English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 1978-1989 DOI: 10.7536/PC200409 前一篇   后一篇

• 综述 •

聚合物前驱体3D打印制备高性能陶瓷

贺丽娟1,*(), 孔德隆1, 徐彩虹2, 雷朝帅1, 李文静1, 赵英民1   

  1. 1 航天特种材料及工艺技术研究所 北京 100074
    2 中国科学院化学研究所 北京 100190
  • 收稿日期:2020-04-14 修回日期:2020-08-13 出版日期:2021-10-15 发布日期:2020-10-15
  • 通讯作者: 贺丽娟
  • 作者简介:
    * Corresponding author e-mail:

3D Printing of Polymer Precursor Derived High Performance Ceramics

Lijuan He1,*(), Delong Kong1, Caihong Xu2, Chaoshuai Lei1, Wenjing Li1, Yingmin Zhao1   

  1. 1 Institute of Aerospace Special Materials and Technology, Beijing 100074, China
    2 Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-04-14 Revised:2020-08-13 Online:2021-10-15 Published:2020-10-15
  • Contact: Lijuan He

3D打印制备陶瓷可以实现结构-材料设计一体化,为复杂形状陶瓷材料快速成型提供了新途径。但是传统的3D打印制备陶瓷是以陶瓷粉末或陶瓷颗粒为打印材料,存在陶瓷构件尺寸精度差、表面光洁度低和力学性能不佳等问题。近年来,以聚合物前驱体为打印材料,通过3D打印成型、高温裂解等工艺制备高性能陶瓷技术的出现为改善这些不足提供了新方法,成为3D打印陶瓷领域的研究热点。本文概述了聚合物前驱体3D打印制备高性能陶瓷的研究进展,重点阐述了本体聚合物前驱体、聚合物前驱体/光敏化合物、聚合物前驱体/巯基化合物、光敏基团改性聚合物前驱体、增强体/聚合物前驱体五种典型材料体系的研究现状,并对其今后的发展方向进行了展望。

3D printing to prepare ceramics can realize structure-material design integration, which provides new opportunities for rapid prototyping of ceramic materials with complex shapes. However, traditional 3D printing for preparing ceramics uses ceramic powder or ceramic particles as the printing material, which has problems such as poor dimensional accuracy of ceramic components, low surface finish, and poor mechanical properties. In recent years, the emergence of technology that uses polymer precursors to produce ceramic materials with complex shapes through processes of 3D printing molding and pyrolysis provides new methods to improve this situation. It has become one of the most popular research topics in the field of 3D printing to prepare ceramics. This article summarizes the research progress of 3D printing of polymer precursor derived high performance ceramics, focusing on research status of the five typical material systems: bulk polymer precursors, polymer precursors/photosensitive compounds blends, polymer precursors/thiol compounds blends, photosensitive group-modified polymer precursors, and reinforcement/polymer precursors. Besides, an outlook for future development of 3D printing of polymer precursor derived advanced ceramics is given.

