English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 633-648 DOI: 10.7536/PC200528 前一篇   后一篇

所属专题: 锂离子电池

• 综述 •

柔性锂离子电池的电极

张长欢1, 李念武2, 张秀芹1,*()   

  1. 1 北京服装学院材料设计与工程学院 北京市纺织纳米纤维工程技术研究中心 服装材料研究开发与评价北京市重点实验室 北京 100029
    2 北京化工大学化学工程学院 北京 100029
  • 收稿日期:2020-05-13 修回日期:2020-07-15 出版日期:2021-04-20 发布日期:2020-12-28
  • 通讯作者: 张秀芹
  • 基金资助:
    北京服装学院科学研究项目(2020A-04); 北京服装学院高水平教师队伍建设专项资金(BIFTXJ201917); 北京市属高等学校高层次人才引进与培养计划项目-北京市长城学者培育计划(CTT&TCD20180321); 高性能多功能冬奥服装服饰研究开发(Z181100005918005)

Electrode Materials for Flexible Lithium-Ion Battery

Changhuan Zhang1, Nianwu Li2, Xiuqin Zhang1()   

  1. 1 Beijing Key Laboratory of Clothing Materials R & D and Assessment,Beijing Engineering Research Center of Textile Nanofiber, School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2 College of Chemistry and Engineering, Beijing University of Chemical Technology,Beijing 100029, China
  • Received:2020-05-13 Revised:2020-07-15 Online:2021-04-20 Published:2020-12-28
  • Contact: Xiuqin Zhang
  • Supported by:
    the Key Project of Science for Beijing Institute of Fashion Technology(2020A-04); the Special Fund for High-Level Teachers of Beijing Institute of Fashion Technology(BIFTXJ201917); the Beijing Great Wall Scholars Incubator Program(CTT&TCD20180321); and the Research of High-Performance Multi-Functional Winter Olympic Clothing(Z181100005918005)

科技进步使可穿戴设备等便携式电子产品得到了快速发展,柔性电池作为其核心部件,受到越来越多研究者的关注。锂离子电池因具有良好的循环稳定性和较长的使用寿命等优点,成为各类产品的主要电源。为满足电子产品柔性化、微型化发展需求,开发高能量密度的柔性锂离子电池成为亟待解决的问题,作为其关键材料之一的柔性电极是重要的研究方向。本文阐述了柔性锂离子电池电极的研究进展,包括基于自身带有电化学活性的碳材料、Mxene材料的一体化柔性电极,基于非电化学活性的聚合物材料、纺织材料、金属基的一体化柔性电极,以及为满足可穿戴设备可编织和大尺寸形变使用需求的宏观柔性新型电极结构设计,分析并探讨了柔性电极目前存在的问题,以期为未来高能量密度柔性锂离子电池的研究提供新的思路。

With the development of science and technology, great progress has been made in portable electronic products, especially in wearable devices. Flexible battery, as the core component of portable electronic products, has attracted attention of more and more researchers. Lithium-ion battery is used as the main power source in a variety of products because of its good cycle performance and long life span. In order to make portable electronic products flexible and miniaturized, the development of flexible lithium-ion batteries with high energy density can be an urgent issue. Flexible electrode materials are regarded as the important research direction because they are key materials for flexible lithium-ion battery. The article describes recent progress on researches about electrode materials for flexible lithium-ion battery, including integrated flexible electrode and new macro-flexibility electrode structure design. The carbon-based materials and Mxene-based materials all belong to integrated flexible electrode with electrochemical activity. The polymer-based materials, textile-based materials and metal-based materials all belong to integrated flexible electrode based on non-electrochemical activity. The new macro-flexibility electrode structure design meets the needs that wearable devices are woven and tolerable of large scale deformation. This paper analyzes and discusses existing problems of flexible electrodes in order to provide new ideas for researches about flexible lithium-ion battery with high energy density in future.

