English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 649-669 DOI: 10.7536/PC200512 前一篇   后一篇

• 综述 •

水系锌离子电池锰基正极材料

周世昊1,2, 吴贤文1,*(), 向延鸿3, 朱岭3, 刘志雄3, 赵才贤2   

  1. 1 吉首大学 化学化工学院 吉首 416000
    2 湘潭大学 化工学院 湘潭 411105
    3 吉首大学 物理与机电工程学院 吉首 416000
  • 收稿日期:2020-05-08 修回日期:2020-09-01 出版日期:2021-04-20 发布日期:2020-12-28
  • 通讯作者: 吴贤文
  • 基金资助:
    国家自然科学基金项目(51704124); 国家自然科学基金项目(51762017); 国家自然科学基金项目(51262008); 湖南省教育厅重点项目(18A285); 湖湘青年英才支持计划(2018RS3098)

Manganese-Based Cathode Materials for Aqueous Zinc Ion Batteries

Shihao Zhou1,2, Xianwen Wu1(), Yanhong Xiang3, Ling Zhu3, Zhixiong Liu3, Caixian Zhao2   

  1. 1 School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
    2 College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
    3 School of Physics and Mechanical & Electrical Engineering, Jishou University, Jishou 416000, China
  • Received:2020-05-08 Revised:2020-09-01 Online:2021-04-20 Published:2020-12-28
  • Contact: Xianwen Wu
  • Supported by:
    the National Natural Science Foundation of China(51704124); the National Natural Science Foundation of China(51762017); the National Natural Science Foundation of China(51262008); the Research Foundation of Education Bureau of Hunan Province, China(18A285); and the Huxiang Youth Talent Support Program(2018RS3098)

水系锌离子电池(AZIBs)以低成本、高安全性和高环保特性在大规模储能领域具有广阔的应用前景,当前备受关注的正极材料是研究的热点。锰基化合物因具有资源丰富、环境友好和价格低廉等优点,是最具市场应用前景的一类正极材料。本文详细综述了不同锰基化合物的结构特点以及锰基AZIBs在充放电过程中涉及的四种储能机理,讨论了AZIBs锰基正极材料目前存在的问题和优化策略。最后,提出了AZIBs锰基正极材料具有研究前景的可能性方向,以期对AZIBs的发展起到一定的预见作用。

Aqueous zinc-ion batteries(AZIBs) have a broad application prospect in large-scale energy storage field with low cost, high safety and high environmental friendliness characteristics. At present, the cathode materials which have attracted much attention have become the research hotspot. Manganese-based compound is one of the most promising cathode materials in the market due to the advantages of abundant resources, environmental friendliness and low price. In this paper, the structural characteristics of different manganese-compounds and manganese-based AZIBs involved four kinds of energy storage mechanisms in the charging and discharging process are reviewed in detail, and the existing problems and optimization strategies of AZIBs manganese-based cathode materials are discussed. Finally, the possible research direction of AZIBs cathode materials is proposed, which is expected to play a certain role in the development of AZIBs.

