English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1804-1823 DOI: 10.7536/PC200608 前一篇   后一篇

• •

光电驱动的糖化学反应

张瀚予1, 刘萌1, 武霞1, 刘苗1, 熊德彩1,**(), 叶新山1,**()   

  1. 1. 北京大学天然药物及仿生药物国家重点实验室 北京 100191
  • 收稿日期:2020-06-02 修回日期:2020-06-20 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 熊德彩, 叶新山
  • 作者简介:

    熊德彩

    北京大学药学院副教授,博士生导师。从事基于糖的化学、药物化学和化学生物学研究,发表论文45篇,部分成果获国家自然科学二等奖、中国药学会科学技术一等奖、教育部高等学校自然科学二等奖。

    叶新山

    北京大学药学院教授、博士生导师,国家杰出青年科学基金获得者、教育部长江学者特聘教授。从事糖化学、糖药物化学和糖化学生物学研究,发表论文170余篇,获授权发明专利10余件。部分成果获国家自然科学二等奖、中国药学会科学技术一等奖、第十三届吴阶平-保罗杨森医学药学奖、张树政糖科学杰出成就奖等奖励。

    ** Corresponding author e-mail: (Xinshan Ye); (Decai Xiong)
  • 基金资助:
    国家重点研发计划(2018YFA0507602); 国家自然科学基金项目(21738001); 国家重大新药创制专项(2019ZX09301106)

Photo-/Electro-Driven Carbohydrate-Based Reactions

Hanyu Zhang1, Meng Liu1, Xia Wu1, Miao Liu1, Decai Xiong1,**(), Xinshan Ye1,**()   

  1. 1. State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
  • Received:2020-06-02 Revised:2020-06-20 Online:2020-11-24 Published:2020-09-01
  • Contact: Decai Xiong, Xinshan Ye
  • Supported by:
    the National Key Research and Development Program of China(2018YFA0507602); the National Natural Science Foundation of China(21738001); and the National New Drug Innovation Major Project of China(2019ZX09301106)

糖类是自然界中最丰富的有机化合物,在医药、材料、能源和环境等领域发挥着重要作用。糖类化合物的分子极性大、结构复杂且存在微观不均一性,分离纯化难度极大,其合成问题已成为制约糖科学发展的瓶颈,发展高效的糖类化合物合成新方法是糖化学研究的核心内容。利用光子/电子能量驱动的反应通常能在温和的条件下发生,符合绿色化学理念和可持续发展要求,是当代有机合成化学中的研究热点之一。近些年,随着光电合成技术的进步,光/电驱动的糖化学反应也得到了快速发展。本综述从反应类型、反应机理以及研究现状方面较为系统地总结了光/电驱动的糖化学反应的研究进展,并在此基础上概括了光电驱动的糖化学反应目前面临的挑战及新的机遇。

Carbohydrates are the most abundant organic compounds in nature, which play essential roles in the fields of medicine, materials, energy and environment. Due to the specific characteristic of high polarity, sophisticated structure and microheterogeneity, it is particularly difficult to separate, purify and synthesize carbohydrates. At present, the acquirement of carbohydrate compounds with homogeneous and diverse structures and in high purity mainly depends on chemical synthesis. However, the effective synthesis of carbohydrates has become a bottleneck of restricting the progress of glycoscience. The development of new methods and strategies for the synthesis of carbohydrates is the core topic in carbohydrate chemistry. The reaction driven by photon/electron energy usually takes place under mild conditions, which meets the requirements of green chemistry and sustainable development, and is also one of the research frontiers in modern organic synthesis. Nowadays, with the development of photo-/electro-synthetic technology, many achievements have been made in carbohydrate-based reactions driven by photon/electron energy. In view of reaction type, mechanism and status, this review will systematically summarize the latest advances on photo-/electro-driven reactions in the synthesis of carbohydrates. This review will also analyze the current challenges and new opportunities of carbohydrate-based reactions driven by photon/electron energy.