Contents

1 Introduction

2 Integrated flexible electrode design

2.1 Based material with electrochemical active

2.2 Other non-electrochemical activity based material

3 Macro-flexible electrode structure design

3.1 Kirigami structure

3.2 Fiber structure

4 Conclusion and outlook

()
图1 CuOx-Co3O4@PNCNF复合材料制备过程示意图[19]
Fig.1 Schematic diagrams for the formation of CuOx-Co3O4@-PNCNF composites[19]. Copyright 2019, RSC
图2 (a) CNT/meso-Si/C海绵制备过程示意图及压缩回弹状态(b) 循环性能和倍率性能测试结果[25]
Fig.2 (a) Schematic illustration of the formation of CNT/meso-Si/C sponges.(b) The cycling and rate capabilities of CNT/meso-Si/C electrode[25]. Copyright 2017, ACS
图3 CP及CP@Fe3O4@RGO制备过程示意图[33]
Fig.3 Scheme of synthesis of CP and fabrication of CP@Fe3O4@RGO[33]. Copyright 2019, ACS
图4 干压工艺制备锂离子电池电极和电池性能测试结果[36]
Fig.4 Illustration of the dry compression process for LIB electrode fabrication and electrochemical performance[36]. Copyright 2019, ACS
图5 (a)实验装置示意图,(b)可能的反应过程,(c)PM-GDY薄膜光学照片,(d) PY-GDY薄膜光学照片,(e) PY-GDY和PM-GDY的层间距离,(f) PY-GDY和PM-GDY的倍率性能[42]
Fig.5 (a) Schematic illustration of the experimental setup.(b) Possible reaction pathway for the synthetic process.(c) Photograph of a PM-GDY film without Cu foil.(d) Photograph of a PY-GDY film without Cu foil.(e) The optimized AA stacked configurations with corresponding interlayer spacing of bilayer PY-GDY and PM-GDY from top and side view.(f) Rate performance of PY-GDY and PM-GDY-based electrode for LIBs[42]. Copyright 2019, ACS
图6 V2O5@N-C柔性正极制备过程示意图和V2O5@N-C柔性正极的光学照片[44]
Fig.6 The schematic for synthesizing V2O5@N-C nanobelt array and photographic image of the V2O5@N-C nanobelt arrays delivering excellent flexibility[44]. Copyright 2018, RSC
图7 (a) Si/MXene复合材料制备过程示意图[50];(b)三维多孔MXene泡沫制备过程示意图[51]
Fig.7 Schematic diagram for the preparation of (a) Si/MXene composite paper[50] and (b) the freestanding and flexible 3D porous MXene foam[51]. Copyright 2019, ACS and Copyright 2019, Wiley
图8 自支撑RGO/CNF/RGO制备过程示意图[53]
Fig.8 Schematic of the fabrication process of the RGO/CNF/RGO papers[53]. Copyright 2018, ACS
图9 (a) 柔性尼龙作基底的柔性界面设计硅负极结构示意图,(b) 充放电过程中界面以及硅负极的结构变化,(c) 50 000次弯折前后的SEM和宏观形态[54]
Fig.9 (a) Fabrication process of silicon anode with flexible interface design on the soft nylon substrate with a Cu-Ni buffer layer.(b) The detailed structure of the flexible interface, and the shape change of the silicon anode during the alloying and de-alloying process.(c) SEM morphologies and photograph of the silicon anode before and after 50 000 bends[54]. Copyright 2020, Wiley.
图10 L-LiCoO2纳米片阵列制备过程示意图[55]
Fig.10 Schematic illustration of the synthesis procedure of the L-LiCoO2nanosheet arrays[55]. Copyright 2018, Wiley
图11 在不同反应阶段的制备NiCo2O4HNAs/NF过程示意图[57]
Fig.11 Schematic of the products at various reaction stages[57]. Copyright 2017, RSC
图12 (a) 剪纸结构电极的制备过程,(b) 拉伸状态下剪纸结构电极的形状,(c) LFP剪纸结构电极的光学照片(标尺为8 mm)[60]
Fig.12 (a) Fabrication process of customized deformable electrodes.(b) Illustration of customized kirigami deformable electrodes under stretched states and the inset image shows the dense and steady microstructure of electrodes after the drying process.(c) Optical photos of pristine kirigami deformable LFP electrodes. The scale bar is 8 mm[60]. Copyright 2020, ACS
图13 (a) 湿法纺丝制备TiO2/rGO柔性电极的制备过程示意图和TiO2/rGO/Li同轴结构纤维电池示意图[62];(b) 3D打印制备全纤维柔性电极及其加捻、编织结构和其在纺织面料上应用的照片[63]
Fig.13 (a) Schematic illustration of the fabrication process for the hybrid fiber of titania/rGO and schematic drawing of the assembled half-cell[62].(b) Schematic of the design concept and fabrication process of 3D printed all-fiber flexible LIBs[63]. Copyright 2017, ACS and Copyright 2017, Wiley
[1]
Wang X F, Lu X H, Liu B, Chen D, Tong Y X, Shen G Z. Adv. Mater., 2014, 26(28): 4763.