Contents

1 Introduction

2 Manganese-based cathode materials for aqueous zinc ion batteries

2.1 MnO2

2.2 Mn2O3

2.3 Mn3O4

2.4 MnO

2.5 Other manganese compounds

3 Energy storage mechanism of manganese-based aqueous zinc ion batteries

3.1 Zn2+ insertion/extraction mechanism

3.2 Chemical conversion reaction mechanism

3.3 Zn2+ and H+ co-insertion/co-extraction

3.4 Dissolution/deposition mechanism

4 Problems and optimization strategies of manganese-based cathode materials

4.1 Doping

4.2 Surface modification

4.3 Introduction of defects

4.4 “Pillar” effect

4.5 Composite

4.6 Structural design

4.7 Electrolyte optimization

4.8 Other strategies

5 Conclusion and outlook

()
表1 水系锌离子电池与锂离子电池特征的比较[9,17??~20]
Table 1 Comparison of characteristics between AZIBs and LIBs[9,17??~20]
图1 MnO2各种晶型结构示意图: (a) α-MnO 2[31], (b) β-MnO 2[32], (c) γ-MnO 2[33], (d) R-MnO2[9], (e) Todorokite MnO2[34], (f) δ-MnO 2[37] (g) λ-MnO 2[41], (h) ε-MnO 2[32]
Fig.1 Schematic diagram of various crystal structures of MnO2: (a) α-MnO 2[31], (b) β-MnO 2[32], (c) γ-MnO 2[33], (d) R-MnO2[9], (e) Todorokite MnO2[34], (f) δ-MnO 2[37] (g) λ-MnO 2[41], (h) ε-MnO 2[32]
图2 晶体结构示意图: (a) α-Mn 2O3[43], (b) Mn3O4[44], (c) MnO[45],(d) ZnMn2O4[48], (e) MnS[50]
Fig.2 Crystal structure diagram: (a) α-Mn 2O3[43], (b) Mn3O4[44], (c) MnO[45],(d) ZnMn2O4[48], (e) MnS[50]
图3 Zn2+在(a) α-MnO 2[36], (c) γ-MnO 2[33], (d) δ-MnO 2[37], (e) α-Mn 2O3[43], (f) Mn3O4[44]中嵌入/脱出的机理示意图[44], (b) β-MnO 2循环过程中的原位XRD图[52]
Fig.3 The mechanism of Zn2+insertion/extraction in (a) α-MnO 2[36], (c) γ-MnO 2[33], (d) δ-MnO 2[37], (e) α-Mn 2O3[43], (f) Mn3O4[44], (b) in situ XRD during β-MnO 2 cycle[52]
图4 (a) KMO电极放电过程中的SEM图,(b) KMO电极放电至1.0 V的SEM图,(c) KMO的储能过程示意图[52]
Fig.4 (a) XRD diagram of KMO electrode during discharge,(b) SEM photograph of KMO electrode discharging to 1.0 V,(c) energy storage process diagram of KMO[52]
图5 (a) MnO2正极的GITT曲线,(b) 电极在添加ZnSO4和不添加ZnSO4的MnSO4电解液中的放电曲线,(c)放电深度分别为1.3和1.0 V时的XRD图[56],(d) MnO的储能过程示意图[57],(e) δ-MnO 2的储能过程示意图[58]
Fig. 5 (a) The GITT curve of MnO2 anode,(b) discharge curve of electrode in MnSO4 electrolyte with or without ZnSO4,(c) the XRD pattern at the discharge depths of 1.3 V and 1.0 V[56],(d) energy storage process of diagram MnO[57],(e) energy storage process of diagram δ-MnO 2[56]
图6 (a) α-MnO 2电极在充放电过程中的原位XRD图,(b)完全充电时 α-MnO 2电极SEM图, 完全放电时α-MnO2电极(c), (d) SEM图, EDX图[59]
Fig.6 (a) In situ XRD of α-MnO 2 electrode during charge and discharge,(b) SEM of α-MnO 2 electrode during full charge,(c),(d) SEM, EDX of α-MnO 2 electrode during full discharge[59]
图7 (a),(b) α-MnO 2, δ-MnO 2在充放电过程中的SEM图,(c) MnO2的储能过程示意图[60],(d) ZnMn2O4的储能过程示意图[61]
Fig.7 (a),(b) SEM of α-MnO 2 and δ-MnO 2 during charging and discharging,(c) schematic diagram of energy storage process of MnO2[60], (d) schematic diagram of energy storage process of ZnMn2O4[61]
图8 (a) Ce掺杂MnO2的XRD图[68],(b) V掺杂MnO2的XRD图[70],(c) NixMn3-xO4@C的不同Ni掺杂量的XRD图[72],(d) MnOx@N-C的TEM图[53]
Fig.8 (a) XRD of Ce doped MnO2[68], (b) XRD of V-doped MnO2[70], (c) XRD of NixMn3-xO4@C with different Ni doping contents[72], (d) TEM of MnOx@N-C[53]
图9 (a) α-MnO 2@Graphene的TEM图,(b) α-MnO 2@Graphene与其他材料比能量对比图[80],(c),(d) ZnMn2O4@PEDOT的SEM图和TEM图[84]
Fig.9 (a) TEM diagram of α-MnO 2@Graphene,(b) comparison diagram of specific energy between α-MnO 2@Graphene and other materials[80],(c),(d) SEM images and TEM images of ZnMn2O4@PEDOT[84]
图10 (a) 完整δ-MnO2和Od-MnO2的Zn2+吸附/解吸示意图,(b) Od-MnO2的XANES图,(c) K-边缘X射线吸收近边缘光谱[94],(d) ZnMn2O4尖晶石中嵌入/脱出Zn2+的示意图和ZnMn2O4尖晶石中无锰空位和有锰空位的Zn2+扩散途径[99]
Fig.10 (a) The complete Zn2+ adsorption/desorption diagram of δ-MnO 2and Od-MnO2,(b) XANES diagram of od-MnO2,(c) K-edge X-ray absorption near edge spectrum[94],(d) the diagram of Zn2+ embedded/removed from ZnMn2O4 spinel, and the Zn2+ diffusion path without Mn vacancy and with Mn vacancy in ZnMn2O4 spinel[99]
图11 (a) ZnMn2O4和OD-ZMO的Zn空位形成能(Evac)的结构,(b) Zn在ZnMn2O4和(c) OD-ZMO中扩散的能量分布[84]
Fig.11 (a) The structure of zinc vacancy formation energy (Evac) of ZnMn2O4 and OD-ZMO,(b) The energy distribution of Zn diffusion in ZnMn2O4 and (c) OD-ZMO[84]
图12 (a) 锌层间结构和相对能量(左边), 形成的锌锰哑铃结构(右边数字是原子间距离)[101],(b) H+扩散到具有完美结构和氧化缺陷的KMO中的示意图[52],(c) KxMn8-xO16结构图[105],(d) Na0.46Mn2O4·1.4H2O结构图[107],(e) PANI嵌入δ-MnO2结构图[111]
Fig.12 (a) The structure of zinc interlayer and relative energy(left panel), the formation of Zn-Mn dumbbell structure(right panel number is the distance between atoms)[101],(b) Schematic illustration of H+ diffusion into KMO with perfect structure and oxygen defect structure[52],(c) structure diagram of KxMn8-xO16[105],(d) structure diagram of Na0.46Mn2O4·1.4H2O[107],(e) structure diagram of PANI embedded δ-MnO2[111]
图13 (a) ZnMn2O4/Mn2O3复合材料的TEM图像,(b)恒电流充放电曲线,(c)不同扫描速度下制备的ZnMn2O4/Mn2O3复合材料的循环伏安图,(d)主要正极和负极过程中峰值电流与扫描速度平方根的关系[117]
Fig.13 (a) TEM image of ZnMn2O4/Mn2O3 composite,(b) the galvanostatic charge-discharge profiles,(c) the cyclic voltammograms of as-prepared ZnMn2O4/Mn2O3 composite at different scan rates and(d) the relationships between the peak current and square root of scan rate in the main cathodic and anodic processes[117]
图14 (a) ZnMn2O4的TEM图像,(b)中空多孔ZnMn2O4的N2吸附-解吸等温线和相应的孔径分布曲线(插图),(c)不同电流密度下ZnMn2O4/Zn的倍率性能,(d)不同倍率速率下ZnMn2O4/Zn的循环性能[54]
Fig.14 (a) TEM image of ZnMn2O4,(b) N2 adsorption-desorption isotherm of hollow porous ZnMn2O4 and the corresponding pore size distribution curve(inset),(c) The rate performance of ZnMn2O4/Zn at different current densities,(d) The cycling performance of ZnMn2O4/Zn at different C-rates[54]
图15 SSWM@Mn3O4(a)的合成示意图,(b)的SEM图,(c)的EIS图[122], MnO2@CFP(d)的CFP在工艺上电沉积纳米MnO2的示意图, 以及电沉积前后CFP的相应SEM图,(e)的SEM图, 插图为HESEM图,(f)正极在1.3C下第1、2和100次循环充/放电后的EIS对比图[56]
