English
新闻公告
More
化学进展 2020, Vol. 32 Issue (11): 1729-1744 DOI: 10.7536/PC200529 前一篇   后一篇

• •

手性氨基酸酰胺催化剂的发现及研究进展

俞杰2, 龚流柱1,**()   

  1. 1. 中国科学技术大学化学与材料科学学院 合肥 230026
    2. 安徽农业大学应用化学系 合肥 230036
  • 出版日期:2020-11-24 发布日期:2020-09-01
  • 通讯作者: 龚流柱
  • 作者简介:

    龚流柱

    中国科学技术大学教授, 1993年毕业于河南师范大学,1996年在中国科学院成都有机化学研究所获得硕士学位,2000年获中国科学院化学研究所理学博士学位,2000~2005年在中国科学院成都有机化学研究所工作,2006年至今任中国科学技术大学教授。主要从事有机合成方法学,不对称催化和天然产物全合成研究。

    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21831007)

Discovery and Typical Advances of Chiral Amino Amide Catalysts

Jie Yu2, Liu-Zhu Gong1,**()   

  1. 1. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
    2. Department of Applied Chemistry, Anhui Agricultural University, Hefei 230036, China
  • Online:2020-11-24 Published:2020-09-01
  • Contact: Liu-Zhu Gong
  • Supported by:
    the National Natural Science Foundation of China(21831007)

自从L-脯胺酰胺被发现能高效催化不对称aldol反应以来,手性氨基酸酰胺催化剂的设计及不对称催化研究一直受到关注。特别是“烯胺-双氢键”模型的提出为设计新型有机小分子催化剂提供了理论依据,使催化剂的结构设计趋于多样化。本文重点总结了含有单氢键给体、双氢键给体及多氢键给体的氨基酸酰胺催化的不对称催化反应,主要包括不对称直接aldol反应、Mannich反应、Michael加成反应、环加成反应、串联环化反应、Biginelli反应等方面的研究进展。

Since L-prolinamide was revealed to have high capacity to catalyze asymmetric aldol reaction, great advances have been made on the design of chiral amino amide catalysts and their applications in asymmetric catalysis. In particular, the “enamine-double hydrogen-bonding activation mode” has turned out to be a general concept for the proliferation of structurally diverse range of organocatalysts. This review mainly describes asymmetric reactions catalyzed by chiral amino amides containing single hydrogen-bonding donor, double hydrogen-bonding donors and multiple hydrogen-bonding donors, including enantioselective direct aldol reaction, Mannich reaction, Michael addition reaction, cycloaddition reaction, tandem cyclization reaction, Biginelli reaction and others.

