polym. Sin., 2018, 6:733.
[40]
Liu M, Wang Z Q, Wang Y. Optik-Int. J. Light. Electron Opt., 2019, 80,894.
[41]
Zhao X R, Liu C Y, Xu C, Xu G Y, Zhang Y T, Tan S J, Han Y. Infrared Phys. Technol., 2018, 92:454.

doi: 10.1016/j.infrared.2018.06.012     URL    
[42]
Liu J Y, Wang J J, Xu B C, Hou Y S, Gao H T. J. Aeron. Mater., 2017, 37(5):29.
[43]
Hussain S Q, Le A H T, Mallem K, Park H, Ju M, Kim Y, Cho J, Park J, Kim Y, Yi J. Appl. Surf. Sci., 2018, 447:866.

doi: 10.1016/j.apsusc.2018.03.143     URL    
[44]
Yang J F, Xu C L, Qu S B, Ma H, Wang J F, Pang Y Q. J. Adv. Dielect., 2018, 8(1):1850007.

doi: 10.1142/S2010135X18500078     URL    
[45]
Wu C C. RSC Adv., 2018, 8(22):11862.

doi: 10.1039/C7RA13550E     URL    
[46]
Kim K H, Lee T H, Kim T G. ACS Appl. Mater. Interfaces, 2017, 9(28):24357.

doi: 10.1021/acsami.7b06362     URL    
[47]
Aijo John K, Philip R R, Sajan P, Manju T. Vacuum, 2016, 132:91.

doi: 10.1016/j.vacuum.2016.07.035     URL    
[48]
Claudia H, Siegfried M, Gayatri R, Vladimir S, Karen W, Barbara L. Materials, 2017, 10(3):245.

doi: 10.3390/ma10030245     URL    
[49]
Huang Z H. Doctoral Dissertation of Shandong University, 2019.
(黄朝晖. 山东大学博士论文, 2019.).
[50]
Li H H, Huang Y X, Li Z M, Wang Y, Cao Q X. J. Vac. Sci. Technol. 2014, 9,997.
[51]
Krstulović N, Salamon K, Budimlija O, Kova? J, Dasović J, Umek P, Capan I. Appl. Surf. Sci., 2018, 440:916.

doi: 10.1016/j.apsusc.2018.01.295     URL    
[52]
Xu R, Wang W, Yu D. Compos. Struct., 2019, 212:58.
[53]
Chen Y D, Zhu G S, Xu H R, Dong L, Jiang X P, Shi Z F. Funct. Mater., 2018, 49(9):09127.
[54]
Dong L, Zhu G S, Xu H R, Jiang X P, Zhang X Y, Zhao Y Y, Yan D L, Yuan L, Yu A B. Materials, 2019, 12(6):958.

doi: 10.3390/ma12060958     URL    
[55]
Dong L, Chen Y D, Zhu G S, Xu H R, Song J J, Zhang X Y, Zhao Y Y, Yan D L, Y L, Yu A B. Mater. Lett., 2020, 260:126735.

doi: 10.1016/j.matlet.2019.126735     URL    
[56]
Seitz S, Ajiro H. Sol. Energy Mater. Sol. Cells, 2019, 190:57.

doi: 10.1016/j.solmat.2018.10.012     URL    
[57]
Sheng N, Zhu C Y, Sakai H, Akiyama T, Nomura T. Sol. Energy Mater. Sol. Cells, 2019, 191:141.

doi: 10.1016/j.solmat.2018.11.013     URL    
[58]
Yan X X, Qian X Y, Chang Y J. Coatings, 2019, 9(8):475.

doi: 10.3390/coatings9080475     URL    
[59]
Fu J W, Zhu J H, Wang Z W, Wang Y H, Wang S M, Yan R Q, Xu Q. J. Colloid Interface Sci., 2019, 542:123.

doi: 10.1016/j.jcis.2019.01.131     URL    
[60]
Liu X X, Wang S W, Xia H, Zhang X T, Ji R N, Li T X, Lu A W. Chin. Opt. Lett., 2016, 14(8):081203.

doi: 10.3788/COL     URL    
[61]
Liu X X, Ji R N, Zhang Y, Li H F, Wang S W. Opt. Quantum Electron., 2016, 48(10):453.