Fig.15 (a) Synthesis schematic,(b) SEM image, and(c) EIS spectra of SSWM@Mn3O4[122], (d) Schematic illustration of the nanocrystalline MnO2 electrodeposited on CFP process, and the corresponding SEM images of CFP before and after electrodeposition,(e) MnO2@CFP of SEM image, inset showing the high-magnified SEM.(f) The EIS comparison diagram of cathode after the first, second, and 100th cycles at 1.3 C[56]
图16 (a) 电解锌锰电池示意图,(b) 电解锌锰电池工作窗口[17
Fig.16 (a) Schematic of the electrolytic Zn-MnO2 battery,(b) working potential window of the electrolytic Zn-MnO2 battery[17]
表2 AZIBs化合物中各种锰基材料的结构和电化学性能
Table 2 Summary of the configuration and electrochemical performances of various Mn base meterials using in AZIBs
Cathode Morphology Electrolyte Voltage(V) Capacity(mA·h·g-1) Capacity retention/n cycles/y A·g-1 ref
ɑ-MnO2 nanorod 1 M ZnSO4 1~1.8 233(83 mA·g-1) 65%/50 cycles/0.083 31
ɑ-MnO2 nanorod 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 161(500 mA·g-1) 92%/5000 cycles/5 C 55
ɑ-MnO2@Graphene nanowire 2 M ZnSO4 + 0.1 M MnSO4 1~1.85 382.2(300 mA·g-1) 94%/3000 cycles/3 80
α-MnO2@CNT nanorod 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 306(61.6 mA·g-1) 97%/1000/2.772 81
α-MnO2@CNT HMs microsphere 2 M ZnSO4 + 0.1 M MnSO4 1.2~1.85 296(200 mA·g-1) 97%/1000/2.772 138
MnO2@porous-C nanorod 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 239(100 mA·g-1) 100%/1000 cycles/1 73
α-MnO2@In2O3 nanotube 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 425(100 mA·g-1) 75 mA·h·g-1/3000 cycles/3 87
Hollow MnO2/CC nanosheet 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 263.9(1A·g-1) 263.9/300 cycles/1 123
β-MnO2 nanorod 1 M ZnSO4 1~1.8 270(100 mA·g-1) 75%/200 cycles/0.2 139
β-MnO2 nanorod 3 M Zn(CF3SO3)2+ 0.1 M Mn(CF3SO3)2 0.8~1.9 258(0.65 C) 94%/2000 cycles/6.5C 32
β-MnO2@C nanoparticle 3 M Zn(CF3SO3)2 + 0.1 M MnSO4 1.0~1.8 150(200 mA·g-1) 100%/400 cycles/0.3 74
γ-MnO2 mesoporous 1 M ZnSO4 0.8~1.8 285(0.05 mA·c m - 2 ) 63%/40 cycles/0.5mA·c m - 2 33
γ-MnO2@C nanorod 2 M ZnSO4 + 0.4 M MnSO4 0.8~1.8 301(500 mA·g-1) 64.1%/300 cycles/10 75
Todorokite-MnO2 nanoflake 1 M ZnSO4 0.7~2.0 108(0.5 C) 72%50 cycles/0.5C 34
δ-MnO2 nanoflake 1 M ZnSO4 1.0~1.8 252(83 mA·g-1) 44%/100 cycles/0.1 38
δ-MnO2 nanoparticle 1 M Zn(TFSI)2+0.1 M Mn(TFSI)2 0.9~1.8 238(0.2 C) 93%/4000 cycles/20C 58
λ-MnO2 nanoparticle 1 M ZnSO4 1~1.8 136(100 mA·g-1) - 41
ε-MnO2@CFP nanoparticle 2 M ZnSO4 + 0.2 M MnSO4 1~1.8 290(1 C) 100%/10 000 cycles/6.5C 56
ɑ-Mn2O3 nanoparticle 2 M ZnSO4 + 0.1 M MnSO4 1~1.9 148(100 mA·g-1) 51%/2000 cycles/0.1 43
Mn2O3/Al2O3 microbundle 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 289(300 mA·g-1) 118 mAh·g-1/1100 cycle/1.5 117
Mn3O4 nanoparticle 2 M ZnSO4 0.8~1.9 239.2(1 A·g-1) 73%/300 cycles/0.5 44
Porous cube-like Mn3O4 @C porous nanocube 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.9 102.3(2 A·g-1) 77.1%/200 cycles/0.5 119
Mn3O4@NC nanorod 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.9 280(100 mA·g-1) 77.6%/700 cycles/1 77
MnO nanoparticle 2 M ZnSO4 + 0.1 M MnSO4 1.0~1.9 330(100 mA·g-1) 300 mAh·g-1/300 cycles/0.3 57
Mn0.610.39O @C nanoparticle 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 117.2(1 A·g-1) 99%/1500 cycles/1 45
ZnMn2O4 microrod 1 M ZnSO4 + 0.1 M MnSO4 0.6~1.9 240(200 mA·g-1) 79%/1000 cycles/2 61
Hollow ZnMn2O4 hollow microsphere 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.9 220(100 mA·g-1) 106.5 mAh·g-1/300 cycles/0.1 54
ZnMn2O4/C nanoparticle 3 M Zn(CF3SO3)2 0.8~1.9 150(50 mA·g-1) 94%/500 cycles/0.5 99
ZnMn2O4@PCPs nanoparticle 1 M ZnSO4 +0.05 M MnSO4 0.8~1.8 145.2(1000 mA·g-1) 86.5%/2000 cycles/1 121
HM-ZnMn2O4@rGO hollow nanosphere 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 147(300 mA·g-1) 72.7/6500 cycles/1 140
OD-ZnMn2O4@PEDOT nanofiber PVA/LiCl/ZnCl2/MnSO4Gel 0.8~1.9 221(0.5 mA·c m - 2 ) 93.8%/300 cycles/8 mA·c m - 2 84
MnS nanoparticle 2 M ZnSO4 1~1.8 110(500 mA·g-1) 63.6%/100 cycles/0.5 50
MnOx@N-C nanorod 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 100(2 A·g-1) 100 mA·h·g-1/1600 cycles/2 53
V-doped MnO2 nanoparticle 1 M ZnSO4 1~1.8 266(66 mA·g-1) 49%/100 cycles/0.066 70
Ce-doped α-MnO 2 nanorod 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 134(5 C) 70%/100 cycles/5 C 68
Ti-MnO2 nanowire 3 M Zn(CF3SO3)2+ 0.1 M Mn(CF3SO3)2 ~ 259(100 mA·g-1) 86%/4000 cycles/1 71
NixMn3-xO4@C nanoparticle 2M ZnSO4 + 0.15 M MnSO4 1~1.85 133.7(200 mA·g-1) 91.9%/850 cycles/0.4 72
ZnNixCoyMn2-x-yO4@N-GO nanoparticle 2 M ZnSO4 +0.1 M MnSO4 0.7~1.7 3.5(1.5 A·g-1) 79%/900 cycles/1 121
H2O-intercalated δ-MnO 2 nanoflake 1 M ZnSO4 1~1.9 154(3 A·g-1) 75.3%/200 cycles 101
Na0.46Mn2O4·1.4H2O nanoplates 2 M ZnSO4 + 0.2 M MnSO4 0.9~1.9 159(2 A·g-1) 98%/10 000 cycles/20 C 107
La+-intercalated δ-MnO 2 nanofloret 1 M ZnSO4 + 0.4 M MnSO4 0.8~1.9 278.5(100 mA·g-1) - 108
K0.8Mn8O16 nanorod 2 M ZnSO4 + 0.2 M MnSO4 1~1.8 330(100 mA·g-1) 150 mAh·g-1/1000 cycles/1 52
KxMn8-xO16 nanodendrite 1 M Zn(CF3SO3)2 + 0.05 M MnSO4 0.8~1.8 116(100 mA·g-1) 74%/300 cycles/0.1 105
P-MnO2-x@VMG nanosheet PVA/ZnCl2/MnSO4 Gel 1~1.8 302.8(500 mA·g-1) 90%/1000 cycles/2 109
ZnMn2O4/NG nanoparticle 1 M ZnSO4 +0.05 M MnSO4 0.8~1.8 221(100 mA·g-1) 97.4%/2500 cycles/1 76
MnOx/PPy nanoparticle 2 M ZnSO4 + 0.1 M MnSO4 0.4~1.9 302(150 mA·g-1) 114 mAh·g-1/1000 cycles/6 141
ZnMn2O4/Mn2O3 microsphere 1 M ZnSO4 0.8~1.9 82.6(500 mA·g-1) 112 mAh·g-1/300 cycles/0.5 117
Binder-free Mn3O4 nanoflower 2 M ZnSO4 + 0.1 M MnSO4 1~1.8 296(100 mA·g-1) 100%/100 cycles/0.5 122
oxygen-deficient δ-MnO 2 nanosheet 1 M ZnSO4 + 0.2 M MnSO4 1~1.8 159(200 mA·g-1) 80%/3000 cycles/5 94
oxygen-deficient β-MnO 2 nanowire 2 M ZnSO4 + 0.1 M MnSO4 0.8~1.8 302(50 mA·g-1) 94%/3000 cycles/5 95
[1]
Dillon A C. Chem. Rev., 2010, 110(11): 6856.
[2]
Leng J, Wang Z X, Wang J X, Wu H H, Yan G C, Li X H, Guo H J, Liu Y, Zhang Q B, Guo Z P. Chem. Soc. Rev., 2019, 48(11): 3015.

