English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 66-77 DOI: 10.7536/PC200463 前一篇   后一篇

• 综述 •

光催化氧气还原制备H2O2

雷一帆1,2, 雷圣宾1,*(), 朴玲钰2,*()   

  1. 1 天津大学理学院化学系 天津 300072
    2 国家纳米科学中心 中科院纳米卓越中心 中国科学院纳米标准与检测重点实验室 北京 100190
  • 收稿日期:2020-04-29 修回日期:2020-06-13 出版日期:2021-01-24 发布日期:2020-09-23
  • 通讯作者: 雷圣宾, 朴玲钰
  • 作者简介:
    * Corresponding author e-mail: (Binlei Sheng); (Lingyu Piao)
  • 基金资助:
    国家自然科学基金项目(21972028); 国家自然科学基金项目(21872103)

Preparation of H2O2 By Photocatalytic Reduction of Oxygen

Yifan Lei1,2, Shengbin Lei1,*(), Lingyu Piao2,*()   

  1. 1 Department of Chemistry, School of Science, Tianjin University,Tianjin 300072, China
    2 CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, Beijing 100190, China
  • Received:2020-04-29 Revised:2020-06-13 Online:2021-01-24 Published:2020-09-23
  • Contact: Shengbin Lei, Lingyu Piao
  • Supported by:
    the National Natural Science Foundation of China(21972028); the National Natural Science Foundation of China(21872103)

H2O2广泛应用于化工和环保领域,其分解的唯一产物是水,有利于生产与自然生态系统的协调可持续发展。工业上H2O2的合成主要是通过蒽醌法间接合成,该方法能耗大,污染环境。而直接由H2与O2混合制备H2O2,具有极大的安全风险,且需要消耗大量H2。通过光催化技术将O2和H2O转化成H2O2的方法,避免了H2与O2的直接混合,同时采用取之不尽的太阳能作为能量来源,近年来备受关注。本文总结了光催化还原O2制备H2O2的研究进展,对比分析了不同催化体系,如g-C3N4、TiO2以及其他光催化剂的反应性能及调控措施,介绍了光催化制备H2O2的机理,并对该领域的发展进行了展望。

H2O2 is widely used in the fields of chemical industry and environmental protection. The only product of its decomposition is water, which is environmentally friendly and conducive to the coordinated and sustainable development of production. The industrial synthesis of H2O2 is mainly indirectly through the anthraquinone method, which consumes a lot of energy and pollutes the environment. The preparation of H2O2 directly from the mixture of H2 and O2 has great safety risks and requires a large amount of H2. The method of converting O2 and H2O into H2O2 through photocatalytic technology avoids the direct mixing of H2 and O2, and uses endless solar energy as an energy source, which has attracted much attention in recent years. This article summarizes the research progress of photocatalytic reduction of O2 to H2O2, compares and analyzes the reaction performance and control measures of different catalytic systems, such as g-C3N4, TiO2, and other photocatalysts, and the mechanisms of photocatalytic preparation of H2O2. In the end, the development of this field is prospected.