Contents

1 Introduction

2 3D printing of polymer precursor derived ceramics

2.1 Bulk polymer precursors

2.2 Polymer precursors/photosensitive compounds blends

2.3 Polymer precursors/thiol compounds blends

2.4 Photosensitive group modified polymer precursors

2.5 Reinforcement/polymer precursors

3 Conclusion and outlook

()
图式1 聚碳硅烷双组分凝胶体系
Scheme 1 Two-component carbosilane gelation
图1 聚碳硅烷双组分体系气溶胶喷射打印及裂解转化陶瓷, a) 固化后陶瓷坯体b)裂解后陶瓷c) SiOC陶瓷表面拓扑结构 d)裂解后的AFRL标志的激光扫描显微图像[49]
Fig.1 Aerosol jet printing of the two-component polycarbosilane system and subsequent conversion to ceramic. Printed polycarbosilane system as (a) cured and (b) pyrolyzed. Surface topology of the SiOC line(b) is presented in (c). (d) Laser scanning microscope image of pyrolyzed two-component AFRL logo[49]. Copyright 2018, American Chemical Society
图式2 PBSN的结构示意图
Scheme 2 Schematic structure of the PBSN
图2 3D打印陶瓷坯体(a,b,c)及裂解转化SiBCN陶瓷构件(d, e, f)[54]
Fig.2 The pictures of(a, b, c) the printed green components and(d, e, f) the corresponding pyrolyzed SiBCN ceramic components[54]. Copyright 2018, Elsevier
图3 AMHPCS/HDDA体系通过SLA技术成型的陶瓷构件(上),陶瓷坯体和裂解后陶瓷材料的对比图(下)[9]
Fig.3 Examples of ceramic parts derived from AMHPCS/HDDA samples produced by SLA(top). Comparison of printed and sintered samples(bottom)[9]. Copyright 2017, Elsevier
图式3 聚合物前驱体:聚碳硅烷(左)、聚硅氧烷(中)和聚碳硅氮烷(右)的结构示意图
Scheme 3 Schematic structure of the preceramic polymers: polycarbosilane(left), polysiloxanes(middle), polycarbosilazane(right)
图4 3D打印前驱体制造陶瓷零件过程示意图和制造实例(A)可光固化的陶瓷前驱体聚合物;(B)SLA固化成型;(C)聚合物陶瓷坯体;(D)聚合物陶瓷坯体裂解为陶瓷构件;(E)螺旋锥;(F,G)微晶格结构;(H)蜂窝结构[44]
Fig.4 Additive manufacturing of polymer-derived ceramics.(A) UV-curable preceramic monomers are mixed with photoinitiator.(B) The resin is exposed with UV light in a SLA 3D printer or through a patterned mask.(C) A preceramic polymer part is obtained.(D) Pyrolysis converts the polymer into a ceramic.Examples:(E) SLA 3D printed cork screw.(F and G) SPPW formed microlattices.(H) Honeycomb[44]. Copyright 2016, American Association for the Advancement of Science
图式4 MK与TMSPM结构示意图
Scheme 4 Scheme 4 Schematic structure of MK siloxane resin and TMSPM
图式5 甲基丙烯酸-3-(三甲氧基甲硅烷基)丙酯与聚羟甲基硅氧烷缩合反应示意图
Scheme 5 Scheme 5 Condensation reaction between γ-methacryloxypro-pyl trimethoxy and polyhydroxymethylsiloxane
图5 (a)制备多孔桁架结构ZrOC陶瓷构件的示意图,(b) 不同温度裂解制备的多孔桁架结构ZrOC陶瓷构件[73]
Fig.5 (a) Schematic of the preparation of octet truss porous structure ZrOC ceramic.(b) The pictures of octet truss structured specimens after pyrolysis at different temperatures[73]. Copyright 2019, Elsevier
图式6 钛醇盐与丙烯酸之间的配体交换反应合成TiO 2聚合物前驱体示意图
Scheme 6 Scheme 6 Ligand exchange reaction to add acrylic functional groups onto titanium clusters
图6 (a) 含钛光敏树脂SLA技术成型制备三维构件示意图,(b) 裂解前(c) 裂解后,(d) TiO 2晶格结构正视图,(e) 晶格单元的SEM图像,(f, g) TiO 2纳米晶的SEM图像[74]
Fig.6 (a) A schematic of the SLA instrument to pattern titanium-containing photoresist into complex 3D geometries.(b) before and (c) after pyrolysis.(d) Top view of a titania octet lattice(optical image). SEM images of(e) a representative node in the unit cell of an octet lattice and (f, g) titania nano-crystallites on the surface of the structure[74]. Copyright 2018, Elsevier