doi: 10.1007/s11082-016-0720-x     URL    
[62]
Borah R, Kumar A, Das M K, Ramteke A. RSC Adv., 2015, 5(60):48971.

doi: 10.1039/C5RA01809A     URL    
[63]
Chen X, Gao H Y, Yang M, Xing L W, Dong W J, Li A, Zheng H Y, Wang G. Energy Storage Mater., 2019, 18:349.
[64]
Cuadrado A, Rojo A I, Wells G, Hayes J D, Cousin S P, Rumsey W L, Attucks O C, Franklin S, Levonen A L, Kensler T W, Dinkova-Kostova A T. Nat. Rev. Drug Discov., 2019, 18(4):295.

doi: 10.1038/s41573-018-0008-x     pmid: 30610225
[65]
Cui J, Li X Q, Pei Z Q, Pei Y S. Chem. Eng. J., 2019, 358:379.

doi: 10.1016/j.cej.2018.10.062     URL    
[66]
Ma G X, Sun J H, Zhang Y, Jing Y, Jia Y Z. Chem. Phys. Lett., 2019, 714:166.

doi: 10.1016/j.cplett.2018.11.003     URL    
[67]
Lin Y X, Zhu C Q, Alva G, Fang G Y. Appl. Energy, 2018, 231:494.

doi: 10.1016/j.apenergy.2018.09.154     URL    
[68]
Xue J J, Zhu C L, Li J H, Li H X, Xia Y N. Adv. Funct. Mater., 2018, 28(15):1705563.

doi: 10.1002/adfm.v28.15     URL    
[69]
Chen D Z, Qin S Y, Tsui G C P, Tang C Y, Ouyang X, Liu J H, Tang J N, Zuo J D. Compos. Part B: Eng., 2019, 157:239.

doi: 10.1016/j.compositesb.2018.08.066     URL    
[70]
Zhang J, Liu B Y, Liu B, Wang Y. J. Qingdao Univ. Nat. Sci. Ed., 2018, 31,19.
[71]
Xu R, Xia X M, Wang W, Yu D. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 591:124519.

doi: 10.1016/j.colsurfa.2020.124519     URL    
[72]
Abdellaoui I, Merad G, Maaza M, Abdelkader H S. J. Alloy. Compd., 2016, 658:569.

doi: 10.1016/j.jallcom.2015.10.248     URL    
[73]
Sun R, Yao L, He J H, Liang J. Prog. Chem., 2019, 31(12):1712.
(孙蕊, 姚琳, 贺军辉, 梁杰. 化学进展, 2019, 31(12):1712.)

doi: 10.7536/PC190527    
[74]
Yao L, Qu Z, Pang Z L, Li J, Tang S Y, He J H, Feng L L. Small, 2018, 14(34):1801661.

doi: 10.1002/smll.v14.34     URL    
[75]
Qu Z, Yao L, Li J, He J H, Mi J, Ma S H, Tang S Y, Feng L L. ACS Appl. Mater. Interfaces, 2019, 11(17):15960.

doi: 10.1021/acsami.8b22113     URL    
[76]
Lv W, Huang D Z, Chen Y M, Qiu Q, Luo Z K. Ceram. Int., 2014, 40(8):12661.

doi: 10.1016/j.ceramint.2014.04.113     URL    
[77]
Zhou J D, Gao Y F, Liu X L, Chen Z, Dai L, Cao C X, Luo H J, Kanahira M, Sun C, Yan L M. Phys. Chem. Chem. Phys., 2013, 15(20):7505.

doi: 10.1039/c3cp50638j     URL    
[78]
Dai L, Chen S, Liu J J, Gao Y F, Zhou J D, Chen Z, Cao C X, Luo H J, Kanehira M. Phys. Chem. Chem. Phys., 2013, 15(28):11723.

doi: 10.1039/c3cp51359a     URL    
[79]
Chen L L, Cui Y Y, Shi S Q, Liu B, Luo H J, Gao Y F. RSC Adv., 2016, 6(90):86872.

doi: 10.1039/C6RA19121E     URL    
[80]
Yang M M, Yang Y J, Hong B, Wang L X, Hu K, Dong Y Q. Sci. Rep., 2016, 6,23119.