URL     pmid: 24913891
[2]
Zhu Y H, Yang X Y, Liu T, Zhang X B. Adv. Mater., 2020, 32(5): 1901961.
[3]
Chen D, Lou Z, Jiang K, Shen G Z. Adv. Funct. Mater., 2018, 28(51): 1805596.
[4]
Li J, Jiang Q, Yuan N, Tang J G. Materials, 2018, 11(11): 2280.
[5]
Tarascon J M, Armand M. Nature, 2001, 414(6861): 359.

URL     pmid: 11713543
[6]
Gwon H, Hong J, Kim H, Seo D H, Jeon S, Kang K. Energy Environ. Sci., 2014, 7(2): 538.
[7]
Zhu Y J, Yang M, Huang Q Y, Wang D R, Yu R B, Wang J Y, Zheng Z J, Wang D. Adv. Mater., 2020, 32(7): 1906205.
[8]
Zhang Y, Jiao Y D, Liao M, Wang B J, Peng H S. Carbon, 2017, 124: 79.
[9]
Wen L, Li F, Cheng H M. Adv. Mater., 2016, 28: 4306.

URL     pmid: 26748581
[10]
Zhang C H, Li N W, Yao H R, Liu L, Yin Y X, Guo Y G. Acta Chim. Sinica, 2017, 75(2): 206.
[11]
Yousaf M, Shi H T H, Wang Y S, Chen Y J, Ma Z M, Cao A Y, Naguib H E, Han R P S. Adv. Energy Mater., 2016, 6(17): 1600490.
[12]
Ma Y, Asfaw H D, Edström K. Chem. Mater., 2015, 27(11): 3957.
[13]
Wang J F, Xu H J, Huo Y P, Wang Y T, Dong M D. Nanotechnology, 2020, 31(13): 132001.

URL     pmid: 31665706
[14]
Zhang C, Liang Y, Yao L, Qiu Y. Solid State Ion., 2014, 267: 74.
[15]
Li W H, Zeng L C, Wu Y, Yu Y. Sci. China Mater., 2016, 59(4): 287.
[16]
Xia J, Liu L, Jamil S, Xie J, Yan H X, Yuan Y T, Zhang Y, Nie S, Pan J, Wang X Y, Cao G Z. Energy Storage Mater., 2019, 17: 1.
[17]
Chang X, Wang T, Zhang P, Zhang J, Li A, Gong J L. J. Am. Chem. Soc., 2015, 137(26): 8356.

URL     pmid: 26091246
[18]
Hao J N, Zhang J, Xia G L, Liu Y J, Zheng Y, Zhang W C, Tang Y B, Pang W K, Guo Z P. ACS Nano, 2018, 12(10): 10430.
[19]
Chen H, He J, Li Y L, Luo S, Sun L N, Ren X Z, Deng L B, Zhang P X, Gao Y, Liu J H. J. Mater. Chem. A, 2019, 7(13): 7691.
[20]
Zhang Q, Zhou K, Lei J H, Hu W C. Appl. Surf. Sci., 2019, 467/468: 992.
[21]
Baughman R H, Zakhidov A, de Heer W A. Science, 2002, 297: 787.