Contents

1 Introduction

2 Chiral amino amide catalysts without hydrogen-bonding donor

3 Chiral amino amide catalysts with single hydrogen-bonding donor

3.1 Asymmetric direct aldol reaction

3.2 Asymmetric Mannich reaction

3.3 Asymmetric Michael addition

3.4 Asymmetric cascade cyclization

3.5 Asymmetric cycloaddition

3.6 Miscellaneous reactions

4 Chiral amino amide catalysts with double hydrogen-bonding donors

4.1 Asymmetric direct aldol reaction

4.2 Asymmetric Michael addition

4.3 Miscellaneous reactions

5 Chiral amino amide catalysts with multiple hydrogen-bonding donors

6 Conclusion and outlook

()
图式2 L-脯氨酰胺6催化的不对称直接aldol反应[6,7,8]
Scheme 2 Asymmetric direct aldol reaction catalyzed by L-prolinamides 6[6,7,8]
图式3 L-脯氨酰胺9促进的不对称Michael加成/aldol缩合串联反应[18]
Scheme 3 Asymmetric Michael addition/aldol condensation cascade enabled by L-prolinamide 9[18]
图式4 L-脯氨酰胺5a~5j催化的不对称直接aldol反应[7]
Scheme 4 Asymmetric direct aldol reaction catalyzed by L-prolinamides 5a~5j[7]
图式5 脯氨酰胺催化丙酮参与的不对称直接aldol反应[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]
Scheme 5 Asymmetric direct aldol reaction with acetone catalyzed by prolinamides[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34]
图式6 氨基酸酰胺催化环酮参与的不对称直接aldol反应[35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]
Scheme 6 Asymmetric direct aldol reaction with cyclic ketones catalyzed by amino amides[35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50]
图式7 氨基酸酰胺催化的靛红的不对称直接aldol反应[51,52,53,54,55,56]
Scheme 7 Asymmetric direct aldol reaction with isatins catalyzed by amino amides[51,52,53,54,55,56]
图式8 氨基酸酰胺催化其他类型的不对称直接aldol反应[57,58,59,60,61,62]
Scheme 8 Other types of asymmetric direct aldol reactions catalyzed by amino amides[57,58,59,60,61,62]
图式9 脯氨酰胺催化的不对称Mannich反应[20,63,64]
Scheme 9 Asymmetric Mannich reaction catalyzed by prolinamides[20,63,64]
图式10 氨基酸酰胺催化的不对称分子内Michael加成反应[65,66,67]
Scheme 10 Asymmetric intramolecular Michael addition catalyzed by amino amides[65,66,67]
图式11 脯氨酰胺催化硝基烯烃参与的不对称Michael加成反应[68,69,70,71,72,73,74]
Scheme 11 Asymmetric Michael addition to nitroalkenes catalyzed by prolinamides[68,69,70,71,72,73,74]
图式12 脯氨酰胺催化的不对称Yamada-Otani缩合反应[76,78]
Scheme 12 Asymmetric Yamada-Otani condensation catalyzed by prolinamides[76,78]
图式13 脯氨酰胺催化的不对称oxa-Michael/Henry串联反应[79,80]
Scheme 13 Asymmetric tandem oxa-Michael/Henry reaction catalyzed by prolinamides[79,80]
图式14 脯氨苯磺酰胺催化的不对称aza-Diels-Alder反应[81]
Scheme 14 Asymmetric aza-Diels-Alder reaction catalyzed by L-proline sulphonamide[81]
图式15 氨基酸酰胺催化的其他不对称反应[83,84]
Scheme 15 Miscellaneous reactions catalyzed by chiral amino amides[83,84]
图式16 “烯胺-双氢键”过渡态模型[6,7,8]
Scheme 16 “Enamine-double hydrogen-bonding” transition state model[6,7,8]
图式17 含有双氢键给体的氨基酸酰胺催化的不对称直接aldol反应[85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146]
Scheme 17 Asymmetric direct aldol reaction catalyzed by chiral amino amides containing double hydrogen-bondings[85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146]
图式18 伯胺酰胺催化的不对称顺式aldol反应[119,148~152]
Scheme 18 Asymmetric direct syn-aldol reaction catalyzed by primary amino amides[119,148~152]
图式19 α-酮酸酯参与的不对称直接aldol反应[140,153~158]
Scheme 19 Asymmetric direct aldol reaction with α-keto esters[140,153~158]
图式20 靛红参与的不对称直接aldol反应[129,159]
Scheme 20 Asymmetric direct aldol reaction with isatins[129,159]