Contents

1 Introduction

2 Detection of HO and evaluation of catalyst activity

2.1 Detection method of hydrogen peroxide

2.2 Activity evaluation index

3 Catalyst for photocatalytic O2 reduction

3.1 Graphitic carbon nitride(g-C3N4) based photocatalysts

3.2 Titanium dioxide(TiO2) based photocatalysts

3.3 Other Photocatalysts

4 Conclusion and outlook

()
图1 O2还原反应过程中各反应的氧化还原电位
Fig. 1 Oxidation-reduction potential of each reaction in the process of oxygen reduction
图2 g-C3N4表面H2O2形成机理[30]
Fig. 2 Formation mechanism of H2O2 on g-C3N4 surface[30] . Copyright 2015, American Chemical Society
表1 g-C3N4体系光催化O2还原产H2O2文献总结
Table 1 Literature summary of g-C3N4 system for photocatalytic reduction of O2 to produce H2O2
Photocatalyst Co-catalyst Sacrificial
agent
Catalyst amount H 2O 2 yields efficiency Irradiation
conditions
Time Ref
1 C,O/GCN / / 1 g·L -1 2.01 μmol·L/(g·h) AQY=7.23% λ=420 nm 2019 32
2 P,K/GCN / / 1 g·L -1 500 μmol/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2019 33
3 Ultra-thin porous
GCN
BN QDs isopropanol 1 g·L -1 72.30 μmol/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2019 34
4 GCN Au ethanol 4 g·L -1 16.89 μmol/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2019 35
5 Soluble PCN / ethanol 0.50 g·L -1 25 μmol·L/(g·h) / UV LED Lamp 2019 36
6 GCN NiCoP ethanol 1 g·L -1 307 μmol·L/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2019 37
7 O/GCN / / 1 g·L -1 633 μmol/(g·h) / 250 W high-pressure Na Lamp 2019 38
8 Na +/GCN / isopropanol 0.14 g·L -1 ~3786 μmol/g / 300 W Xe Lamp(λ≥420 nm) 2019 39
9 GCN Phosphate EDTA 1 g·L -1 900 μmol/(g·h) / 250 W high-pressure Na Lamp 2018 40
10 K +、Na +/GCN / / 1 g·L -1 767 μmol/(g·h) / 250 W high-pressure Na Lamp 2018 13
11 GCN/PDI RGO/BN / 1.67 g·L -1 1.84 μmol·L/(g·h) AQY=7.3%
SCC=0.27%
2 kW Xe Lamp(λ≥420 nm) 2018 21
12 Nv-GCN / ethanol 1 g·L -1 367 μmol/(g·h) / 250 W high-pressure Na Lamp 2018 19
13 C/GCN / isopropanol 1 g·L -1 317 μmol/(g·h) / 300 W Xe Lamp 2018 15
14 Nv-GCN / / 1 g·L -1 170 μmol/(g·h) SCC=0.26%
AQY=4.3%
300 W Xe Lamp(λ≥420 nm) 2018 41
15 g-C 3N 4-SiW 11 / methanol 1 g·L -1 15.20 μmol·L/(g·h) / 300 W Xe Lamp(AM 1.5filter) 2018 42
16 PIx-NCN
Heterojunction
/ / 1 g·L -1 60 μmol·L/(g·h) QY=3.2%min -1 300 W Xe Lamp 2017 43
17 Ni/GCN / / 1 g·L -1 1283 μmol/(g·h) / 250 W high-pressure Na Lamp 2017 44
18 MTI/GCN / / 1.67 g·L -1 0.69 μmol·L/(g·h) SCC=0.18% 2 kW Xe Lamp(λ≥420 nm) 2017 45
19 K、P、O/GCN / ethanol 0.5 g·L -1 ~486 μmol/(g·h) AQY=8.0%(420 nm)
AQY=26.2%(320 nm)
300 W Xe Lamp(λ≥420 nm) 2017 29
20 Cv-GCN / / 1 g·L -1 90 μmol/(g·h) / 300 W Xe Lamp(λ≥420 nm) 2016 46
21 BDI/GCN / / 1.67 g·L -1 1.02 μmol·L/(g·h) AQY=4.6%(420 nm)
SCC=0.13%
λ >420 nm 2016 47
22 PDI/rGO/GCN / / 1.67 g·L -1 0.72 μmol·L/(g·h) AQY=6.1%(420 nm)
SCC=0.2%
2 kW Xe Lamp(λ≥420 nm) 2016 48
23 MMO@C 3N 4 / / 1 g·L -1 42 μmol/(g·h) / 300 W Xe Lamp 2016 16
24 Mesoporous GCN / ethanol 4 g·L -1 0.94 μmol·L/(g·h) / Xe Lamp(λ > 420 nm) 2015 30
25 GCN / ethanol 4 g·L -1 0.63 μmol·L/(g·h) / Xe Lamp(λ > 420 nm) 2014 31
26 GCN/PDI / / 1.67 g·L -1 0.63 μmol·L/(g·h) / λ=420~500 nm 2014 17
图3 牺牲剂存在下TiO2表面O2还原机理[50]
Fig. 3 Reduction mechanism of O2 on TiO2 surface in the presence of sacrificial agent[50] . Copyright 2013, American Chemical Society
表2 TiO2体系光催化O2还原产H2O2文献总结
Table 2 Literature summary on photocatalytic reduction of O2 to produce H2O2 in TiO2 system
图4 TiO2及Au/TiO2表面H2O2的形成和分解过程[10]
Fig. 4 Formation and decomposition of H2O2 on the surface of TiO2 and Au/TiO2[10] . Copyright 2012, American Chemical Society
图5 有机配体电子改性Pd负载TiO2的合成路径以及电子改性Pd上O2还原的两种途径[52]
Fig. 5 Synthesis route of organic ligand electronically modified Pd supported TiO2 and two ways of electronically modified Pd to reduce O2[52]
图6 两相体系中H2O2的产生机理[64]
Fig. 6 Production mechanism of H2O2 in two-phase system[64] . Copyright 2019, Angewandte Chemie
[1]
Campos-Martin J M , Blanco-Brieva G , Fierro J L G . Angewandte Chemie International Edition , 2006, 45( 42): 6962.
[2]
Brooks R E, Moore S B. Cellulose, 2000, 7( 3): 263.