Contents

1 Introduction

2 Photo-/electro-driven glycosylation

2.1 Thioglycosides as the donors

2.2 Selenoglycosides as the donors

2.3 Telluroglycosides as the donors

2.4 O-glycosides as the donors

2.5 Glycosyl trichloroacetimidates as the donors

2.6 Glycosyl halides as the donors

2.7 Glycals as the donors

3 Photo-driven modifications of carbohydrates

3.1 Photo-driven reductive defunctionalization

3.2 Photo-driven halogenation

3.3 Photo-driven functionalization on the anomeric O-/S-atoms

3.4 Photo-driven decarboxylation

3.5 Photo-driven isomerization

4 Conclusion and outlook

()
图1 苯基硫苷的电糖基化反应[20, 21]
Fig.1 Electro-glycosylation based on phenyl thioglycosides[20, 21]
图2 乙基硫苷的电糖基化反应[22]
Fig.2 Electro-glycosylation based on ethyl thioglycosides[22]
图3 NBS或Br2催化的电N-糖基化反应[23]
Fig.3 NBS- or Br2-catalyzed electro-N-glycosylation[23]
图4 三氟甲磺酸钠为电解质的电糖基化反应[24]
Fig.4 Electro-glycosylation using a catalytic amount of sodium trifluoromethanesulfonate as the supporting electrolyte[24]
图5 基于“阳离子池”或其他中间体的电糖基化反应[25, 26]
Fig.5 Cation-pool or intermediate based electroglycosylation[25, 26]
图6 基于电糖基化-Fmoc脱保护的寡糖一釜合成[27]
Fig.6 Electro-glycosylation-Fmoc deprotection based one-pot oligosaccharide synthesis[27]
图7 基于电糖基化的自动液相寡糖合成[28]
Fig.7 Automated solution-phase synthesis of oligosaccharides via electro-glycosylation [28]
图8 其他寡糖的自动电化学组装[35,36,37]
Fig.8 Automated synthesis of other oligosaccharides via electro-glycosylation[35,36,37]
图9 紫外光介导的硫苷的活化及O-糖基化[38]
Fig.9 UV-induced thioglycoside activation and O-glycosylation[38]
图10 紫外光诱导的无保护脱氧糖硫苷活化及糖基化反应[39]
Fig.10 UV-induced unprotected 2-deoxythioglycoside activation and glycosylation[39]
图11 可见光介导的对甲氧基苯硫苷活化及O-糖基化[40]
Fig.11 Visible light mediated PMP-thioglycoside activation and O-glycosylation[40]
图12 紫外光介导的硫苷C—S键裂解及糖基化反应[41]
Fig.12 UV-induced C—S bond cleavage of thioglycosides and glycosylation[41]
图13 光介导的快速糖基化反应[42]
Fig.13 Light-driven rapid glycosylation[42]
图14 可见光介导的唾液酸糖基化反应[45]
Fig.14 Visible-light induced sialylation[45]
图15 可见光介导的无催化剂糖基化反应[46]
Fig.15 Visible-light promoted O-glycosylation without photocatalyst [46]
图16 可见光介导的碘催化糖基化反应[47]
Fig.16 Visible light enables aerobic iodine catalyzed glycosylation[47]
图17 以TPT为光敏剂的紫外光诱导糖基化反应[50]
Fig.17 UV light-induced glycosylation using TPT as photosensitizer [50]
图18 以N-甲基喹啉六氟磷酸为光敏剂的紫外光诱导糖基化反应[51]
Fig.18 UV-induced glycosylation using N-methylquinoliniumhexafluorophosphate as photosensitizer[51]
图19 硒苷的可见光活化及糖基化反应[52]
Fig.19 Visible light induced selenoglycosides activation and glycosylation[52]