图式21 固载的脯氨酰胺催化剂[160,161,162,163,164,165,166,167,168,169,170,171]
Scheme 21 Immobilized prolinamide catalysts[160,161,162,163,164,165,166,167,168,169,170,171]
图式22 含双氢键给体的脯氨酰胺催化的不对称Michael加成反应[172,173,174,175]
Scheme 22 Asymmetric Michael addition catalyzed by prolinamides containing double hydrogen-bonding donors[172,173,174,175]
图式23 含双氢键给体的氨基酸酰胺催化的其他不对称反应[177,178,179,180,181,182]
Scheme 23 Miscellaneous reactions catalyzed by chiral amino amides containing double hydrogen-bondings[177,178,179,180,181,182]
[1]
Eder U, Sauer R , Wiechert R. Angew. Chem. Int. Ed., 1971,10:496.
[2]
Hajos Z G, Parrish D R . Org. Chem., 1974,39:1615.
[3]
( a) List B, Lerner R A, Barbas III C F . J. Am. Chem. Soc., 2000, 122: 2395.;( b) Sakthivel K, Notz W, Bui T, Barbas III C F. J. Am. Chem. Soc., 2001, 123: 5260.;, 2000,122:7386.
[4]
( a) Berkessel A, Groger H . Asymmetric Organocatalysis. Weinheim: Wiley-VCH, 2005.;( b) Dalko P I, Moisan L, Angew. Chem. Int. Ed., 2004, 43: 5138.;, 2007,107:5471.
[5]
( a) Hoang L, Bahmanyar S, Houk K N, List B . J. Am. Chem. Soc., 2003, 125: 16.;( b) Bahmanyar S, Houk K N, Martin H J, List B. J. Am. Chem. Soc., 2003, 125: 2475.;, 2004,37:558.
[6]
Tang Z, Jiang F, Yu L T, Cui X, Gong L Z, Mi A Q, Jiang Y Z, Wu Y D . Am. Chem. Soc., 2003,125:5262.
[7]
Tang Z, Jiang F, Cui X, Gong L Z, Mi A Q, Jiang Y Z , Wu Y D. Proc. Natl. Acad. Sci. U. S. A., 2004,101:5755.
[8]
Tang Z, Yang Z H, Chen X H, Cun L F, Mi A Q, Jang Y Z, Gong L Z . Am. Chem. Soc., 2005,127:9285.
[9]
Liu X, Lin L, Feng X. . Chem. Commun., 2009,6145.
[10]
Chen X H, Yu J , Gong L Z. Chem. Commun., 2010,6437.
[11]
Trost B M , Brindle C S. Chem. Soc. Rev., 2010,39:1600.
[12]
Panday S K . Tetrahedron: Asymmetry, 2011,22:1817.
[13]
Lu L Q, An X L, Chen J R, Xiao W J . Synlett, 2012,23:490.
[14]
Albrecht Ł, Jiang H , Jorgensen K A. Chem. Eur. J., 2014,20:358.
[15]
Liu X, Dong S, Lin L , Feng X. Chin. J. Chem., 2018,36:791.
[16]
Yamashita Y, Yasukawa T, Yoo W J, Kitanosono T , Kobayashi S. Chem. Soc. Rev., 2018,47:4388.
[17]
Yadav G D, Deepa, Singh S . ChemistrySelect, 2019,4:5591.
[18]
( a) Yamada S I, Otani G . Tetrahedron Lett., 1969, 10: 4237.;( b) Otani G, Yamada S I. Chem. Pharm. Bull., 1973,21:2112.
[19]
Berkessel A, Koch B , Lex J. Adv. Synth. Catal., 2004,346:1141.
[20]
Cobb A J A, Shaw D M, Longbottom D A, Gold J B, Ley S V . Org. Biomol. Chem., 2005,3:84.
[21]
Bellis E, Vasilatou K, Kokotos G . Synthesis, 2005,2407.
[22]
( a) Chimni S S, Mahajana D, Babu V V S . Tetrahedron Lett., 2005, 46: 5617.; (b) Chimni S S, Mahajan D. Tetrahedron: Asymmetry, 2006,17:2108.
[23]
( a) Gryko D, Lipiński R . Adv. Synth. Catal., 2005, 347: 1948.;( b) Gryko D, Lipiński R. Eur. J. Org. Chem., 2006, 3864.;, 2007,5:2148.
[24]
Guizzetti S, Benaglia M, Pignataro L, Puglisi A . Tetrahedron: Asymmetry, 2006,17:2754.
[25]
Yu G, Ge Z M, Cheng T M , Li R T. Chin. J. Chem., 2008,26:911.
[26]
Sato K, Kuriyama M, Shimazawa R, Morimoto T, Kakiuchi K, Shirai R. Tetrahedron Lett ., 2008,49:2402.
[27]
Rani R, Peddinti R K . Tetrahedron: Asymmetry, 2010,21:775.
[28]
( a) Agarwal J, Peddinti R K . Tetrahedron: Asymmetry, 2010, 21: 1906.;( b) Agarwal J, Peddinti R K. Eur. J. Org. Chem., 2012,6390.
[29]
( a) Hernandez J G, Juaristi E . J. Org. Chem., 2011, 76: 1464.; (b) Hernandez J G, Juaristi E. Tetrahedron, 2011,67:6953.
[30]
Robak M T, Herbage M A, Ellman J A . Tetrahedron, 2011,67:4412.