URL     pmid: 31098599
[3]
Nitta N, Wu F X, Lee J T, Yushin G. Mater. Today, 2015, 18(5): 252.
[4]
Lin M C, Gong M, Lu B G, Wu Y P, Wang D Y, Guan M Y, Angell M, Chen C X, Yang J, Hwang B J, Dai H J. Nature, 2015, 520(7547): 324.
[5]
Zubi G, Dufo-LÓpez R, Carvalho M, Pasaoglu G. Renew. Sustain. Energy Rev., 2018, 89: 292.
[6]
Ni J F, Fu S D, Wu C, Maier J, Yu Y, Li L. Adv. Mater., 2016, 28(11): 2259.

URL     pmid: 26789864
[7]
Chen S Q, Wu C, Shen L F, Zhu C B, Huang Y Y, Xi K, Maier J, Yu Y. Adv. Mater., 2017, 29(48): 1700431.
[8]
Zhang Q, Wang Z J, Zhang S L, Zhou T F, Mao J F, Guo Z P. Electrochem. Energ. Rev., 2018, 1(4): 625.
[9]
Tang B Y, Shan L T, Liang S Q, Zhou J. Energy Environ. Sci., 2019, 12(11): 3288.
[10]
Son S B, Gao T, Harvey S P, Steirer K X, Stokes A, Norman A, Wang C S, Cresce A, Xu K, Ban C M. Nat. Chem., 2018, 10(5): 532.

URL     pmid: 29610460
[11]
Wang D, Gao X W, Chen Y H, Jin L Y, Kuss C, Bruce P G. Nat. Mater., 2018, 17(1): 16.