图20 基于硒苷供体的电糖基化反应[53]
Fig.20 Selenoglycoside-based electro-glycosylation[53]
图21 基于碲苷的光糖基化反应[54]
Fig.21 Telluroglycoside-based light-glycosylation[54]
图22 基于碲苷的电糖基化反应[55]
Fig.22 Telluroglycoside-based electro-glycosylation[55]
图23 基于酚苷的电糖基化反应[56]
Fig.23 Phenolic glycoside-based electro-glycosylation[56]
图24 经由自由基阳离子中间体的新型亲核取代反应[57]
Fig.24 Novel nucleophilic substitution reaction by radical cation intermediates[57]
图25 无亲电试剂的可见光催化糖基化反应[59]
Fig.25 Blue light photocatalytic glycosylation without electrophilic additives[59]
图26 以萘酚为有机光酸的光糖基化反应[62]
Fig.26 Photo-induced glycosylation using 2-naphthol as organophotoacid[62]
图27 以芳基硫脲为有机光酸的光糖基化反应[63]
Fig.27 Photoinduced glycosylation using aryl thiourea as organo-photoacid[63]
图28 以二萘二硫醚为路易斯光酸的光糖基化反应[64]
Fig.28 Photo-glycosylation using diaryldisulfide as organo-Lewis photoacid[64]
图29 以Eosin Y为有机光酸的光糖基化反应[65]
Fig.29 Photo-glycosylation using Eosin Y as organo photoacid[65]
图30 基于溴代糖的光C-糖基化反应[66]
Fig.30 Glycosyl halide-based photo-C-glycosylation[66]
图31 基于溴代糖的光O-糖基化反应[69]
Fig.31 Glycosyl halide-based photo-O-glycosylation[69]
图32 基于糖烯的光O-糖基化反应[75]
Fig.32 Glycal-based photo-O-glycosylation[75]
图33 以糖烯为原料的光糖基化反应[76]
Fig.33 Photo-glycosylation starting from glycals[76]
图34 基于糖烯的电糖基化反应[77]
Fig.34 Glycal-based electro-glycosylation[77]
图35 可见光介导的还原脱碘反应[78]
Fig.35 Visible light-mediated reductive deiodination[78]
图36 紫外光介导的还原脱硫反应[79]
Fig.36 UV-mediated reductive desulfurization [79]
图37 可见光介导的溴代糖合成[81]
Fig.37 Visible light-mediated synthesis of glycosyl bromides[81]
图38 可见光介导的糖烯三氟甲基化反应[83]
Fig.38 Visible light-mediated trifluoromethylation of glycals[83]
图39 可见光介导的硫苷合成[87, 88]
Fig.39 Visible light-mediated synthesis of thioglycosides[87, 88]
图40 可见光介导的硫苷制备[89]
Fig.40 Visible light-mediated preparation of thioglycosides[89]
图41 可见光介导的酚苷合成[90]
Fig.41 Visible light-mediated synthesis of phenolic glycosides[90]
图42 可见光介导的糖氨基酸合成[91]
Fig.42 Visible light-mediated synthesis of glycoaminoacids[91]
图43 可见光介导的选择性差向异构化[92]
Fig.43
[1]
Cai M S , Li Z J. Carbohydrate Chemistry, Beijing: Chemical Industry Press, 2007.
[2]
Wang, H, Wu P, R, Zhao, X, Zeng, J , Wan Q. Acta Chim. Sinica., 2019,77: 231.
[3]
Boons G, J , Guo Z. Carbohydrate-Based Vaccines and Immunotherapies, Wiley, Hoboken, NJ, 2009.
[4]
Wang H, Y, Blaszczyk S, A, Xiao, G , Tang W. Chem. Soc.Rev., 2018,47: 681.
[5]
叶辉(Ye H) , 肖聪(Xiao C), 陆良秋(Lu L Q).有机化学(Chin. J. Org. Chem.), 2018, 38: 1897.
[6]
Zeng, J, Xu, Y, Wang, H , Meng, L, Wan Q. Sci. China Chem., 2017,60: 1162.
[7]