doi: 10.1023/A:1009273701191     URL    
[3]
Qin Y, Song F, Ai Z, Zhang P, Zhang L. Environmental Science & Technology , 2015, 49( 13): 7948.

doi: 10.1021/es506110w     URL    
[4]
Davis N S, Keefe J H. Industrial & Engineering Chemistry , 1956, 48( 4): 745.
[5]
Kruithof J C, Kamp P C, Martijn B J. Ozone: Science & Engineering , 2007, 29( 4): 273.
[6]
Yamada Y, Yoneda M, Fukuzumi S. Chemistry-A European Journal , 2013, 19( 35): 11733.

doi: 10.1002/chem.v19.35     URL    
[7]
Goor G, Kunkel W, Weiberg O, Ullmann's Encyclopedia of Industrial Chemistry , VCH , 1989. 443.
[8]
Kirchner J R. Kirk-Othmer Encyclopedia of Chemical Technology , 1979, 13: 12.
[9]
Xu J, Chen Z, Zhang H, Lin G, Lin H, Wang X, Long J. Science Bulletin , 2017, 62( 9): 610.

doi: 10.1016/j.scib.2017.04.013     URL    
[10]
Tsukamoto D, Shiro A, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T. ACS Catalysis , 2012, 2( 4): 599.

doi: 10.1021/cs2006873    
[11]
Wang H , Guan Y , Hu S , Pei Y , Ma W , Fan Z . Nano , 2019, 14( 2): 1.
[12]
Kaynan N, Berke B A, Hazut O, Yerushalmi R. Journal of Materials Chemistry A , 2014, 2( 34): 13822.

doi: 10.1039/c4ta03004d    
[13]
Qu X , Hu S , Bai J , Li P , Lu G , Kang X . Journal of Materials Science &Technology , 2018, 34( 10): 1932.
[14]
Liu Y, Han J, Qiu W, Gao W. Applied Suface Science , 2012, 263: 389.
[15]
Wang R , Zhang X , Li F , Cao D , Pu M , Han D , Yang J , Xiang X . Journal of Energy Chemistry , 2018, 27( 2): 343.

doi: 10.1016/j.jechem.2017.12.014     URL    
[16]
Li S , Willoughby J A , Rojas O J . Chemsuschem , 2016, 9( 17): 2460.

doi: 10.1002/cssc.201600704     URL    
[17]
Shiraishi Y, Kanazawa S, Kofuji Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T. Angewandte Chemie International Edition , 2014, 53( 49): 13454.
[18]
Liu J , Zhang Y , Lu L , Wu G , Chen W . Chemical Communications , 2012, 48( 70): 8826.

doi: 10.1039/c2cc33644h    
[19]
Li X, Zhang J, Zhou F, Zhang H, Bai J, Wang Y, Wang H. Chinese Journal of Catalysis , 2018, 39( 6): 1090.

doi: 10.1016/S1872-2067(18)63046-3     URL    
[20]
Nosaka Y , Nosaka A Y . Chemical Reviews , 2017, 117( 17): 11302.

doi: 10.1021/acs.chemrev.7b00161     URL    
[21]
Kofuji Y, Isobe Y, Shiraishi Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T. Chemcatchem , 2018, 10( 9): 2070.

doi: 10.1002/cctc.v10.9     URL    
[22]
Liu A Y , Cohen M L . Science , 1989, 245( 4920): 841.

doi: 10.1126/science.245.4920.841     URL    
[23]
Niu C, Lu Y Z, Lieber C M. Science , 1993, 261( 5119): 334.

doi: 10.1126/science.261.5119.334     URL    
[24]
Teter D M, Hemley R J. Science , 1996, 271( 5245): 53.

doi: 10.1126/science.271.5245.53     URL    
[25]
Yan S C , Li Z S , Zou Z G . Langmuir , 2009, 25( 17): 10397.