doi: 10.1038/srep23119     URL    
[81]
Fan L L, Chen S, Luo Z L, Liu Q H, Wu Y F, Song L, Ji D X, Wang P, Chu W S, Gao C, Zou C W, Wu Z Y. Nano Lett., 2014, 14(7):4036.

doi: 10.1021/nl501480f     pmid: 24956434
[82]
Dai L, Cao C X, Gao Y F, Luo H J. Sol. Energy Mater. Sol. Cells, 2011, 95(2):712.

doi: 10.1016/j.solmat.2010.10.008     URL    
[83]
Chen X, Wu M F, Liu X X, Wang D, Liu F, Chen Y W, Yi F, Huang W X, Wang S W. Nanomaterials, 2019, 9(6):834.

doi: 10.3390/nano9060834     URL    
[84]
Ji H N, Liu D Q, Cheng H F, Zhang C Y, Yang L X, Ren D W. RSC Adv., 2017, 7(9):5189.

doi: 10.1039/C6RA26731A     URL    
[85]
Ji H N, Liu D Q, Zhang C Y, Yang L X, Cheng H F, Zheng W W. Sci. Adv. Mater., 2017, 9(6):861.

doi: 10.1166/sam.2017.3063     URL    
[86]
Qu Z, Yao L, Ma S H, Li J, He J H, Mi J, Tang S Y, Feng L L. Sol. Energy Mater. Sol. Cells, 2019, 200:109920.

doi: 10.1016/j.solmat.2019.109920     URL    
[87]
Zhu H R. Doctoral Dissertation of Dalian University of Technology, 2017.
(褚海荣. 大连理工大学博士论文, 2017.).
[88]
Zhao L, Li X X, Guo Y X, Ma D Y. J. Mater. Eng., 2019, 47(3):42.
[89]
You L L. Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics, 2017.
(尤玲丽. 南京航空航天大学博士论文, 2017.).
[90]
Lu L. Doctoral Dissertation of Jiangsu University of science and technology. 2017.
(卢琳. 江苏科技大学博士论文, 2017.).
[91]
Farrokhi H, Khani O, Nemati F, Jazirehpour M. Synth. Met., 2016, 215:142.

doi: 10.1016/j.synthmet.2016.02.016     URL    
[92]
Bu X H, Zhang Z W, Hang Z S, Huang Y, Zhou Y M. J. Appl. Polym. Sci., 2017, 134(19):1.
[93]
Chou J C, Liu C Y, Yang C J, Liao Y H, Su M W, Chen C C. J. Display Technol., 2015, 11(5):443.

doi: 10.1109/JDT.2015.2407911     URL    
[94]
Chen A J. Doctoral Dissertation of Anhui University of Technology, 2019.
(陈爱娟. 安徽理工大学博士论文, 2019.).
[95]
Zhang J, Liu W, Zhang T, Wang D H, Ma T B. Sci. Rep., 2018, 55(2):91.
[96]
Zhang L, Du W Y, Nautiyal A, Liu Z, Zhang X Y. Sci. China Mater., 2018, 61(3):303.

doi: 10.1007/s40843-017-9206-4     URL    
[97]
Wang G X, Morrin A, Li M R, Liu N Z, Luo X L. J. Mater. Chem. B, 2018, 6(25):4173.

doi: 10.1039/C8TB00817E     URL    
[98]
Simotwo S K, DelRe C, Kalra V. ACS Appl. Mater. Interfaces, 2016, 8(33):21261.

doi: 10.1021/acsami.6b03463     URL    
[99]
Yang J, Yang T, Hou S F. J. Iran. Chem. Soc., 2016, 13(9):1611.

doi: 10.1007/s13738-016-0877-z     URL    
[100]
Baker C O, Huang X W, Nelson W, Kaner R B. Chem. Soc. Rev., 2017, 46(5):1510.

doi: 10.1039/C6CS00555A     URL    
[101]
Wu W T, Zhou Y M, Xu R, Hu S C, Wu Y J, He Q, He M, Bu X H, Nan Q L, Yang X M. J. Mater. Sci., 2019, 54(22):14243.