doi: 10.1038/nmat5036     URL     pmid: 29180779
[12]
Wang T T, Li C P, Xie X S, Lu B A, He Z X, Liang S Q, Zhou J. ACS Nano, 2020, 14: 16321.
[13]
Zeng X H, Hao J N, Wang Z J, Mao J F, Guo Z P. Energy Storage Mater., 2019, 20: 410.
[14]
Zhao Y L, Zhu Y H, Zhang X B. InfoMat, 2020, 2(2): 237.
[15]
Kordesh K, Weissenbacher M. J. Power Sources, 1994, 51(1/2): 61.
[16]
Ming J, Guo J, Xia C, Wang W X, Alshareef H N. Mater. Sci. Eng.: R: Rep., 2019, 135: 58.
[17]
Chao D L, Zhou W H, Ye C, Zhang Q H, Chen Y G, Gu L, Davey K, Qiao S Z. Angew. Chem. Int. Ed., 2019, 58(23): 7823.
[18]
Li H F, Ma L T, Han C P, Wang Z F, Liu Z X, Tang Z J, Zhi C Y. Nano Energy, 2019, 62: 550.
[19]
Wu X W, Li Y H, Xiang Y H, Liu Z X, He Z Q, Wu X M, Li Y J, Xiong L Z, Li C C, Chen J. J. Power Sources, 2016, 336: 35.
[20]
Wu X W, Li Y H, Li C C, He Z X, Xiang Y H, Xiong L Z, Chen D, Yu Y, Sun K T, He Z Q, Chen P. J. Power Sources, 2015, 300: 453.
[21]
Jia X X, Liu C F, Neale Z G, Yang J H, Cao G Z. Chem. Rev., 2020, 120(15): 7795.
[22]
Chen L N, An Q Y, Mai L Q. Adv. Mater. Interfaces, 2019, 6(17): 1900387.
[23]
He P, Chen Q, Yan M Y, Xu X, Zhou L, Mai L Q, Nan C W. EnergyChem, 2019, 1(3): 100022.
[24]
Pan Z H, Yang J, Yang J, Zhang Q C, Zhang H, Li X, Kou Z K, Zhang Y F, Chen H, Yan C L, Wang J. ACS Nano, 2020, 14(1): 842.

URL     pmid: 31869204
[25]
Kang Z, Wu C L, Dong L B, Liu W B, Mou J, Zhang J W, Chang Z W, Jiang B Z, Wang G X, Kang F Y, Xu C J. ACS Sustainable Chem. Eng., 2019, 7(3): 3364.
[26]
Hu P, Zhu T, Wang X P, Zhou X F, Wei X J, Yao X H, Luo W, Shi C W, Owusu K A, Zhou L, Mai L Q. Nano Energy, 2019, 58: 492.
[27]
Li W, Wang K, Cheng S, Jiang K. Energy Storage Mater., 2018, 15: 14.
[28]
Wei W F, Cui X W, Chen W X, Ivey D G. Chem. Soc. Rev., 2011, 40(3): 1697.

URL     pmid: 21173973
[29]
Selvakumaran D, Pan A Q, Liang S Q, Cao G Z. J. Mater. Chem. A, 2019, 7(31): 18209.
[30]
Fan X L, Zhu Y J, Luo C, Suo L M, Lin Y, Gao T, Xu K, Wang C S. ACS Nano, 2016, 10(5): 5567.
[31]
Alfaruqi M H, Gim J, Kim S, Song J J, Jo J, Kim S, Mathew V, Kim J. J. Power Sources, 2015, 288: 320.
[32]
Zhang N, Cheng F Y, Liu J X, Wang L B, Long X H, Liu X S, Li F J, Chen J. Nat. Commun., 2017, 8: 405.

URL     pmid: 28864823
[33]
Alfaruqi M H, Mathew V, Gim J, Kim S, Song J J, Baboo J P, Choi S H, Kim J. Chem. Mater., 2015, 27(10): 3609.
[34]
Lee J, Ju J B, Cho W I, Cho B W, Oh S H. Electrochimica Acta, 2013, 112: 138.
[35]
Lee B, Yoon C S, Lee H R, Chung K Y, Cho B W, Oh S H. Sci. Rep., 2014, 4: 6066.

URL     pmid: 25317571
[36]
Lee B, Lee H R, Kim H, Chung K Y, Cho B W, Oh S H. Chem. Commun., 2015, 51(45): 9265.
[37]
Alfaruqi M H, Islam S, Putro D Y, Mathew V, Kim S, Jo J, Kim S, Sun Y K, Kim K, Kim J. Electrochimica Acta, 2018, 276: 1.
[38]
Alfaruqi M H, Gim J, Kim S, Song J J, Pham D T, Jo J, Xiu Z L, Mathew V, Kim J. Electrochem. Commun., 2015, 60: 121.
[39]
Guo C, Liu H M, Li J F, Hou Z G, Liang J W, Zhou J, Zhu Y C, Qian Y T. Electrochimica Acta, 2019, 304: 370.
[40]
Xu W W, Wang Y. Nano-Micro Lett., 2019, 11: 90.
[41]
Yuan C L, Zhang Y, Pan Y, Liu X W, Wang G L, Cao D X. Electrochimica Acta, 2014, 116: 404.
[42]
Song M, Tan H, Chao D L, Fan H J. Adv. Funct. Mater., 2018, 28(41): 1802564.
[43]
Jiang B Z, Xu C J, Wu C L, Dong L B, Li J, Kang F Y. Electrochimica Acta, 2017, 229: 422.
[44]
Hao J W, Mou J, Zhang J W, Dong L B, Liu W B, Xu C J, Kang F Y. Electrochimica Acta, 2018, 259: 170.
[45]
Zhu C Y, Fang G Z, Liang S Q, Chen Z X, Wang Z Q, Ma J Y, Wang H, Tang B Y, Zheng X S, Zhou J. Energy Storage Mater., 2020, 24: 394.
[46]
Tang F, Gao J Y, Ruan Q Y, Wu X W, Wu X S, Zhang T, Liu Z X, Xiang Y H, He Z Q, Wu X M. Electrochimica Acta, 2020, 353: 136570.
[47]
Tang F, He T, Zhang H H, Wu X W, Li Y K, Long F N, Xiang Y H, Zhu L, Wu J H, Wu X M. J. Electroanal. Chem., 2020, 873: 114368.
[48]
Xu B, Qian D N, Wang Z Y, Meng Y S. Mater. Sci. Eng.: R: Rep., 2012, 73(5/6): 51.
[49]
Aravindan V, Lee Y S, Madhavi S. Adv. Energy Mater., 2015, 5(13): 1402225.
[50]
Liu W B, Hao J W, Xu C J, Mou J, Dong L B, Jiang F Y, Kang Z, Wu J L, Jiang B Z, Kang F Y. Chem. Commun., 2017, 53(51): 6872.
[51]
Palacín M R. Chem. Soc. Rev., 2009, 38(9): 2565.