doi: 10.1021/la900923z     URL    
[26]
Wang X, Maeda K, Chen X, Takanabe K, Domen K, Hou Y, Fu X, Antonietti M. Journal of the American Chemical Society , 2009, 131( 5): 1680.

doi: 10.1021/ja809307s     URL    
[27]
Maeda K , Wang X , Nishihara Y , Lu D , Antonietti M , Domen K . The Journal of Physical Chemistry C , 2009, 113( 12): 4940.

doi: 10.1021/jp809119m     URL    
[28]
Chen X, Jun Y, Takanabe K, Maeda K, Domen K, Fu X, Antonietti M, Wang X. Chemistry of Materials , 2009, 21( 18): 4093.

doi: 10.1021/cm902130z     URL    
[29]
Moon G, Fujitsuka M, Kim S, Majima T, Wang X, Choi W. ACS Catalysis , 2017, 7( 4): 2886.

doi: 10.1021/acscatal.6b03334     URL    
[30]
Shiraishi Y, Kofuji Y, Sakamoto H, Tanaka S, Ichikawa S, Hirai T. ACS Catalysis , 2015, 5( 5): 3058.

doi: 10.1021/acscatal.5b00408     URL    
[31]
Shiraishi Y, Kanazawa S, Sugano Y, Tsukamoto D, Sakamoto H, Ichikawa S, Hirai T. ACS Catalysis , 2014, 4( 3): 774.

doi: 10.1021/cs401208c    
[32]
Samanta S, Yadav R, Kumar A, Sinha A K, Srivastava R. Applied Catalysis B-Environmental , 2019, 259: 118054.

doi: 10.1016/j.apcatb.2019.118054     URL    
[33]
Tian J , Wu T , Wang D , Pei Y , Qiao M , Zong B . Catalysis Today , 2019, 330(SI): 171.
[34]
Yang Y, Zhang C, Huang D, Zeng G, Huang J, Lai C, Zhou C, Wang W, Guo H, Xue W, Deng R, Cheng M, Xiong W. Applied Catalysis B-Environmental , 2019, 245: 87.

doi: 10.1016/j.apcatb.2018.12.049     URL    
[35]
Zuo G, Liu S, Wang L, Song H, Zong P, Hou W, Li B, Guo Z, Meng X, Du Y, Wang T, Roy V A L. Catalysis Communications , 2019, 123: 69.

doi: 10.1016/j.catcom.2019.02.011     URL    
[36]
Krivtsov I, Mitoraj D, Adler C, Ilkaeva M, Sardo M, Mafra L, Neumann C, Turchanin A, Li C, Dietzek B, Leiter R, Biskupek J, Kaiser U, Im C, Kirchhoff B, Jacob T, Beranek R. Angewandte Chemie International Edition , 2020, 132: 485.
[37]
Peng Y , Zhou L , Wang L , Lei J , Liu Y , Daniele S , Zhang J . Research on Chemical Intermediates , 2019, 45( 12SI): 5907.

doi: 10.1007/s11164-019-04009-6     URL    
[38]
Hu S. Nano , 2019, 14( 2): 99.
[39]
Zhu Y, Xiong C, Song S, Le Z, Jiang S. Journal of Colloid and Interface Science , 2019, 538: 237.

doi: 10.1016/j.jcis.2018.11.099     URL    
[40]
Bai J, Sun Y, Li M, Yang L, Li J. Diamond and Related Materials , 2018, 87: 1.

doi: 10.1016/j.diamond.2018.05.004     URL    
[41]
Zhu Z, Pan H, Murugananthan M, Gong J, Zhang Y. Applied Catalysis B-Environmental , 2018, 232: 19.

doi: 10.1016/j.apcatb.2018.03.035     URL    
[42]
Konev A S , Kayumov M Y , Karushev M P , Novo-selova Y V , Lukyanov D A , Alekseeva E V , Levin O V . Chemelectrochem , 2018, 5( 21): 3138.

doi: 10.1002/celc.201800846     URL    
[43]
Yang L, Dong G, Jacobs D L, Wang Y, Zang L, Wang C. Journal of Catalysis , 2017, 352: 274.

doi: 10.1016/j.jcat.2017.05.010     URL    
[44]
Wu G, Hu S, Han Z, Liu C, Li Q. New Journal of Chemistry , 2017, 41( 24): 15289.