doi: 10.1007/s10853-019-03880-3     URL    
[102]
Jeong S M, Ahn J, Choi Y K, Lim T, Seo K, Hong T, Choi G H, Kim H, Lee B W, Park S Y, Ju S. NPG Asia Mater., 2020, 12:32.

doi: 10.1038/s41427-020-0213-z     URL    
[103]
Hosseini S H, Zamani P. J. Magn. Magn. Mater., 2016, 397:205.

doi: 10.1016/j.jmmm.2015.08.105     URL    
[104]
Liu X W, Lin W, Su R H, Li Y P, Wu Q Q. Mater. Guide, 2017, 31(A02):134.
[105]
Chen K, Ji J, Zhang Y F, Jia C C, Yang S W. J. Eng. Sci., 2016, 38(9):1296.
[106]
Fang S J, Wang W, Yu X L, Xu H, Zhong Y, Sui X F, Zhang L P, Mao Z P. Mater. Lett., 2015, 143:120.

doi: 10.1016/j.matlet.2014.11.102     URL    
[107]
Zhang W G, Xu G Y, Shi X, Ma H, Li L. Photonics Nanostructures-Fundam. Appl., 2015, 14:46.
[108]
Li H, Wu L, Zhang H, Dai W, Hao J M, Wu H, Ren F, Liu C. ACS Appl. Mater. Interfaces, 2020, 12(3):4081.

doi: 10.1021/acsami.9b19107     URL    
[109]
Jia L L, Fu B H, Lu M L, Liang H E, Wang L. Mater. Res. Express, 2020, 7(5):056401.

doi: 10.1088/2053-1591/ab8b1c     URL    
[110]
Sun J P, Qu Y H. Sci. Technol., 2017, 5:156.
[111]
Wei S P. Doctoral Dissertation of Beijing University of Chemical Technology, 2017.
(魏少平. 北京化工大学博士论文, 2017.).
[112]
Wang J, Li C, Liu L, Zheng S L, Xiang T F, Yang L. Acta. Sin., 2017, 02,323-331.
[113]
Mascolo G, Mascolo M C. ChemInform, 2015, 46(34): no.
[114]
Yang L. Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics, 2018.
(杨玲. 南京航空航天大学博士论文, 2018.).
[115]
Yang L, Li C, Zhang M X, Dong C D, Xiang T F, Chan W M. Infrared Phys. Technol., 2018, 40:95.
[116]
Phan L, Kautz R, Leung E M, Naughton K L, van Dyke Y, Gorodetsky A A. Chem. Mater., 2016, 28(19):6804.

doi: 10.1021/acs.chemmater.6b01532     URL    
[117]
Xu C Y, Stiubianu G T, Gorodetsky A A. Science, 2018, 359(6383):1495.

doi: 10.1126/science.aar5191     URL    
[118]
Tao P, Shang W, Song C Y, Shen Q C, Zhang F Y, Luo Z, Yi N, Zhang D, Deng T. Adv. Mater., 2015, 27(3):428.

doi: 10.1002/adma.v27.3     URL    
[119]
Cui Y, Gong H X, Wang Y J, Li D W, Bai H. Adv. Mater., 2018, 30(14):1706807.

doi: 10.1002/adma.v30.14     URL    
[120]
Wang L X. Doctoral Dissertation of Nanjing University of Technology, 2017.
(汪丽旭. 南京理工大学博士论文, 2017.)
[121]
Meng Z H, Li R F, Qiu L L, Wang S S, Qiao Y. Acta Armam., 2019, 40(1):201.
[122]
Ye S T, Liu Z H, ChenG S Y, Ban G D. Laser infrared, 2015, 45(11):1285.
[123]
Ai X C. Doctoral Dissertation of University of Electronic Science and technology, 2015.
艾现成. 电子科技大学博士论文, 2015.)
[124]
Wang X K, Zhao F, Wang J J. Materi. Guide, 2019, 33(34):83.
[125]
Zhang Y K, Zeng F, Dai Q H, Wu Z B. Tact. Miss. Technol., 2019, 193(1):62.
[126]
Zhang X Y, Chung C J, Subbaraman H, Pan Z Y, Chen C T, Chen R T. SPIE Conf. Series, 2016,975614.
[127]
Gerhard M, Beigang R, Rahm M. SPIE Commer. Sci. Sens. Imag., 2016,98540.
[128]
Li J Z, Tian H, Liu H T, Cheng H F, Hou Z X. Funct. Mat., 2017, 48(5):5137.
[129]
Zhang Z Y, Xu M Z, Ruan X F, Yan J F, Yun J N, Zhao W, Wang Y N. Ceram. Int., 2017, 43(3):3443.