URL     pmid: 19690737
[52]
Islam S, Alfaruqi M H, Mathew V, Song J J, Kim S, Kim S, Jo J, Baboo J P, Pham D T, Putro D Y, Sun Y K, Kim J. J. Mater. Chem. A, 2017, 5(44): 23299.
[53]
Fu Y, Wei Q, Zhang G, Wang X, Zhang J, Hu Y, Wang D, Zuin L, Zhou T, Wu Y. Adv. Energy Mater., 2018, 8: 1801445.
[54]
Wu X W, Xiang Y H, Peng Q J, Wu X S, Li Y H, Tang F, Song R C, Liu Z X, He Z Q, Wu X M. J. Mater. Chem. A, 2017, 5(34): 17990.
[55]
Pan H L, Shao Y Y, Yan P F, Cheng Y W, Han K S, Nie Z M, Wang C M, Yang J H, Li X L, Bhattacharya P, Mueller K T, Liu J. Nat. Energy, 2016, 1(5): 16039.
[56]
Sun W, Wang F, Hou S, Yang C Y, Fan X L, Ma Z H, Gao T, Han F D, Hu R Z, Zhu M, Wang C S. J. Am. Chem. Soc., 2017, 139(29): 9775.

doi: 10.1021/jacs.7b04471     URL     pmid: 28704997
[57]
Wang J J, Wang J G, Liu H Y, You Z Y, Wei C G, Kang F Y. J. Power Sources, 2019, 438: 226951.
[58]
Jin Y, Zou L F, Liu L L, Engelhard M H, Patel R L, Nie Z M, Han K S, Shao Y Y, Wang C M, Zhu J, Pan H L, Liu J. Adv. Mater., 2019, 31(29): 1900567.
[59]
Lee B, Seo H R, Lee H R, Yoon C S, Kim J H, Chung K Y, Cho B W, Oh S H. ChemSusChem, 2016, 9(20): 2948.

URL     pmid: 27650037
[60]
Guo X, Zhou J, Bai C L, Li X K, Fang G Z, Liang S Q. Mater. Today Energy, 2020, 16: 100396.
[61]
Soundharrajan V, Sambandam B, Kim S, Islam S, Jo J, Kim S, Mathew V, Sun Y K, Kim J. Energy Storage Mater., 2020, 28: 407.
[62]
Oberholzer P, Tervoort E, Bouzid A, Pasquarello A, Kundu D P. ACS Appl. Mater. Interfaces, 2019, 11(1): 674.

URL     pmid: 30521309
[63]
Kim H, Kim J C, Bianchini M, Seo D H, Rodriguez-Garcia J, Ceder G. Adv. Energy Mater., 2018, 8(9): 1702384.
[64]
Nayak P K, Yang L T, Brehm W, Adelhelm P. Angew. Chem. Int. Ed., 2018, 57(1): 102.
[65]
Wang H W, Wang C, Dang B K, Xiong Y, Jin C D, Sun Q F, Xu M. ChemElectroChem, 2018, 5(17): 2367.
[66]
Zhu X Y, Quan J B, Huang J C, Ma Z, Chen Y X, Zhu D C, Ji C X, Li D C. RSC Adv., 2018, 8(14): 7361.
[67]
Fu Y, Jiang H, Hu Y J, Dai Y H, Zhang L, Li C Z. Ind. Eng. Chem. Res., 2015, 54(15): 3800.
[68]
Wang J W, Sun X L, Zhao H Y, Xu L L, Xia J L, Luo M, Yang Y D, Du Y P. J. Phys. Chem. C, 2019, 123(37): 22735.
[69]
Hu Z M, Xiao X, Huang L, Chen C, Li T Q, Su T C, Cheng X F, Miao L, Zhang Y R, Zhou J. Nanoscale, 2015, 7(38): 16094.

doi: 10.1039/c5nr04682c     URL     pmid: 26371824
[70]
Alfaruqi M H, Islam S, Mathew V, Song J J, Kim S, Tung D P, Jo J, Kim S, Baboo J P, Xiu Z L, Kim J. Appl. Surf. Sci., 2017, 404: 435.
[71]
Lian S T, Sun C L, Xu W N, Huo W C, Luo Y Z, Zhao K N, Yao G, Xu W W, Zhang Y X, Li Z, Yu K S, Zhao H B, Cheng H W, Zhang J J, Mai L Q. Nano Energy, 2019, 62: 79.
[72]
Long J, Gu J X, Yang Z H, Mao J F, Hao J N, Chen Z F, Guo Z P. J. Mater. Chem. A, 2019, 7(30): 17854.
[73]
Liu W F, Liu P G, Hao R, Huang Y P, Chen X X, Cai R Z, Yan J, Liu K Y. ChemElectroChem, 2020, 7(5): 1166.
[74]
Jiang W W, Xu X J, Liu Y X, Tan L, Zhou F C, Xu Z W, Hu R Z. J. Alloy. Compd., 2020, 827: 154273.
[75]
Wang C, Zeng Y X, Xiao X, Wu S J, Zhong G B, Xu K Q, Wei Z F, Su W, Lu X H. J. Energy Chem., 2020, 43: 182.
[76]
Chen L L, Yang Z H, Qin H G, Zeng X, Meng J L. J. Power Sources, 2019, 425: 162.
[77]
Sun M, Li D S, Wang Y F, Liu W L, Ren M M, Kong F G, Wang S J, Guo Y Z, Liu Y M. ChemElectroChem, 2019, 6(9): 2510.
[78]
Qin H G, Yang Z H, Chen L L, Chen X, Wang L M. J. Mater. Chem. A, 2018, 6(46): 23757.
[79]
Pang Q, Sun C L, Yu Y H, Zhao K N, Zhang Z Y, Voyles P M, Chen G, Wei Y J, Wang X D. Adv. Energy Mater., 2018, 8(19): 1800144.
[80]
Wu B K, Zhang G B, Yan M Y, Xiong T F, He P, He L, Xu X, Mai L Q. Small, 2018, 14(13): 1703850.
[81]
Li H F, Han C P, Huang Y, Huang Y, Zhu M S, Pei Z X, Xue Q, Wang Z F, Liu Z X, Tang Z J, Wang Y K, Kang F Y, Li B H, Zhi C Y. Energy Environ. Sci., 2018, 11(4): 941.
[82]
Li Y R, Yuan L X, Li Z, Qi Y Z, Wu C, Liu J, Huang Y H. RSC Adv., 2015, 5(55): 44160.
[83]
Mao J, Wu F F, Shi W H, Liu W X, Xu X L, Cai G F, Li Y W, Cao X H. Chin. J. Polym. Sci., 2020, 38(5): 514.
[84]
Zhang H Z, Wang J, Liu Q Y, He W Y, Lai Z Z, Zhang X Y, Yu M H, Tong Y X, Lu X H. Energy Storage Mater., 2019, 21: 154.
[85]
Yang H X, Song T, Lee S, Han H, Xia F, Devadoss A, Sigmund W, Paik U. Electrochimica Acta, 2013, 91: 275.
[86]
Qin S, Lei W W, Liu D, Lamb P, Chen Y. Mater. Lett., 2013, 91: 5.
[87]
Gou L, Xue D, Mou K L, Zhao S P, Wang Y, Fan X Y, Li D L. J. Electrochem. Soc., 2019, 166(14): A3362.
[88]
Khan M A, Erementchouk M, Hendrickson J, Leuenberger M N. Phys. Rev. B, 2017, 95(24): 245435.
[89]
Hu L P, Zhu T J, Liu X H, Zhao X B. Adv. Funct. Mater., 2014, 24(33): 5211.
[90]
Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A, Terrones M. 2D Mater., 2016, 3(2): 022002.
[91]
Pan X Y, Yang M Q, Fu X Z, Zhang N, Xu Y J. Nanoscale, 2013, 5(9): 3601.