URL     pmid: 12161643
[22]
Park S, Vosguerichian M, Bao Z N. Nanoscale, 2013, 5(5): 1727.

URL     pmid: 23381727
[23]
Huang L, Guan Q, Cheng J L, Li C, Ni W, Wang Z P, Zhang Y, Wang B. Chem. Eng. J., 2018, 334: 682.
[24]
Yang H, Xu G B, Wei X L, Cao J X, Yang L W, Chu P K. J. Power Sources, 2018, 395: 295.
[25]
Yang Y B, Yang X D, Chen S, Zou M C, Li Z H, Cao A Y, Yuan Q. ACS Appl. Mater. Interfaces, 2017, 9(27): 22819.
[26]
Zhang C, Yao L, Qiu Y. J. Appl. Polym. Sci., 2016, 133(9): 43001.
[27]
Zhang M, Lu R C, Yuan H X, Amin K, Mao L J, Yan W, Wei Z X. ACS Appl. Mater. Interfaces, 2019, 11(23): 20873.

URL     pmid: 31074604
[28]
Yan Y R, Li C L, Liu C, Mutlu Z, Dong B, Liu J, Ozkan C S, Ozkan M. Carbon, 2019, 142: 238.
[29]
Han P X, Zhang B, Huang C S, Gu L, Li H, Cui G L. Electrochem. Commun., 2014, 44: 70.
[30]
Xu G, Han P, Wang X, Zhou X, Han X, Lu D, Liu H, Zhao J, Ma J, Cui G. ACS Appl. Mater. Interfaces, 2020, 12: 9468.

URL     pmid: 32003965
[31]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A. Science, 2004, 306: 666.

URL     pmid: 15499015
[32]
Zhang M W, Hou C Y, Halder A, Wang H Z, Chi Q J. Mater. Chem. Front., 2017, 1(1): 37.
[33]
Gao T, Xu C Y, Li R Q, Zhang R, Wang B L, Jiang X F, Hu M, Bando Y, Kong D S, Dai P C, Wang X B. ACS Nano, 2019, 13(10): 11901.
[34]
Mo R W, Rooney D, Sun K N, Yang H Y. Nat. Commun., 2017, 8: 13949.

URL     pmid: 28051065
[35]
Zhou X M, Liu Y, Du C Y, Ren Y, Li X L, Zuo P J, Yin G P, Ma Y L, Cheng X Q, Gao Y Z. ACS Appl. Mater. Interfaces, 2018, 10(35): 29638.

URL     pmid: 30091890
[36]
Kirsch D J, Lacey S D, Kuang Y D, Pastel G, Xie H, Connell J W, Lin Y, Hu L B. ACS Appl. Energy Mater., 2019, 2(5): 2990.
[37]
Cranford S W, Buehler M J. Carbon, 2011, 49(13): 4111.
[38]
Li Y J, Xu L, Liu H B, Li Y L. Chem. Soc. Rev., 2014, 43(8): 2572.
[39]
He J, Wang N, Cui Z L, Du H P, Fu L, Huang C S, Yang Z, Shen X Y, Yi Y P, Tu Z Y, Li Y L. Nat. Commun., 2017, 8: 1172.
[40]
He J, Wang N, Yang Z, Shen X Y, Wang K, Huang C S, Yi Y P, Tu Z Y, Li Y L. Energy Environ. Sci., 2018, 11(10): 2893.
[41]
He J, Bao K J, Cui W, Yu J, Huang C S, Shen X Y, Cui Z L, Wang N. Chem. Eur. J., 2018, 24(5): 1187.
[42]
Yang Z, Shen X Y, Wang N, He J, Li X D, Wang X, Hou Z F, Wang K, Gao J, Jiu T G, Huang C S. ACS Appl. Mater. Interfaces, 2019, 11(3): 2608.