图7 (a) 桁架结构的CAD模型,(b) 陶瓷坯体的侧视图和(c)正视图,(d) 夹在手指间的陶瓷构件 [87]
Fig.7 (a) Designed lattice structure CAD model. (b) Side view picture and (c) front view picture of the green body and ceramic component. (d) Picture of ceramic component pinched with fingers [87] . Copyright 2018, Elsevier
图式7 聚乙烯基甲氧基硅氧烷结构示意图
Scheme 7 Scheme 7 Chemical structure of polyvinylmethoxysiloxane
[1]
Pham T A , Kim D P , Lim T W , Park S H , Yang D Y , Lee K S . Adv. Funct. Mater., 2006, 16: 1235.
[2]
Mondschein R J , Kanitkar A , Williams C B , Verbridge S S , Long T E . Biomaterials, 2017, 140: 170.
[3]
Colombo P , Schmidt J , Franchin G , Zocca A , Günster J . J. Am Ceram. Soc. Bull., 2017, 96: 16.
[4]
Travitzky N , Bonet A , Dermeik B , Fey T , Filbert-Demut I , Schlier L , Schlordt T , Greil P . Adv. Eng. Mater., 2014, 16: 729.
[5]
Macdonald E , Wicker R . Science, 2016, 353: aaf2093.
[6]
Martin J , Yahata B , Hundley J , Mayer J , Schaedler T , Pollock T . Nature, 2017, 549: 365.
[7]
Kelly B , Bhattacharya I , Heidari H , Shusteff M , Spadaccini C , Taylor H . Science, 2019, 363: eaau7114.
[8]
Walker D , Hedrick J , Mirkin C . Science, 2019, 366: 360.
[9]
De Hazan Y , Penner D. J. Eur. Ceram. Soc., 2017, 37: 5205.
[10]
Lasgorceix M , Champion E , Chartier T . J. Eur. Ceram. Soc., 2016, 36: 1091.
[11]
Shao H P , Zhao D C , Lin T , He J Z , Wu J . Ceram. Int., 2017, 43: 13938.
[12]
An D , Li H Z , Xie Z P , Zhu T B , Luo X D , Shen Z J , Ma J . Int. J. Appl. Ceram. Tec., 2017, 14: 836.
[13]
Minas C , Carnelli D , Tervoort E , Studart A R . Adv. Mater., 2016, 28: 9993.
[14]
Yuan S , Shen F , Chua C K , Zhou K . Prog. Polym. Sci., 2019, 91: 141.
[15]
Chen A N , Wu J M , Liu K , Chen J Y , Xiao H , Chen P , Li C H , Shi Y S . Adv. Appl. Ceram., 2018, 117: 100.
[16]
Chen A N , Li M , Wu J M , Cheng L J , Liu R Z , Shi Y S , Li C H . J. Alloy. Compd., 2019, 776: 486.
[17]
Yu W H , Sing S L , Chua C K , Kuo C N , Tian X L . Prog. Mater. Sci., 2019, 104: 330.
[18]
Minasyan T , Liu L , Aghayan M , Kollo L , Kamboj N , Aydinyan S , Hussainova I . Ceram. Int., 2018, 44: 13689.
[19]
Xiao S , Mei H , Han D , Yuan W , Cheng L . Ceram. Int., 2018, 44: 14122.
[20]
Huang S , Ye C , Zhao H , Fan Z . Addit. Manuf., 2019, 29: 100802.
[21]
Li K , Zhao Z . Ceram. Int., 2017, 43: 4761.
[22]
Lian Q , Sui W , Wu X , Yang F , Yang S . Rapid. Prototyping J., 2018, 24: 114.
[23]
Wu H , Liu W , He R , Wu Z , Jiang Q , Song X , Chen Y , Cheng L , Wu S . Ceram. Int., 2017, 43: 968.
[24]
Santoliquido O , Colombo P , Ortona A . J. Eur. Ceram. Soc., 2019, 39: 2140.
[25]
Chen Z W , Liu C B , Li J J , Zhu J Y , Liu Y , Lao C S , Feng J , Jiang M G , Liu C Y , Wang P , Li Y . Ceram. Int., 2019, 45: 19257.
[26]
Mei H , Huang W , Liu H , Pan L , Cheng L . Ceram. Int., 2019, 45: 15223.
[27]