[31]
De Arriba Á L F, Simón L, Raposo C, Alcázar V, Sanz F, Muñiz F M, Morán J R . Org. Biomol. Chem., 2010,8:2979.
[32]
Xu J, Fu X, Wu C, Hu X . Tetrahedron: Asymmetry, 2011,22:840.
[33]
Reddy B V S, Bhavani K, Raju A, Yadav J S . Tetrahedron: Asymmetry, 2011,22:881.
[34]
Kumar T P, Vavle N C, Patro V, Haribabu K . Tetrahedron: Asymmetry, 2014,25:457.
[35]
Wu Y, Zhang Y, Yu M, Zhao G, Wang S. Org. Lett ., 2006,8:4417.
[36]
( a) Almaşi D, Alonso D A, Nájera C . Adv. Synth. Catal., 2008, 350: 2467.;( b) Almaşi D, Alonso D A, Balaguer A N, Nájera C. Adv. Synth. Catal., 2009,351:1123.
[37]
( a) Chimni S S, Singh S, Mahajan D . Tetrahedron: Asymmetry, 2008, 19: 2276.; (b) Chimni S S, Singh S, Kumar A. Tetrahedron: Asymmetry, 2009,20:1722.
[38]
Doherty S, Knight J G , McRae A, Harrington R W, Clegg W. Eur.[J]. Org. Chem., 2008,1759.
[39]
Li X J, Zhang G W, Wang L, Hua M Q, Ma J A . Synlett, 2008,1255.
[40]
( a) Yang H, Carter R G . Org. Lett., 2008, 10: 4649.;( b) Yang H, Mahapatra S, Cheong P H Y, Carter R G. J. Org. Chem., 2010,75:7279.
[41]
Moorthy J N , Saha S. Eur. J. Org. Chem., 2009,739.
[42]
Yang Y, He Y H, Guan Z , Huang W D. Adv. Synth. Catal., 2010,352:2579.
[43]
Xu J W, Fu X K, Hu X Y , Wu C L. Catal. Lett., 2011,141:1156.
[44]
Mino T, Omura A, Uda Y, Wakui K, Haga Y, Sakamoto M, Fujita T . Tetrahedron: Asymmetry, 2011,22:2024.
[45]
Tang G, Hu X , Altenbach H J. Tetrahedron Lett., 2011,52:7034.
[46]
( a) Hernandez J G, García-Lopez V, Juaristi E . Tetrahedron, 2012, 68: 92.;( b) Machuca E, Juaristi E. Tetrahedron Lett., 2015,56:1144.
[47]
Bisticha A, Triandafillidi I, Kokotos C G . Tetrahedron: Asymmetry, 2015,26:102.
[48]
Shen C, Liao H, Shen F, Zhang P. Catal. Commun ., 2013,41:106.
[49]
Patti A , Pedotti S. Eur. J. Org. Chem., 2014,624.
[50]
Owolabi I A , Reddy U V S, Chennapuram M, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Takeshita M, Nakano H. Tetrahedron, 2018,74:4705.
[51]
( a) Luppi G, Cozzi P G, Monari M, Kaptein B, Broxterman Q B, Tomasini C . J. Org. Chem., 2005, 70: 7418.;( b) Luppi G, Monari M, Corrêa R J, Violante F A, Pinto A C, Kaptein B, Broxterman Q B, Garden S J, Tomasini C. Tetrahedron, 2006, 62: 12017.;, 2009,50:814.
[52]
( a) Nakamura S, Hara N, Nakashima H, Kubo K, Shibata N, Toru T . Chem. Eur. J., 2008, 14: 8079.;( b) Hara N, Nakamura S, Shibata N, Toru T. Chem. Eur. J., 2009, 15: 6790.;, 2010,352:1621.
[53]
Kinsella M, Duggan P G, Lennon C M . Tetrahedron: Asymmetry, 2011,22:1423.
[54]
Wang J, Liu Q, Hao Q, Sun Y, Luo Y, Yang H . Chirality, 2015,27:314.
[55]
Kumar T P, Manjula N, Katragunt K . Tetrahedron: Asymmetry, 2015,26:1281.
[56]
Kimura J , Reddy U V S, Kohari Y, Seki C, Mawatari Y, Uwai K, Okuyama Y, Kwon E, Tokiwa M, Takeshita M, Iwasa T, Nakano H. Eur.[J]. Org. Chem., 2016,3748.
[57]
He L, Tang Z, Cun L F, Mi A Q, Jiang Y Z, Gong L Z . Tetrahedron, 2006,62:346.
[58]
Silva F, Sawicki M, Gouverneur V. Org. Lett ., 2006,8:5417.
[59]
Dodda R , Zhao C G. Org. Lett., 2006,8:4911.
[60]
Wang X J, Zhao Y , Liu J T. Org. Lett., 2007,9:1343.
[61]
Liu J, Yang Z, Wang Z, Wang F, Chen X, Liu X, Feng X, Su Z, Hu C . Am. Chem. Soc., 2008,130:5654.
[62]
Hara N, Tamura R, Funahashi Y, Nakamura S. Org. Lett ., 2011,13:1662.
[63]
Yang H, Carter R G . Org. Chem., 2009,74:2246.
[64]
Veverkova E, Štrasserova J, Šebesta R, Toma Š . Tetrahedron: Asymmetry, 2010,21:58.