doi: 10.1039/C7NJ03298F     URL    
[45]
Kofuji Y, Ohkita S, Shiraishi Y, Sakamoto H, Ichikawa S, Tanaka S, Hirai T. ACS Sustainable Chemistry & Engineering , 2017, 5( 8): 6478.
[46]
Li S, Dong G, Hailili R, Yang L, Li Y, Wang F, Zeng Y, Wang C. Applied Catalysis B-Environmental , 2016, 190: 26.

doi: 10.1016/j.apcatb.2016.03.004     URL    
[47]
Kofuji Y , Ohkita S , Shiraishi Y , Sakamoto H , Tanaka S , Ichikawa S , Hirai T . ACS Catalysis , 2016, 6( 10): 7021.

doi: 10.1021/acscatal.6b02367     URL    
[48]
Kofuji Y , Isobe Y , Shiraishi Y , Sakamoto H , Tanaka S , Ichikawa S , Hirai T . Journal of the American Chemical Society , 2016, 138( 31): 10019.

doi: 10.1021/jacs.6b05806     URL    
[49]
Fujishima A, Honda K. Nature , 1972, 238( 5358): 37.

doi: 10.1038/238037a0     URL    
[50]
Shiraishi Y , Kanazawa S , Tsukamoto D , Shiro A , Sugano Y , Hirai T . ACS Catalysis , 2013, 3( 10): 2222.

doi: 10.1021/cs400511q     URL    
[51]
Li X, Chen C, Zhao J. Langmuir , 2001, 17( 13): 4118.

doi: 10.1021/la010035s     URL    
[52]
Chu C , Huang D , Zhu Q , Stavitski E , Spies J A , Pan Z , Mao J , Xin H L , Schmuttenmaer C A , Hu S , Kim J . ACS Catalysis , 2018, 9( 1): 626.

doi: 10.1021/acscatal.8b03738     URL    
[53]
Lee T, Bui H T, Yoo J, Ra M, Han S H, Kim W, Kwon W. ACS Applied Materials & Interfaces , 2019, 11( 44): 41196.

doi: 10.1021/acsami.9b10015     URL    
[54]
Liu Z, Sheng X, Wang D, Feng X. Iscience , 2019, 17: 67.

doi: 10.1016/j.isci.2019.06.023     URL    
[55]
Zheng L, Su H, Zhang J, Walekar L S, Mo-lamahmood H V, Zhou B, Long M, Hu Y H. Applied Catalysis B-Environmental , 2018, 239: 475.

doi: 10.1016/j.apcatb.2018.08.031     URL    
[56]
Maurino V, Minero C, Pelizzetti E, Mariella G, Arbezzano A, Rubertelli F. Research on Chemical Intermediates , 2007, 33( 3/5): 319.

doi: 10.1163/156856707779238711     URL    
[57]
Maurino V , Minero C , Mariella G , Pelizzetti E . Chemical Communications , 2005,( 20): 2627.
[58]
Cai R , Kubota Y , Fujishima A . Journal of Catalysis , 2003, 219( 1): 214.

doi: 10.1016/S0021-9517(03)00197-0     URL    
[59]
Saito H, Nosaka Y. Catalysis Communications , 2015, 61: 117.

doi: 10.1016/j.catcom.2014.12.024     URL    
[60]
Sheng H , Ji H , Ma W , Chen C , Zhao J . Angewandte Chemie International Edition , 2013, 52( 37): 9686.
[61]
Liu C, Fu Y J, Zhao J, Wang H B, Huang H, Li Y, Dou Y J, Shao M W, Kang Z H. Chemical Engineering Journal , 2019, 358: 134.

doi: 10.1016/j.cej.2018.10.005     URL    
[62]
Hirakawa H, Shiota S, Shiraishi Y, Sakamoto H, Ichikawa S, Hirai T. ACS Catalysis , 2016, 6( 8): 4976.

doi: 10.1021/acscatal.6b01187     URL    
[63]
Su Y , Zhang L , Wang W , Shao D . ACS Sustainable Chemistry & Engineering , 2018, 6( 7): 8704.
[64]
Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Angewandte Chemie International Edition , 2019, 58( 16): 5402.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[7] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[8] 曾毅, 任永生, 马文会, 陈辉, 詹曙, 曹静. 冶金法生产太阳能级硅的除硼方法、技术及工艺[J]. 化学进展, 2022, 34(4): 926-949.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[12] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[13] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[14] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[15] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
阅读次数
全文


摘要

光催化氧气还原制备H2O2