URL     pmid: 29546976
[43]
Ha S H, Shin K H, Park H W, Lee Y J. Small, 2018, 14(43): 1703418.
[44]
Wu L J, Zhang Y, Li B J, Wang P X, Fan L S, Zhang N Q, Sun K N. RSC Adv., 2018, 8(12): 6540.
[45]
Ma K, Liu X, Cheng Q L, Saha P, Jiang H, Li C Z. J. Power Sources, 2017, 357: 71.
[46]
Xia J, Tian R, Guo Y P, Du Q, Dong W, Guo R J, Fu X W, Guan L, Liu H Z. Mater. Des., 2018, 156: 272.
[47]
Kang J W, Su Q M, Feng H G, Huang P, Du G H, Xu B S. Electrochimica Acta, 2019, 301: 29.
[48]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.

URL     pmid: 24357390
[49]
Yang Q, Wang Y K, Li X L, Li H F, Wang Z F, Tang Z J, Ma L T, Mo F N, Zhi C Y. Energy Environ. Mater., 2018, 1(4): 183.
[50]
Tian Y, An Y L, Feng J K. ACS Appl. Mater. Interfaces, 2019, 11(10): 10004.

URL     pmid: 30775905
[51]
Zhao Q, Zhu Q Z, Miao J W, Zhang P, Wan P B, He L Z, Xu B. Small, 2019, 15(51): 1904293.
[52]
Liu L, Li M, Chu L, Jiang B, Lin R. Appl. Surf. Sci., 2019, 476: 501.
[53]
Hou M J, Xu M J, Li B. ACS Sustainable Chem. Eng., 2018, 6(3): 2983.
[54]
Jiang C L, Xiang L, Miao S J, Shi L, Xie D H, Yan J X, Zheng Z J, Zhang X M, Tang Y B. Adv. Mater., 2020, 32(17): 2070135.
[55]
Xue L, Savilov S V, Lunin V, Xia H. Adv. Funct. Mater., 2018, 28(7): 1705836.
[56]
Lu B, Liu J, Hu R Z, Wang H, Liu J W, Zhu M. Energy Storage Mater., 2018, 14: 118.
[57]
Wang Y, Liu P C, Zhu K J, Wang J, Liu J S. Nanoscale, 2017, 9(39): 14979.

URL     pmid: 28953287
[58]
Xie K Y, Wei B Q. Adv. Mater., 2014, 26(22): 3592.

URL     pmid: 24643976
[59]
Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwödiauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T. Nature, 2013, 499(7459): 458.

URL     pmid: 23887430
[60]
Bao Y H, Hong G Q, Chen Y, Chen J, Chen H S, Song W L, Fang D N. ACS Appl. Mater. Interfaces, 2020, 12(1): 780.

URL     pmid: 31849209
[61]
Sun H, Zhang Y, Zhang J, Sun X M, Peng H S. Nat. Rev. Mater., 2017, 2(6): 17023.
[62]
Hoshide T, Zheng Y C, Hou J Y, Wang Z Q, Li Q W, Zhao Z G, Ma R Z, Sasaki T, Geng F X. Nano Lett., 2017, 17(6): 3543.

URL     pmid: 28535338
[63]
Wang Y B, Chen C J, Xie H, Gao T, Yao Y G, Pastel G, Han X G, Li Y J, Zhao J P, Fu K, Hu L B. Adv. Funct. Mater., 2017, 27(43): 1703140.
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[3] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[4] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[5] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[6] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[7] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[8] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[9] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[10] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[11] 夏也, 苏喜, 陈李, 李顺波, 徐溢. 用于细胞检测的微电极传感器设计及传感分析[J]. 化学进展, 2019, 31(8): 1129-1135.
[12] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[13] 赵云, 金玉红, 王莉, 田光宇, 何向明. 自组装多级结构在锂离子电池中的应用[J]. 化学进展, 2018, 30(11): 1761-1769.
[14] 丁晨, 赵兵*, 祁宁. 基于银纳米线导电网络的电子纺织品[J]. 化学进展, 2017, 29(8): 892-901.
[15] 朱永明, 姜云鹏, 胡会利*. 纳米NCS在电化学能量转换和储存中的制备和应用[J]. 化学进展, 2017, 29(11): 1422-1434.
阅读次数
全文


摘要

柔性锂离子电池的电极