[65]
Hayashi Y, Gotoh H, Tamura T, Yamaguchi H, Masui R, Shoji M . Am. Chem. Soc., 2005,127:16028.
[66]
Bournaud C, Marchal E, Quintard A, Sulzer-Mossé S, Alexakis A . Tetrahedron: Asymmetry, 2010,21:1666.
[67]
Yang H, Carter R G . Org. Chem., 2010,75:4929.
[68]
Palomo C, Vera S, Mielgo A , Gómez-Bengoa E. Angew. Chem. Int. Ed., 2006,45:5984.
[69]
Reddy R J, Kuan H H, Chou T Y , Chen K. Chem. Eur. J., 2009,15:9294.
[70]
Kelleher F, Kelly S, Watts J , McKee V. Tetrahedron, 2010,66:3525.
[71]
Wang Y, Lin J, Wei K . Tetrahedron: Asymmetry, 2014,25:1599.
[72]
Wang Y, Li D, Lin J, Wei K. RSC Adv ., 2015,5:5863.
[73]
Rani R, Peddinti R K . Tetrahedron: Asymmetry, 2010,21:2487.
[74]
Agarwal J , Peddinti R K. Tetrahedron Lett., 2011,52:117.
[75]
Wang C M, Xiao J A, Wang J, Wang S S, Deng Z X, Yang H . Org. Chem., 2016,81:8001.
[76]
( a) Yang H, Carter R G . Org. Lett., 2010, 12: 3108.;( b) Yang H, Banerjee S, Carter R G. Org. Biomol. Chem., 2012,10:4851.
[77]
Pierce M D, Johnston R C, Mahapatra S, Yang H, Carter R G , Cheong P H Y.[J]. Am. Chem. Soc., 2012,134:13624.
[78]
Goswami S, Harada K , El-Mansy M F, Lingampally R, Carter R G. Angew. Chem. Int. Ed., 2018,57:9117.
[79]
Yin G, Zhang R, Li L, Tian J , Chen L. Eur. J. Org. Chem., 2013,5431.
[80]
Mohanta R, Bez G . Org. Chem., 2020,85:4627.
[81]
( a) Yang H, Carter R G . J. Org. Chem., 2009, 74: 5151.; (b) Yang H, Carter R G. Tetrahedron, 2010,66:4854.
[82]
( a) Xiao J A, Liu Q, Ren J W, Liu J, Carter R G, Chen X Q, Yang H . Eur. J. Org. Chem., 2014, 5700.;( b) Ren J W, Zhou Z F, Xiao J A, Chen X Q, Yang H. Eur. J. Org. Chem., 2016, 1264.;, 2017,82:6441.
[83]
Sundén H, Dahlin N, Ibrahem I, Adolfsson H, Córdova A. Tetrahedron Lett ., 2005,46:3385.
[84]
Xin J, Chang L, Hou Z, Shang D, Liu X , Feng X. Chem. Eur. J., 2008,14:3177.
[85]
Tanimori S, Naka T, Kirihata M. Synth. Commun ., 2004,34:4043.
[86]
Chen X H, Luo S W, Tang Z, Cun L F, Mi A Q, Jiang Y Z , Gong L Z. Chem. Eur. J., 2007,13:689.
[87]
Xu X Y, Wang Y Z, Cun L F, Gong L Z . Tetrahedron: Asymmetry, 2007,18:237.
[88]
Samanta S, Liu J, Dodda R , Zhao C G. Org. Lett., 2005,7:5321.
[89]
( a) Chen J R, Lu H H, Li X Y, Cheng L, Wan J, Xiao W J . Org. Lett., 2005, 7: 4543.;( b) Chen J R, Li X Y, Xing X N, Xiao W J. J. Org. Chem., 2006, 71: 8198.;, 2007,85:208.
[90]
Guan Z, Luo Y, Zhang B Q, Heinen K, Yang D C, He Y H . Tetrahedron: Asymmetry, 2014,25:802.
[91]
( a) Raj M, Maya V, Ginotra S K, Singh V K . Org. Lett., 2006, 8: 4097.;( b) Maya V, Raj M, Singh V K. Org. Lett., 2007,9:2593.
[92]
( a) Baer K, Krauβer M, Burda E, Hummel W, Berkessel A, Gröger H . Angew. Chem. Int. Ed., 2009, 48: 9355.; (b) Rulli G, Duangdee N, Baer K, Hummel W, Berkessel A, Gröger H. Angew. Chem. Int. Ed., 2011, 50: 7944.; (c) Heidlindemann M, Berkessel A, Gröger H. ChemCatChem, 2017,9:1383.
[93]
Okuyama Y, Nakano H, Watanabe Y, Makabe M, Takeshita M, Uwai K, Kabuto C, Kwon E. Tetrahedron Lett ., 2009,50:193.
[94]
( a) Cheng C, Sun J, Wang C, Zhang Y, Wei S, Jiang F, Wu Y . Chem. Commun., 2006, 215.; (b) Cheng C, Wei S, Sun[J]. Synlett, 2006,2419.
[95]
Cheng C , Wang W. Chin. J. Chem., 2011,29:196.
[96]
( a) Guillena G, Hita M C, Nájera C . Tetrahedron: Asymmetry, 2006, 17: 729.;( b) Guillena G, Hita M C, Nájera C. Tetrahedron: Asymmetry, 2006, 17: 1493.;, 2008,73:5933.
[97]