doi: 10.1016/j.ceramint.2016.11.034     URL    
[130]
Wang X K. Infrared, 2019, 40(7):1.
(汪心坤. 红外, 2019, 40(7): 1.)
[131]
Fantucci S, Serra V. Energy Build., 2019, 182:300.

doi: 10.1016/j.enbuild.2018.10.003     URL    
[132]
Zhong S M, Wu L J, Liu T J, Huang J F, Jiang W, Ma Y G. Opt. Express, 2018, 26(13):16466.

doi: 10.1364/OE.26.016466     URL    
[133]
Shi M Y, Xu C, Yang Z H, Liang J, Wang L, Tan S J, Xu G Y. J. Alloy. Compd., 2018, 764:314.

doi: 10.1016/j.jallcom.2018.06.093     URL    
[134]
Xu C L, Wang B K, Pang Y Q, Wang J F, Yan M B, Wang W J, Wang A X, Jiang J M, Qu S B. IEEE Access, 2019, 7:147586.

doi: 10.1109/Access.6287639     URL    
[135]
Xu C L, Wang B K, Yan M B, Pang Y Q, Meng Y Y, Wang W J, Wang J F, Fan Q, Qu S B. Infrared Phys. Technol., 2020, 105:103108.

doi: 10.1016/j.infrared.2019.103108     URL    
[136]
Chen M H, Cheng H F, Xia C L, Peng R F, Zhang C Y, Liu D Q. New Chem. Mater. 2018, 046(4):36.
[137]
Li Y. Doctoral Dissertation of University of Defense Science and technology, 2016.
(李阳. 国防科学技术大学博士论文, 2016.).
[138]
Wang K Z, Wang C X, Yin Y J, Chen K L. J. Alloy. Compd., 2017, 690:741.

doi: 10.1016/j.jallcom.2016.08.171     URL    
[139]
Sun X D, Lu X L, Lu A J, Ma T L, Zhu C. J. PLA Univ. Sci. Technol.: Nat. Sci. Ed. , 2016, 17(2):198.
[140]
Kavei G, Nikbin S, Hadifakoor A. Int. J. Energy Technol. Policy, 2016, 12(2):197.

doi: 10.1504/IJETP.2016.075676     URL    
[141]
Tachikawa S, Ohnishi A, Shimakawa Y, Ochi A, Okamoto A, Nakamura Y. J. Thermophys. Heat Transf., 2003, 17(2):264.

doi: 10.2514/2.6760     URL    
[142]
Qi D, Chen F, Wang X, Luo H, Cheng Y Z, Niu X Y, Gong R Z. Opt. Lett., 2018, 43(21):5323.

doi: 10.1364/OL.43.005323     URL    
[143]
Dang S C, Wang Z J, Ye H. Mater. Res. Express, 2019, 6(10):106422.

doi: 10.1088/2053-1591/ab3a5f     URL    
[144]
Qi D, Wang X, Cheng Y Z, Gong R Z, Li B W. Opt. Mater., 2016, 62:52.

doi: 10.1016/j.optmat.2016.09.024     URL    
[145]
Bu H H, Xu C, Xu G Y, Liu C Y, Tan S J, Guo T C, Xiang S S. Opt. Mater., 2018, 84:109.

doi: 10.1016/j.optmat.2018.06.061     URL    
[146]
Liu R H, Shi J M, Zhao D P, Zhang J K, Liu Z W. Laser Optoelectron. Prog., 2019, 56(3):031601.

doi: 10.3788/LOP     URL    
[147]
Wang H, Zhao D P, Zhang J K, Wang C M, Chen Z S, Liu R H. Acta Lumin., 2019, 40(9):1080.
[148]
Zhang J K, Shi J M, Miao L, Wang Q C, Zhao D P, Zeng J. Chin. J. Lumin., 2016, 37(9):1130.
[149]
Miao L, Li Z G, Xu Y L. Appl. Photoelectr. Technol., 2015, 30(5):42.
[150]
Wang H, Zhao D P, Liu R H, Zhang J K, Chen Z S, Shi J M. Laser Optoelectron. Prog., 2019, 56(18):181602.