Cano S , Gonzalez-Gutierrez J , Sapkota J , Spoerk M , Arbeiter F , Schuschnigg S , Holzer C , Kukla C . Addit. Manuf., 2019, 26: 117.
[28]
Tian X , Jin J , Yuan S , Chua C K , Tor S B , Zhou K . Adv. Energy. Mater., 2017, 7: 1700127.
[29]
Park S A , Lee S H , Kim W D . Bioproc. Biosyst. Eng., 2011, 34: 505.
[30]
Franchin G , Maden H S , Wahl L , Baliello A , Pasetto M , Colombo P . Materials(Basel), 2018, 11: 515.
[31]
Zhu C , Han, T Y J, Duoss E B, Golobic A M, Kuntz J D, Spadaccini C M, Worsley M A. Nat. Commun., 2015, 6: 6962.
[32]
Liao J J , Chen H H , Luo H , Wang X F , Zhou K C , Zhang D . J. Mater. Chem. C, 2017, 5: 5867.
[33]
Liu S C , Ye F , Liu L M , Liu Q . Mater. Design., 2015, 66: 331.
[34]
Cawley J D. Am. Ceram. Soc. Bull., 1996, 75: 75.
[35]
Deckers J , Vleugels J , Kruthl J . J. Ceram. Sci. Technol., 2014, 5: 245.
[36]
Ishikawa T , Kajii S , Matsunaga K , Hogami T , Kohtoku Y , Nagasawa T . Science, 1998, 282: 1295.
[37]
An L N , Xu W X , Rajagopalan S , Wang C M , Wang H , Fan Y , Zhang L G , Jiang D P , Kapat J , Chow L , Guo B H , Liang J , Vaidyanathan R . Adv. Mater., 2004, 16: 2036.
[38]
Colombo P , Mera G , Riedel R , Sorarù G D . J. Am. Ceram. Soc., 2010, 93: 1805.
[39]
Riedel R , Mera G , Hauser R , Klonczynski A . J. Ceram. Soc. Jpn., 2006, 114: 425.
[40]
Fu S Y , Zhu M , Zhu Y F . J. Adv. Ceram., 2019, 8: 457.
[41]
Layani M , Wang X , Magdassi S . Adv. Mater., 2018, 30: 1706344.
[42]
Chen Z W , Li Z Y , Li J J , Liu C B , Lao C S , Fu Y L , Liu C Y , Li Y , Wang P , He Y . J. Eur. Ceram. Soc., 2019, 39: 661.
[43]
Zanchetta E , Cattaldo M , Franchin G , Schwentenwein M , Homa J , Brusatin G , Colombo P . Adv. Mater., 2016, 28: 370.
[44]
Eckel Z , Zhou C Y , Martin J , Jacobsen A , Carter W , Schaedler T . Science, 2016, 351: 58.
[45]
Kousaalya A B , Kumar R , Sridhar B T N . Ceram. Int., 2015, 41: 1163.
[46]
Zhang Q , Yang Z , Jia D , Chen Q , Zhou Y . New Journal of Chemistry, 2016, 40( 8): 7034.
[47]
Bernardo E , Fiocco L , Parcianello G , Storti E , Colombo P . Materials, 2014, 7: 1927.
[48]
Zocca A , Wirth C , Staude A , Bernardo E , Günster J , Colombo P . J. Mater. Res., 2013, 28: 2243.
[49]
Baldwin L A , Rueschhoff L M , Deneault J R , Cissel K S , Ni-kolaev P , Cinibulk M K , Koerner H , Dalton M J , Dickerson M B . Chem. Mater., 2018, 30: 7527.
[50]
Zocca A , Franchin G , Elsayed H , Gioffredi E , Bernardo E , Colombo P . J. Am. Ceram. Soc., 2016, 99: 1960.
[51]
Yuk H , Zhao X . Adv. Mater., 2018, 30: 1704028.
[52]
Zocca A , Colombo P , Gomes C M , Günster J . J. Am. Ceram. Soc., 2015, 98: 1983.
[53]
Chen H H , Wang X F , Xue F D , Huang Y J , Zhou K C , Zhang D . J. Eur. Ceram. Soc., 2018, 38: 5294.
[54]
Li S , Duan W Y , Zhao T , Han W J , Wang L , Dou R , Wang G . J. Eur. Ceram. Soc., 2018, 38: 4597.
[55]
Riedel R , Kienzle A , Dressler W , Ruwisch L , Bill J , Aldinger F . Nature, 1996, 382: 796.
[56]
Zhao H , Chen L X , Luan X G , Zhang X F , Yun J , Xu T T . J. Eur. Ceram. Soc., 2017, 37: 1321.
[57]