Gryko D, Kowalczyk B, Zawadzki Ł . Synlett, 2006,1059.
[98]
Ma G N, Zhang Y P, Shi M . Synthesis, 2007,197.
[99]
Guizzetti S, Benaglia M, Raimondi L, Celentano G. Org. Lett ., 2007,9:1247.
[100]
Fu Y Q, Li Z C, Ding L N, Tao J C, Zhang S H, Tang M S . Tetrahedron: Asymmetry, 2006,17:3351.
[101]
Sathapornvajana S, Vilaivan T . Tetrahedron, 2007,63:10253.
[102]
Zhang S P, Fu X K , Fu S D. Tetrahedron Lett., 2009,50:1173.
[103]
Saha S , Moorthy J N. Tetrahedron Lett., 2010,51:912.
[104]
Zhang T, Zhang Y, Li Z, Song Z, Liu H , Tao J. Chin. J. Chem., 2013,31:247.
[105]
( a) Russo A, Botta G, Lattanzi A . Synlett, 2007, 795.; (b) Russo A, Botta G, Lattanzi A. Tetrahedron, 2007,63:11886.
[106]
Jiang J, He L, Luo S W, Cun L F , Gong L Z. Chem. Commun., 2007,736.
[107]
( a) He L, Jiang J, Tang Z, Cui X, Mi A Q, Jiang Y Z, Gong L Z . Tetrahedron: Asymmetry, 2007, 18: 265.;( b) Zhao J F, He L, Jiang J, Tang Z, Cun L F, Gong L Z. Tetrahedron Lett., 2008,49:3372.
[108]
Chen J R, An X L, Zhu X Y, Wang X F, Xiao W J . Org. Chem., 2008,73:6006.
[109]
Zhao J, Chen A , Liu Q. Chin. J. Chem., 2009,27:930.
[110]
Chen F, Huang S, Zhang H, Liu F, Peng Y . Tetrahedron, 2008,64:9585.
[111]
Gandhi S, Singh V K . Org. Chem., 2008,73:9411.
[112]
Vishnumaya M R, Singh V K . Org. Chem., 2009,74:4289.
[113]
Rambo R S, Schneider P H . Tetrahedron: Asymmetry, 2010,21:2254.
[114]
Wang B, Chen G H, Liu L Y, Chang W X , Li J. Adv. Synth. Catal., 2009,351:2441.
[115]
Wang B, Liu X W, Liu L Y, Chang W X , Li J. Eur. J. Org. Chem., 2010,5951.
[116]
Tsandi E, Kokotos C G, Kousidou S, Ragoussis V, Kokotos G . Tetrahedron, 2009,65:1444.
[117]
Chandrasekhar S, Johny K, Reddy C R . Tetrahedron: Asymmetry, 2009,20:1742.
[118]
Jia Y N, Wu F C, Ma X, Zhu G J , Da C S. Tetrahedron Lett., 2009,50:3059.
[119]
Da C S, Che L P, Guo Q P, Wu F C, Ma X, Jia Y N . Org. Chem., 2009,74:2541.
[120]
Nisco M D, Pedatella S, Ullah H, Zaidi J H, Naviglio D, Özdamar Ö, Caputo R . Org. Chem., 2009,74:9562.
[121]
( a) Pedrosa R, Andrés J M, Manzano R, Rodríguez P . Eur. J. Org. Chem., 2010, 5310.;( b) Pedrosa R, Andrés J M, Manzano R, Román D, Téllez S. Org. Biomol. Chem., 2011,9:935.
[122]
Pearson A J, Panda S . Tetrahedron, 2011,67:3969.
[123]
Siyutkin D E, Kucherenko A S, Frolova L L, Kuchin A V, Zlotin S G . Tetrahedron: Asymmetry, 2011,22:1320.
[124]
Tian H, Gao J L, Xu H, Zheng L Y, Huang W B, Liu Q W, Zhang S Q . Tetrahedron: Asymmetry, 2011,22:1074.
[125]
Delaney J P , Henderson L C. Adv. Synth. Catal., 2012,354:197.
[126]
Maycock C D, Ventura M R . Tetrahedron: Asymmetry, 2012,23:1262
[127]
Shen C, Shen F, Zhou G, Xia H, Chen X, Liu X, Zhang P. Catal. Commun ., 2012,26:6.
[128]
Tang G, Gün Ü, Altenbach H J . Tetrahedron, 2012,68:10230.
[129]
Zhang F, Li C, Qi C . Tetrahedron: Asymmetry, 2013,24:380.
[130]
Zhao H W, Yue Y Y, Li H L, Song X Q, Sheng Z H, Yang Z, Meng W, Yang Z . Synlett, 2013,24:2160.
[131]
Psarra A, Kokotos C G, Moutevelis-Minakakis P . Tetrahedron, 2014,70:608.
[132]
Huang X R, Liu Q, Wang J, Xiao J A, Yang H . Tetrahedron: Asymmetry, 2014,25:1590.
[133]
Gong Z, Wei C, Shi Y, Zheng Q, Song Z, Liu Z . Tetrahedron, 2014,70:1827.
[134]
Yolacan C, Mavis M E, Aydogan F . Tetrahedron, 2014,70:3707.
[135]
Naresh T, Kumar T P, Haribabu K, Chandrasekhar S . Tetrahedron: Asymmetry, 2014,25:1340.
[136]