doi: 10.3788/LOP     URL    
[151]
Kim J, Han K, Hahn J W. Sci. Rep., 2017, 7:6740.

doi: 10.1038/s41598-017-06749-0     URL    
[152]
Miao L, Shi J M, Wang J C, Zhao D P, Chen Z S, Wang Q C. Opt. Eng, 2016, 55(5):057101.

doi: 10.1117/1.OE.55.5.057101     URL    
[153]
Qin Y S, Zhang M J, Guan Y, Huang X G. Ceram. Int., 2019, 45(11):14312.

doi: 10.1016/j.ceramint.2019.04.144     URL    
[154]
Chen X L, Tian C H, Che Z X, Chen T P. Optik, 2018, 172:840.

doi: 10.1016/j.ijleo.2018.07.091     URL    
[155]
Liu Y. Doctoral Dissertation of Dalian University of Technology, 2019.
(刘毅. 大连理工大学博士论文, 2019.).
[156]
Cao X L. Doctoral Dissertation of Anhui University of Technology, 2015.
(曹小丽. 安徽理工大学博士论文, 2015.).
[157]
Zhang J K, Shi J M, Zhao D P, Wang Q C, Wang C M. Infrared Phys. Technol., 2017, 85:62.

doi: 10.1016/j.infrared.2017.05.018     URL    
[158]
Cai Y, Yang H J, Jiang P, Chen X. Optik-Int. J. Light. Electron Opt., 2016. 11.153.
[159]
Pan M Y, Huang Y, Li Q, Luo H, Zhu H Z, Kaur S, Qiu M. Nano Energy, 2020, 69:104449.

doi: 10.1016/j.nanoen.2020.104449     URL    
[1] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[2] 李玥, 卢亚妹, 王鹏飞, 曹莹泽, 戴春爱. 透明超疏水材料的制备及其应用[J]. 化学进展, 2021, 33(12): 2362-2377.
[3] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[4] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.
[5] 黄威嫔, 任科峰, 计剑. 聚合物材料表面微结构调控新策略[J]. 化学进展, 2020, 32(10): 1494-1503.
[6] 曹宁宁, 卢松涛, 姚锐, 李慧敏, 秦伟, 吴晓宏. 太阳光谱选择性吸收涂层[J]. 化学进展, 2019, 31(4): 597-612.
[7] 孙蕊, 姚琳, 贺军辉, 梁杰. 热致变色材料智能涂层[J]. 化学进展, 2019, 31(12): 1712-1728.
[8] 阎映弟, 罗能镇, 相咸高, 徐义明, 张庆华, 詹晓力. 防覆冰涂层构建机理及制备[J]. 化学进展, 2014, 26(01): 214-222.
[9] 李辉, 赵蕴慧, 袁晓燕. 抗结冰涂层: 从表面化学到功能化表面[J]. 化学进展, 2012, 24(11): 2087-2096.
[10] 刘红艳, 周健* . 两性离子聚合物的生物应用[J]. 化学进展, 2012, 24(11): 2187-2197.
[11] 卢琳, 李晓刚, 高瑾. 有机涂层/金属界面腐蚀的微区电化学[J]. 化学进展, 2011, 23(8): 1618-1626.
[12] 李广录, 何涛, 李雪梅. 核壳结构纳米复合材料的制备及应用[J]. 化学进展, 2011, 23(6): 1081-1089.
[13] 孔德生,吕文华,冯媛媛,毕思玮. DSA电极电催化性能研究及尚待深入探究的几个问题*[J]. 化学进展, 2009, 21(6): 1107-1117.
[14] 张翼,周新新,张玉洁. 金属氧化物涂层钛阳极的研究* [J]. 化学进展, 2009, 21(09): 1827-1831.
[15] 陈金美,曾景斌,陈文锋,黄小丽,陈曦. 新型固相微萃取涂层的研究进展*[J]. 化学进展, 2009, 21(09): 1922-1929.