URL     pmid: 23532413
[92]
Zhao Y X, Chang C, Teng F, Zhao Y F, Chen G B, Shi R, Waterhouse G I N, Huang W F, Zhang T R. Adv. Energy Mater., 2017, 7(18): 1700005.
[93]
Kim H S, Cook J B, Lin H, Ko J S, Tolbert S H, Ozolins V, Dunn B. Nat. Mater., 2017, 16(4): 454.

URL     pmid: 27918566
[94]
Xiong T, Yu Z G, Wu H J, Du Y H, Xie Q D, Chen J S, Zhang Y W, Pennycook S J, Lee W S V, Xue J M. Adv. Energy Mater., 2019, 9(14): 1803815.
[95]
Han M M, Huang J W, Liang S Q, Shan L T, Xie X S, Yi Z Y, Wang Y R, Guo S, Zhou J. iScience, 2020, 23(1): 100797.

URL     pmid: 31927485
[96]
Knight J C, Therese S, Manthiram A. J. Mater. Chem. A, 2015, 3(42): 21077.
[97]
Chen D J, Chen C, Baiyee Z M, Shao Z P, Ciucci F. Chem. Rev., 2015, 115(18): 9869.

URL     pmid: 26367275
[98]
Kim C, Phillips P J, Key B, Yi T H, Nordlund D, Yu Y S, Bayliss R D, Han S D, He M N, Zhang Z C, Burrell A K, Klie R F, Cabana J. Adv. Mater., 2015, 27(22): 3377.

URL     pmid: 25882455
[99]
Zhang N, Cheng F Y, Liu Y C, Zhao Q, Lei K X, Chen C C, Liu X S, Chen J. J. Am. Chem. Soc., 2016, 138(39): 12894.

URL     pmid: 27627103
[100]
Nam K W, Kim S, Lee S, Salama M, Shterenberg I, Gofer Y, Kim J S, Yang E, Park C S, Kim J S, Lee S S, Chang W S, Doo S G, Jo Y N, Jung Y, Aurbach D, Choi J W. Nano Lett., 2015, 15(6): 4071.

URL     pmid: 25985060
[101]
Nam K W, Kim H, Choi J H, Choi J W. Energy Environ. Sci., 2019, 12(6): 1999.
[102]
Lanson B, Drits V A, Gaillot A C, Silvester E, Plançon A, Manceau A. Am. Mineral., 2002, 87(11/12): 1631.
[103]
Kwon K D, Refson K, Sposito G. Geochimica et Cosmochimica Acta, 2013, 101: 222.
[104]
Reed J, Ceder G, van der Ven A. Electrochem. Solid-State Lett., 2001, 4(6): A78.
[105]
Chen H Z, Zhang X R, Chen L L, Yang Z H, Zeng X, Meng J L. J. Energy Storage, 2020, 27: 101139.
[106]
Qiu G H, Huang H, Dharmarathna S, Benbow E, Stafford L, Suib S L. Chem. Mater., 2011, 23(17): 3892.
[107]
Wang D H, Wang L F, Liang G J, Li H F, Liu Z X, Tang Z J, Liang J B, Zhi C Y. ACS Nano, 2019, 13(9): 10643.

URL     pmid: 31419380
[108]
Zhang H Z, Liu Q Y, Wang J, Chen K F, Xue D F, Liu J, Lu X H. J. Mater. Chem. A, 2019, 7(38): 22079.
[109]
Zhang Y, Deng S J, Pan G X, Zhang H Z, Liu B, Wang X L, Zheng X S, Liu Q, Wang X L, Xia X H, Tu J P. Small Methods, 2020, 4(6): 1900828.
[110]
Bin D, Huo W C, Yuan Y B, Huang J H, Liu Y, Zhang Y X, Dong F, Wang Y G, Xia Y Y. Chem, 2020, 6(4): 968.
[111]
Huang J H, Wang Z, Hou M Y, Dong X L, Liu Y, Wang Y G, Xia Y Y. Nat. Commun., 2018, 9: 2906.

URL     pmid: 30046036
[112]
Yu X Y, David Lou X W. Adv. Energy Mater., 2018, 8(3): 1701592.
[113]
Fang G Z, Wang Q C, Zhou J, Lei Y P, Chen Z X, Wang Z Q, Pan A Q, Liang S Q. ACS Nano, 2019, 13(5): 5635.