Song X, Liu A X, Liu S S, Gao W C, Wang M C, Chang J . Tetrahedron, 2014,70:1464.
[137]
Cabrera H R, Huelgas G , Pérez J M H, Walsh P J, Somanathan R, de Parrodi C A. Tetrahedron: Asymmetry, 2015,26:163.
[138]
Bayat S, Salleh A B, Malek E A, Yousefi S , Rahman M B A. Catal. Lett., 2015,145:1750.
[139]
Vizcaíno-Milla P, Sansano J M, Nájera C, Fiser B , Gómez-Bengoa E. Eur. J. Org. Chem., 2015,2614.
[140]
Lisnyak V G, Kucherenko A S, Valeev E F, Zlotin S G . Org. Chem., 2015,80:9570.
[141]
Hu X M, Zhang D X, Zhang S Y , Wang P A. RSC Adv., 2015,5:39557.
[142]
Vlasserou I, Sfetsa M, Gerokonstantis D T, Kokotos C G, Moutevelis-Minakakis P . Tetrahedron, 2018,74:2338.
[143]
Ruíz-Pérez K M, Quiroz-García B, Hernández-Rodríguez M . Eur.[J]. Org. Chem., 2018,5763.
[144]
Wang R, Wei Z, Guo J, Feng Y, Xu E, Duan H, Lin Y, Yang Q, Du J , Li Y. Chem. Res. Chin. Univ., 2018,34:180.
[145]
Wang R, Xu E, Su Z, Duan H, Wang J, Xue L, Lin Y, Li Y, Wei Z, Yang Q. RSC Adv ., 2018,8:28376.
[146]
Cruz-Hernández C, Landeros J M, Juaristi E. New J . Chem, 2019,43:5455.
[147]
( a) Ramasastry S S V, Zhang H, Tanaka F, Barbas III C F . J. Am. Chem. Soc., 2007, 129: 288.;( b) Luo S, Xu H, Li J, Zhang L, Cheng J P. J. Am. Chem. Soc., 2007, 129: 3074.;, 2007,349:812.
[148]
Xu X Y, Wang Y Z , Gong L Z. Org. Lett., 2007,9:4247.
[149]
Zhu M K, Xu X Y , Gong L Z. Adv. Synth. Catal., 2008,350:1390.
[150]
Ramasastry S S V, Albertshofer K, Utsumi N, Barbas III C F . Org. Lett., 2008,10:1621.
[151]
Wu X, Ma Z, Ye Z, Qian S , Zhao G. Adv. Synth. Catal., 2009,351:158.
[152]
Sarkar D, Harman K, Ghosh S, Headley A D . Tetrahedron: Asymmetry, 2011,22:1051.
[153]
Tang Z, Cun L F, Cui X, Mi A Q, Jiang Y Z , Gong L Z. Org. Lett., 2006,8:1263.
[154]
Xu X Y, Tang Z, Wang Y Z, Luo S W, Cun L F, Gong L Z . Org. Chem., 2007,72:9905.
[155]
Wang F, Xiong Y, Liu X, Feng X, Adv. Synth. Catal ., 2007,349:2665.
[156]
Jiang J, Chen X, Wang J, Hui Y, Liu X, Lin L , Feng X. Org. Biomol. Chem., 2009,7:4355.
[157]
Viózquez S F, Bañón-Caballero A, Guillena G, Nájera C , Gómez-Bengoa E. Org. Biomol. Chem., 2012,10:4029.
[158]
Moles F J N, Guillena G, Nájera C . RSC Adv., 2014,4:9963.
[159]
Chen J R, Liu X P, Zhu X Y, Li L, Qiao Y F, Zhang J M, Xiao W J . Tetrahedron, 2007,63:10437.
[160]
Gruttadauria M, Giacalone F, Marculescu A M , Noto R. Adv. Synth. Catal., 2008,350:1397.
[161]
Gruttadauria M , P Salvo A M, Giacalone F, Agrigento P, Noto R. Eur.[J]. Org. Chem., 2009,5437.
[162]
Gao J, Liu J, Jiang D, Xiao B, Yang Q . J. Mol. Catal. A: Chem., 2009,313:79.
[163]
Gao J, Liu J, Tang J, Jiang D, Li B , Yang Q. Chem. Eur. J., 2010,16:7852.
[164]
Bañón-Caballero A, Guillena G, Nájera C. Green Chem ., 2010,12:1599.
[165]
Bañón-Caballero A, Guillena G, Nájera C. Helv. Chim . Acta, 2012,95:1831.
[166]
Bañón-Caballero A, Guillena G, Nájera C, Faggi E, Sebastián R M, Vallribera A . Tetrahedron, 2013,69:1307.
[167]
Siyutkin D E, Kucherenko A S, Zlotin S G . Tetrahedron, 2010,66:513.
[168]
Kucherenko A S, Gerasimchuk V V, Lisnyak V G, Nelyubina Y V , Zlotin S G. Eur. J. Org. Chem., 2015,5649.
[169]
Kochetkov S V, Kucherenko A S , Zlotin S G. Eur. J. Org. Chem., 2011,6128.
[170]
Pedrosa R, Andrés J M, Gamarra A, Manzano R, Pérez-López C . Tetrahedron, 2013,69:10811.
[171]
Heidlindemann M, Rulli G, Berkessel A, Hummel W, Gröger H. ACS Catal ., 2014,4:1099.
[172]