Zhou C , Min H , Yang L , Chen M Y , Wen Q B , Yu Z J . J. Eur. Ceram. Soc., 2014, 34: 3579.
[58]
Zhang P F , Jia D C , Yang Z H , Duan X M , Zhou Y J . Mater. Sci., 2012, 47: 7291.
[59]
Seifert H J , Peng J , Golczewski J , Aldinger F . Appl. Organ-omet. Chem., 2001, 15: 794.
[60]
Schmidt J , Colombo P . J. Eur. Ceram. Soc., 2018, 38: 57.
[61]
Li Z Y , Chen Z W , Liu J , Fu Y L , Liu C Y , Wang P , Jiang M G , Lao C S . Virtual. Phys. Prototyp., 2020, 15: 163.
[62]
Wang M , Chen X , He R J , Ding G J , Zhang K Q , Wang G , Fang D N . J. Am. Ceram. Soc., 2019, 102: 5117.
[63]
Reddy S K , Cramer N B , O’Brien A K , Cross T , Raj R , Bowman C N . Macromol. Symp., 2004, 206: 361.
[64]
Wang X F , Schmidt F , Hanaor D , Kamm P H , Li S , Gurlo A . Addit. Manuf., 2019, 27: 80.
[65]
Ovsianikov A , Viertl J , Chichkov B , Oubaha M , MacCraith B , Sakellari I , Giakoumaki A , Gray D , Vamvakaki M , Farsari M , Fotakis C . ACS Nano, 2008, 2: 2257.
[66]
Vyatskikh A , Delalande S , Kudo A , Zhang X , Portela C M , Greer J R . Nat. Commun., 2018, 9: 593.
[67]
Zheng X Y , Lee H , Weisgraber T H , Shusteff M , DeOtte J , Deoss E B , Kuntz J D , Biener M M , Ge Q , Jackson J A , Kucheyev S O , Fang N X , Spadaccini C M . Science, 2014, 344: 1373.
[68]
Hundley J M , Eckel Z C , Schueller E , Cante K , Biesboer S M , Yahata B D , Schaedler T A . Addit. Manuf., 2017, 18: 95.
[69]
Hoyle C E , Bowman C N . Angew. Chem. Int. Ed., 2010, 49: 1540.
[70]
Schwentenwein M , Homa J . Int. J. Appl. Ceram. Tec., 2015, 12: 1.
[71]
Studart A R , Gonzenbach U T , Tervoort E , Gauckler L J . J. Am. Ceram. Soc., 2006, 89: 1771.
[72]
Ma C , He C , Wang W L , Yao X Y , Yan L W , Hou F , Liu J C , Guo A R . Virtual. Phys. Prototyp., 2020, 15: 294.
[73]
Fu Y L , Chen Z W , Xu G , Wei Y , Lao C S . J. Alloy. Compd., 2019, 789: 867.
[74]
Vyatskikh A , Kudo A , Delalande S , Greer J R . Mater. Today. Commun., 2018, 15: 288.
[75]
Tiainen H , Lyngstadaas S P , Ellingsen J E , Haugen H J . J. Mater. Sci-Mater. M., 2010, 21: 2783.
[76]
Xu X B , Li P Y , Ge C H , Han W F , Zhao D , Zhang X D . ChemistrySelect, 2019, 4: 6862.
[77]
Brigo L , Schmidt J E M , Gandin A , Michieli N , Colombo P , Brusatin G . Adv. Sci., 2018, 5: 1800937.
[78]
Greil P. J.Am. Ceram. Soc., 1995, 78: 835.
[79]
Kaindl A , Lehner W , Greil P , Kim D J . Mater. Sci. Eng. C, 1999, 260: 101.
[80]
Cromme P , Scheffler M , Greil P . Adv. Eng. Mater., 2002, 4: 873.
[81]
Dernovsek O , Bressiani J C , Bressiani A H A , Acchar W , Greil P . J. Mater. Sci., 2000, 35: 2201.
[82]
Friedel T , Travitzky N , Niebling F , Scheffler M , Greil P . J. Eur. Ceram. Soc., 2005, 25: 193.
[83]
Gyak K W , Vishwakarma N K , HwangY H , Kim J , Yun H S , Kim D P . React. Chem. Eng., 2019, 4: 1393.
[84]
O'Masta M R , Stonkevitch E , Porter K A , Bui P P , Eckel Z C , Schaedler T A . J. Am. Ceram. Soc., 2020,
[85]
Schmidt J , Altun A A , Schwentenwein M , Colombo P . J. Eur. Ceram. Soc., 2019, 39: 1336.
[86]
Gorjan L , Tonello R , Sebastian T , Colombo P , Clemens F . J. Eur. Ceram. Soc., 2019, 39: 2463.