陈朗秋(Chen L Q) , 赖端(Lai D), 宋志伟(Song Z W), 赵兴俄(Zhao X E), 孔繁祚(Kong F Z).有机化学(Chin. J. Org. Chem.), 2006, 26: 627.
[8]
王咏诗(Wang Y S) , 叶新山(Ye X S).中国科学(Sci. Sin. Chim.), 2018, 48: 1307.
[9]
Mazmanian S, K , Kasper D L. Nat. Rev. Immunol., 2006,6: 849.
[10]
Peri F. Chem Soc, Rev. , 2013,42: 4543.
[11]
Yan, M, Kawamata, Y , Baran P S. Chem. Rev., 2017,117: 13230.
[12]
Yoshida, J, Kataoka, K, Horcajada, R , Nagaki A. Chem. Rev., 2008,108: 2265.
[13]
Manmode, S, Matsumoto, K, Nokami, T , Itoh T. Asian J. Org. Chem., 2018,7: 1719.
[14]
Sangwan, R , Mandal P K. RSC Adv., 2017,7: 26256.
[15]
Hilt G. Chem., ElectroChem. , 2020,7: 395.
[16]
Park, K, Pintauro P, N, Baizer M, M , Nobe K. J. Electrochem. Soc., 1985,132: 1850.
[17]
Yu J, C, Baizer M, M , Nobe K. J. Electrochem. Soc., 1988,135: 1400.
[18]
Zehavi, U, Ami, B , Patchornik A. J. Org. Chem., 1972,37: 2281.
[19]
Lian, G, Zhang, X , Yu B. Carbohydr. Res., 2015,403: 13.
[20]
Amatore, C, Jutand, A, Mallet J, M, Meyer, G , Sinaÿ P. J. Chem. Soc. Chem. Commun., 1990,1: 718.
[21]
Balavoine, G, Gref, A, Fischer J, C , Lubineau A. Tetrahedron Lett., 1990,31: 5761.
[22]
Mallet J, M, Meyer, G, Yvelin, F, Jutand, A, Amatore, A , Sinaÿ P. Carbohydr. Res., 1993,244: 237.
[23]
Nokami, J, Osafune, M, Ito, Y, Miyake, F, Sumida, S , Torii S. Chem. Lett., 1999,28: 1053.
[24]
Tanaka, N, Ohnishi, F, Uchihata, D, Torii, S , Nokami J. Tetrahedron Lett., 2007,48: 7383.
[25]
Suzuki, S, Matsumoto, K, Kawamura, K, Suga, S , Yoshida J. Org. Lett., 2004,6: 3755.
[26]
Mitsudo, K, Kawaguchi, T, Miyahara, S, Matsuda, W, Kuroboshi, M , Tanaka H. Org. Lett., 2005,7: 4649.
[27]
Nokami, T, Tsuyama, H, Shibuya, A, Nakatsutsumi, A , Yoshida J. Chem. Lett., 2008,37: 942.
[28]
Nokami, T, Hayashi, R, Saigusa, Y, Shimizu, A, Liu C, Y, Mong K, K , Yoshida J. Org. Lett., 2013,15: 4520.
[29]
Rai, R, McAlexander, I , Chang C W. Org. Prep. Proced. Int., 2005,37: 337.
[30]
Magnet, S , Blanchard J. S. Chem. Rev., 2005,105: 477.
[31]
Herzner, H, Reipen, T, Schultz, M , Kunz H. Chem. Rev., 2000,100: 4495.
[32]
Dwek R A. Chem., Rev. , 1996,96: 683.
[33]
Hauser F, M , Ellenberger S R. Chem. Rev., 1986,86: 35.
[34]
Usuki, H, Nitoda, T, Ichikawa, M, Yamaji, N, Iwashita, T, Komura, H , Kanzaki H. J. Am. Chem. Soc., 2008,130: 4146.
[35]
Nokami, T, Isoda, Y, Sasaki, N, Takaiso, A, Hayase, S, Itoh, T, Hayashi, R, Shimizu, A , Yoshida J. Org. Lett., 2015,17: 1525.
[36]
Isoda, Y, Sasaki, N, Kitamura, K, Takahashi, S, Manmode, S, Takeda- Okuda, N, Tamura, J, Nokami, T , Itoh T. Beilstein J. Org. Chem., 2017,13: 919.
[37]