Almaşi D, Alonso D A, Nájera C . Tetrahedron: Asymmetry, 2006,17:2064.
[173]
Almaşi D, Alonso D A, Gómez-Bengoa E, Nagel Y , Nájera C. Eur. J. Org. Chem., 2007,2328.
[174]
Huang Y C , Uang B J. Chem. Asian J., 2014,9:2444.
[175]
Xu D, Wang J, Yan L, Yuan M, Xie X, Wang Y . Tetrahedron: Asymmetry, 2016,27:1121.
[176]
( a) Zhong G . Angew. Chem. Int. Ed., 2003, 42: 4247.;( b) Brown S P, Brochu M P, Sinz C J, MacMillan D W C. J. Am. Chem. Soc., 2003, 125: 10808.;, 2004,10:3673.
[177]
Guo H M, Cheng L, Cun L F, Gong L Z, Mi A Q , Jiang Y Z. Chem. Commun., 2006,429.
[178]
Zhang H, Zhang S, Liu L, Luo G, Duan W, Wang W . Org. Chem., 2010,75:368.
[179]
Saha S, Moorthy J N . Org. Chem., 2011,76:396.
[180]
Bañón-Caballero A, Guillena G, Nájera C . Org. Chem., 2013,78:5349.
[181]
Witzig R M, Fäseke V C, Häussinger D, Sparr C. Nat. Catal ., 2019,2:925.
[182]
Bourgeois F, Medlock J A, Bonrath W, Sparr C. Org. Lett ., 2020,22:110.
[183]
Tang Z, Yang Z H, Cun L F, Gong L Z, Mi A Q , Jiang Y Z. Org. Lett., 2004,6:2285.
[184]
Wu F C, Da C S, Du Z X, Guo Q P, Li W P, Yi L, Jia Y N, Ma X . Org. Chem. 2009,74:4812.
[185]
Krattiger P, Kovasy R, Revell J D, Ivan S, Wennemers H. Org. Lett ., 2005,7:1101.
[186]
( a) Arakawa Y, Wiesner M, Wennemers H . Adv. Synth. Catal., 2011, 353: 1201.;( b) Duschmalé J, Wennemers H. Chem. Eur. J., 2012, 18: 1111.;, 2020,11:1943.
[187]
Tzeng Z H, Chen H Y, Reddy R J, Huang C T, Chen K . Tetrahedron, 2009,65:2879.
[188]
Pearson A J, Panda S. Org. Lett ., 2011,13:5548.
[189]
Fotaras S, Kokotos C G, Tsandi E , Kokotos G. Eur. J. Org. Chem., 2011,1310.
[190]
Revelou P, Kokotos C G, Moutevelis-Minakakis P . Tetrahedron, 2012,68:8732.
[191]
Fotaras S, Kokotos C G , Kokotos G. Org. Biomol. Chem., 2012,10:5613.
[192]
Kokotos C G . Org. Chem., 2012,77:1131.
[193]
Li Y, Yang Q C, Xu X Y, Zhou Y, Bai J F, Wang F Y , Wang L X. Can. J. Chem., 2011,89:1312.
[194]
Monge-Marcet A, Pleixats R, Cattoën X , Man M W C, Alonso D A, Nájera C. New[J]. Chem., 2011,35:2766.
[195]
Zhao H W, Sheng Z H, Meng W, Yue Y Y, Li H L, Song X Q, Yang Z . Synlett, 2013,24:2743.
[196]
Xu E J, Song Y, Wei Z L, Wang R, Duan H F, Lin Y J, Yang Q B , Li Y X. Can. J. Chem., 2019,97:352.
[197]
Martins R S, Pereira M P, Castro P P, Bombonato F I . Tetrahedron, 2020,76:130855.
[198]
Kon K, Kohari Y, Murata M. Tetrahedron Lett ., 2019,60:415.
[199]
Fu J Y, Xu X Y, Li Y C, Huang Q C , Wang L X. Org. Biomol. Chem., 2010,8:4524.
[1] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[2] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[3] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[4] 姚闯, 张希, 黄勇力, 李蕾, 马增胜, 孙长庆. 水的结构和反常物性[J]. 化学进展, 2018, 30(8): 1242-1256.
[5] 袁梦娅, 陈孝云*, 林生岭*. 功能化烯胺的合成[J]. 化学进展, 2018, 30(8): 1082-1096.
[6] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[7] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[8] 张宇, 刘小华, 林丽丽, 冯小明*. 催化不对称傅-克反应研究进展[J]. 化学进展, 2018, 30(5): 491-504.
[9] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[10] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[11] 伍宏伟, 陈亚运, 饶才辉, 刘传祥*. 含CH基的阴离子受体[J]. 化学进展, 2016, 28(10): 1501-1514.
[12] 蒋坤, 陈应春. 不对称三烯胺催化的发展[J]. 化学进展, 2015, 27(2/3): 137-145.
[13] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[14] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[15] 张永丽, 张瑞, 常宏宏, 魏文珑, 李兴. 手性催化剂在不对称羰基ene反应中的应用[J]. 化学进展, 2014, 26(09): 1492-1505.
阅读次数
全文


摘要