[87]
Fu Y L , Xu G , Chen Z W , Liu C Y , Wang D M , Lao C S . Ceram. Int., 2018, 44: 11030.
[88]
Lehman J , Yung C , Tomlin N , Conklin D , Stephens M . Appl. Phys. Rev., 2018, 5: 011103.
[89]
Gao E L , Lu W B , Xu Z P , Xu Z P . Carbon, 2018, 138: 134.
[90]
Wang Y J , Li M , Gu Y Z , Zhang X H , Wang S K , Li Q W , Zhang Z G . Nanoscale, 2015, 7: 3060.
[91]
Xiao J , Liu D Q , Cheng H F , Jia Y , Zhou S , Zu M . Ceram. Int., 2020, 46: 19393.
[92]
Franchin G , Wahl L , Colombo P . J. Am. Ceram. Soc., 2017, 100: 4397.
[93]
Xiong H W , Zhao L Z , Chen H H , Wang X F , Zhou K C , Zhang D . J. Alloy. Compd., 2019, 809: 151824.
[94]
Li S , Zhang Y B , Zhao T , Han W J , Duan W Y , Wang L , Dou R , Wang G . RSC Adv., 2020, 10: 5681.
[95]
Brinckmann S A , Patra N , Yao J , Ware T H , Frick C P , Fertig III R S . Adv. Eng. Mater., 2018, 20: 1800593.
[96]
Halloran J W. Annu. Rev. Mater. Res., 2016, 46: 19.
[97]
Bae C J , Halloran J W . Int. J. Appl. Ceram. Tec., 2011, 8: 1255.
[98]
Xiong H W , Chen H L , Zhao L Z , Huang Y J , Zhou K C , Zhang D . J. Eur. Ceram. Soc., 2019, 39: 2648.
[99]
Novoselov K S , Geim A K , Morozov S V , Jiang D Zhang Y, Dubonos S V , Grigorieva I V , Firsov A A . Science, 2004, 306: 666.
[100]
Santos Tonello K P D, Padovano E , Badini C , Biamino S , Pavese M , Fino P. Mat. Sci. Eng. A, 2016, 659: 158.
[101]
Román-Manso B , Domingues E , Figueiredo F M , Belmonte M , Miranzo P . J. Eur. Ceram. Soc., 2015, 35: 2723.
[102]
Pierin G , Grotta C , Colombo P , Mattevi C . J. Eur. Ceram. Soc., 2016, 36: 1589.
[103]
Pakdel A , Bando Y , Golberg D . Chem. Soc. Rev., 2014, 43: 934.
[104]
Glavin N R , Jespersen M L , Check M H , Hu J , Hilton A M , Fisher T S , Voevodin A A . Thin Solid Films, 2014, 572: 245.
[105]
Kemp J W , Hmeidat N S , Compton B G . J. Am. Ceram. Soc., 2020, 103: 4043.
[106]
David L , Bernard S , Gervais C , Miele P , Singh G . J. Phys. Chem. C, 2015, 119: 2783.
[1] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[2] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[3] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[4] 康健, 张乐, 甄方正, 单迎双, 马跃龙, 陈浩. 高流明密度激光照明用光转换材料[J]. 化学进展, 2019, 31(2/3): 322-336.
[5] 杨露姣, 张颖, 程璇. 先驱体转化法制备硅硼碳氮陶瓷的结构与性能[J]. 化学进展, 2016, 28(2/3): 308-316.
[6] 韩金铎*, 温兆银*, 张敬超, 马国强, 迟晓伟. 锆酸钙基高温质子导体材料[J]. 化学进展, 2012, (9): 1845-1856.
[7] 陈婷, 赵海雷, 谢志翔, 徐景璨, 徐南生, 李福燊. 双相致密透氧膜[J]. 化学进展, 2012, 24(01): 163-172.
[8] 肖成建, 陈晓军, 康春梅, 汪小琳. 锂陶瓷氚增殖剂的中子辐照性能与产氚行为[J]. 化学进展, 2011, 23(9): 1906-1914.
[9] 俞健,胡小娟,黄彦. 多孔不锈钢表面的陶瓷修饰及所负载的透氢钯膜*[J]. 化学进展, 2008, 20(0708): 1208-1215.
[10] 罗民,高积强,乔冠军,金志浩. 生物模板法制备木材陶瓷*[J]. 化学进展, 2008, 20(06): 989-1000.
[11] 孔杰,张国彬,刘勤. 聚硼硅氮烷陶瓷前驱体分子结构设计和合成*[J]. 化学进展, 2007, 19(11): 1791-1799.
[12] 熊亮萍,许云书. 陶瓷先驱体聚合物的应用[J]. 化学进展, 2007, 19(04): 567-574.
[13] 崔孟忠,李竹云,袁伟忠,席靖宇,朱路,唐小真. 主链掺杂氧原子聚硅烷的研究进展[J]. 化学进展, 2005, 17(05): 860-867.
[14] 翟怡,张金利,李(韦华),王一平. 自组装单层膜的制备与应用*[J]. 化学进展, 2004, 16(04): 477-.
[15] 王这杰,王立. 开环聚合制备高分子量聚二茂铁衍生物及其性能的研究*[J]. 化学进展, 2002, 14(06): 486-.