Manmode, S, Sato, T, Sasaki, N, Notsu, I, Hayase, S, Nokami, T , Itoh T. Carbohydr. Res., 2017,450: 44.
[38]
Griffin G, W, Bandara N, C, Clarke M, A, Tsang W, S, Garegg P, J, Oscarson, S , Silwanis B A. Heterocycles, 1990,30: 939.
[39]
Nakanishi, M, Takahashi, D , Toshima K. Org. Biomol. Chem., 2013,11: 5079.
[40]
Wever W, J, Cinelli M, A , Bowers A A. Org. Lett., 2013,15: 30.
[41]
Mao R, Z, Guo, F, Xiong D, C, Li, Q, Duan, J , Ye X S. Org. Lett., 2015,17: 5606.
[42]
Mao R, Z, Xiong D, C, Guo, F, Li, Q, Duan, J , Ye X S. Org. Chem. Front., 2016,3: 737.
[43]
Li B, H, Yao W, L, Yang, H, Wu C, Y, Xiong D, C, Yin Y, X , Ye X S. Org. Chem. Front., 2020,7: 1255.
[44]
MaoR, Z, Sun, L, Wang Y, S, Zhou M, M, Xiong D, C, Li, Q , Ye X S. Chin. Chem. Lett., 2018,29: 61.
[45]
Yu, Y, Xiong D, C, Mao R, Z , Ye X S. J. Org. Chem., 2016,8: 7134.
[46]
Sheffield, W, Kumar, R , Ragains J R. Angew. Chem. Int. Ed., 2016,55: 6515.
[47]
Krumb, M, Lucas, T , Opatz T. Eur. J. Org. Chem., 2019,1: 4517.
[48]
Ferrier R, J, Hay R, W , Vethaviyasar N. Carbohydr. Res., 1973,27: 55.
[49]
Cod e J D , C, Litjens R E J, N, van den Bos L, J, Overkleeft H, S , van der Marel G A. Chem. Soc. Rev., 2005,34: 769.
[50]
Furuta, T, Takeuchi, K , Iwamura M. Chem. Commun., 1996,1: 147.
[51]
Cumpstey, I , Crich D J. Carbohydr. Chem., 2011,30: 469.
[52]
Spell, M, Wang, X, Wahba A, E, Conner, E , Ragains J. Carbohydr. Res., 2013,369: 42.
[53]
France R, R, Compton R, G, Davis B, G, Fairbanks A, J, Rees N, V , Wadhawan J D. Org. Biomol. Chem., 2004,2: 2195.
[54]
Yamago, S, Miyazoe, H , Yoshida J. Tetrahedron Lett., 1999,40: 2339.
[55]
Yamago, S, Kokubo, K, Hara, O, Masuda, S , Yoshida J. J. Org. Chem., 2002,67: 8584.
[56]
Noyori, R , Kurimoto I. J. Org. Chem., 1986,51: 4320.
[57]
Hashimoto, S, Kurimoto, I, Fujii, Y , Noyori R. J. Am. Chem. Soc., 1985,107: 1427.
[58]
Zhu, Q, Gentry E, C , Knowles R R. Angew. Chem. Int. Ed., 2016,55: 9969.
[59]
Wen, P , Crich D. Org. Lett., 2017,19: 2402.
[60]
Schmidt R, R , Michel J. Angew Chem. Int. Ed., 1980,19: 731.
[61]
Schmidt R R. Angew Chem. Int., Ed. , 1986,25: 212.
[62]
Iwata, R, Uda, K, Takahashi, D , Toshima K. Chem. Commun., 2014,50: 10695.
[63]
Kimura, T, Eto, T, Takahashi, D , Toshima K. Org. Lett., 2016,18: 3190.
[64]
Iibuchi, N, Eto, T, Aoyagi, M, Kurinami, R, Sakai, H, Hasobe, T, Takahashi, D , Toshima K. Org. Biomol. Chem., 2020,18: 851.
[65]
Liu, J, Yin, S, Wang H, M, Li H, F , Ni G H. Carbohydr. Res., 2020,490: 107963.
[66]
Andrews R, S, Becker J, J , Gagn M R. Angew. Chem. Int. Ed. , 2010,49: 7274.
[67]