URL     pmid: 31022345
[114]
Wu Q L, Xu J G, Yang X F, Lu F Q, He S M, Yang J L, Fan H J, Wu M M. Adv. Energy Mater., 2015, 5(7): 1401756.
[115]
Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. Nat. Mater., 2010, 9(4): 353.

URL     pmid: 20228818
[116]
Fang G Z, Wu Z X, Zhou J, Zhu C Y, Cao X X, Lin T Q, Chen Y M, Wang C, Pan A Q, Liang S Q. Adv. Energy Mater., 2018, 8(19): 1870092.
[117]
Yang S N, Zhang M S, Wu X W, Wu X S, Zeng F H, Li Y T, Duan S Y, Fan D H, Yang Y, Wu X M. J. Electroanal. Chem., 2019, 832: 69.
[118]
Gou L, Mou K L, Fan X Y, Zhao M J, Wang Y, Xue D, Li D L. Dalton Trans., 2020, 49(3): 711.

URL     pmid: 31848556
[119]
Chen H, Zhou W H, Zhu D, Liu Z Z, Feng Z, Li J C, Chen Y G. J. Alloy. Compd., 2020, 813: 151812.
[120]
Fan X Y, Ni K F, Han J X, Wang S, Gou L, Li D L. Funct. Mater. Lett., 2019, 12(5): 1950073.
[121]
Yang C, Han M N, Yan H H, Li F, Shi M J, Zhao L P. J. Power Sources, 2020, 452: 227826.
[122]
Zhu C Y, Fang G Z, Zhou J, Guo J H, Wang Z Q, Wang C, Li J Y, Tang Y, Liang S Q. J. Mater. Chem. A, 2018, 6(20): 9677.
[123]
Wu F F, Gao X B, Xu X L, Jiang Y N, Gao X L, Yin R L, Shi W H, Liu W X, Lu G, Cao X H. ChemSusChem, 2020, 13(6): 1537.

doi: 10.1002/cssc.201903006     URL     pmid: 31797574
[124]
Qiu W D, Jiao J Q, Xia J, Zhong H M, Chen L P. RSC Adv., 2014, 4(92): 50529.
[125]
Wang F, Borodin O, Gao T, Fan X L, Sun W, Han F D, Faraone A, Dura J A, Xu K, Wang C S. Nat. Mater., 2018, 17(6): 543.

doi: 10.1038/s41563-018-0063-z     URL     pmid: 29662160
[126]
Wu K, Huang J H, Yi J, Liu X Y, Liu Y Y, Wang Y G, Zhang J J, Xia Y Y. Adv. Energy Mater., 2020, 10(12): 1903977.
[127]
Chen W, Li G D, Pei A, Li Y Z, Liao L, Wang H X, Wan J Y, Liang Z, Chen G X, Zhang H, Wang J Y, Cui Y. Nat. Energy, 2018, 3(5): 428.
[128]
Zhong C, Liu B, Ding J, Liu X R, Zhong Y W, Li Y, Sun C B, Han X P, Deng Y D, Zhao N Q, Hu W B. Nat. Energy, 2020, 5(6): 440.
[129]
Li C P, Xie X S, Liang S Q, Zhou J. Energy Environ. Mater., 2020, 3(2): 146.
[130]
Parveen N, Ansari M O, Ansari S A, Cho M H. J. Mater. Chem. A, 2016, 4(1): 233.
[131]
An H R, Li Y, Gao Y, Cao C, Han J K, Feng Y Y, Feng W. Carbon, 2017, 116: 338.
[132]
Su X H, Yu L, Cheng G, Zhang H H, Sun M, Zhang L, Zhang J J. Appl. Energy, 2014, 134: 439.
[133]
Liu X, Zhang H, Geiger D, Han J, Varzi A, Kaiser U, Moretti A, Passerini S. Chem. Commun., 2019, 55(16): 2265.
[134]
Hou D, Tao H S, Zhu X Z, Li M G. Appl. Surf. Sci., 2017, 419: 580.
[135]
Li Y Z, Zhao R, Chao S, Sun B L, Wang C, Li X. Chem. Eng. J., 2018, 344: 277.
[136]
Xie Y J, Yan B, Xu H L, Chen J, Liu Q X, Deng Y H, Zeng H B. ACS Appl. Mater. Interfaces, 2014, 6(11): 8845.

doi: 10.1021/am501632f     URL     pmid: 24787615
[137]
Sun J H, Xiao L H, Jiang S D, Li G X, Huang Y, Geng J X. Chem. Mater., 2015, 27(13): 4594.
[138]
Liu Y Z, Chi X W, Han Q, Du Y X, Huang J Q, Liu Y, Yang J H. J. Power Sources, 2019, 443: 227244.
[139]
Islam S, Alfaruqi M H, Mathew V, Song J J, Kim S, Kim S, Jo J, Baboo J P, Pham D T, Putro D Y, Sun Y K, Kim J. J. Mater. Chem. A, 2017, 5(44): 23299.
[140]
Chen L L, Yang Z H, Qin H G, Zeng X, Meng J L, Chen H Z. Electrochimica Acta, 2019, 317: 155.
[141]
Li Z X, Huang Y, Zhang J Y, Jin S Y, Zhang S D, Zhou H. Nanoscale, 2020, 12(6): 4150.

URL     pmid: 32022061
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[3] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[4] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[5] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[6] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[7] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[8] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[9] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[10] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[11] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[12] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[13] 易罗财, 次素琴, 孙成丽, 温珍海. 非水系锂氧气电池正极材料研究现状[J]. 化学进展, 2016, 28(8): 1251-1264.
[14] 陈军, 丁能文, 李之峰, 张骞, 钟盛文. 锂离子电池有机正极材料[J]. 化学进展, 2015, 27(9): 1291-1301.
[15] 蔡克迪, 赵雪, 仝钰进, 肖尧, 高勇, 王诚. 锂氧电池关键技术研究[J]. 化学进展, 2015, 27(12): 1722-1731.
阅读次数
全文


摘要

水系锌离子电池锰基正极材料