Andrews R, S, Becker J, J , Gagn M R. Angew. Chem. Int. Ed. , 2012,51: 4140.
[68]
Zhao, W, Wurz P, R, Peters C, J , Fu C J.J. Am. Chem. Soc., 2017,139: 12153.
[69]
Yu, F, Dickson L, J, Loka S, R, Xu H, F, Schaugaard N, R, Schlegel B, H, Luo, L , Nguyen M H. ACS Catal., 2020,10: 5990.
[70]
Daniel P, T, Koert, U , Schuppan J. Angew. Chem. Int. Ed., 2006,45: 872.
[71]
Balmond E, I, Coe D, M, Galan M, C , McGarrigle E M.Angew. Chem. Int. Ed., 2012,51: 9152.
[72]
Balmond E, I, Beni-to-Alifonso, D, Coe D, M, Alder R, W, McGarrigle E, M, Galan M C. Angew., Chem. , Int. Ed., 2014,53: 8190.
[73]
Sau, A, Williams, R, Palo-Nieto, C, Franconetti, A, Medina, S , Galan M C. Angew. Chem. Int. Ed., 2017,129: 3694.
[74]
Palo-Nieto, C, Sau, A , Galan M C. J. Am. Chem. Soc., 2017,139: 14041.
[75]
Rasool, F, Bhat A, H, Hussain, N , Mukherjee D. ChemistrySelect, 2016,1: 6553.
[76]
Zhao, G, Wang T. Angew., Chem. , Int. Ed., 2018,57: 6120.
[77]
Liu, M , Liu K M, Xiong D C, Zhang H Y, Li T, Li B H, Qin X J, Bai J H, Ye X S. Angew. Chem., Int. Ed., 2020. DOI: 10.1002/anie.202006115.
[78]
Wang, H, Tao, J, Cai, X, Chen, W, Zhao, Y, Xu, Y, Yao, W, Zeng, J , Wan Q. Chem.-Eur. J., 2014,20: 17319.
[79]
Ge J, T, Zhou, L , Dong H. Org. Lett., 2019,21: 5903.
[80]
Kaeothip, S, Yasomanee P, J , Demchenko V A. J. Org. Chem., 2012,77: 291.
[81]
Yuan X, L, Cheng, S, Shi Y, B , Xue W H. Synthesis., 2014,46: 331.
[82]
Furuya, T, Kamlet A, S , Ritter T. Nature, 2011,473: 470.
[83]
Wang, B, Xiong D, C , Ye X S. Org. Lett., 2015,17: 5698.
[84]
Tyson E, L, Ament M, S , Yoon T P. J. Org. Chem., 2013,78: 2046.
[85]
Tyson E, L, Niemeyer Z, L , Yoon T P. J. Org. Chem., 2014,79: 1427.
[86]
Keylor M, H, Park J, E, Wallentin C, J , Stephenson C R. J. Tetrahedron., 2014,70: 4264.
[87]
Zhao, G, Kaur, S , Wang T. Org. Lett., 2017,19: 3291.
[88]
Kaur, S, Zhao, G , Wang T. Org. Biomol. Chem., 2019,17: 1955.
[89]
Zhu M, X, Dagousset, G, Alami, M, Magnier, E , Messaoudi S.Org. Lett., 2019,21: 5132.
[90]
Ye, H, Xiao, C, Zhou Q, Q, Wang P, G , Xiao W J. J. Org. Chem., 2018,83: 13325.
[91]
Ji, P, Zhang Y, T, Wei Y, Y, Huang, H, Hu W, B, Mariano A, P , Wang W. Org. Lett., 2019,21: 3086.
[92]
Wang, Y, Carder H, M , Wendlandt A E. Nature, 2020,20: 403.
[93]
Wu, Y , Ye X S. Acta. Chim. Sinica, 2019,77: 581.
[94]
Wu, Y, Xiong D, C, Chen S, C, Wang Y, S , Ye X S. Nat. Commun., 2017,8: 14851.
[1] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[2] 黄毅,黄金花,谢青季,姚守拙. 糖-蛋白质相互作用*[J]. 化学进展, 2008, 20(06): 942-950.
[3] 赵传生,张卫红,曾弦,冯亚青. 非糖类化合物合成碳环糖*[J]. 化学进展, 2007, 19(9): 1357-1370.
阅读次数
全文


摘要