English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 1917-1929 DOI: 10.7536/PC200325 前一篇   后一篇

• 综述 •

金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用

王晓晗1,2, 刘彩霞1, 宋春风1, 马德刚1, 李振国3, 刘庆岭1,2,**()   

  1. 1 天津大学环境科学与工程学院 室内空气环境质量控制天津市重点实验室 天津 300350
    2 天津大学内燃机燃烧学国家重点实验室 天津 300350
    3 中国汽车技术研究中心 移动源排放控制技术国家工程实验室 天津 300300
  • 收稿日期:2020-03-24 修回日期:2020-07-11 出版日期:2021-10-20 发布日期:2020-10-20
  • 通讯作者: 刘庆岭
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    天津市应用基础与前沿技术研究计划(No. 16JCQNJC05400); 天津市应用基础与前沿技术研究计划(15JCQNJC08500); 移动源污染排放控制技术国家工程实验室开放基金(No. NELMS2017A03); 国家自然科学基金项目(No. 21503144); 国家自然科学基金项目(21690083); 天津市生态环境治理科技重大专项(No. 18ZXSZSF00210); 天津市生态环境治理科技重大专项(18ZXSZSF00060)

Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3

Xiaohan Wang1,2, Caixia Liu1, Chunfeng Song1, Degang Ma1, Zhenguo Li3, Qingling Liu1,2,**()   

  1. 1 Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
    2 Tianjin University State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
    3 National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center, Tianjin 300300, China
  • Received:2020-03-24 Revised:2020-07-11 Online:2021-10-20 Published:2020-10-20
  • Contact: Qingling Liu
  • Supported by:
    the Tianjin Research Program of Application Foundation and Advanced Technique(No. 16JCQNJC05400); the Tianjin Research Program of Application Foundation and Advanced Technique(15JCQNJC08500); the National Engineering Laboratory for Mobile Source Emission Control Technology of China(No. NELMS2017A03); the National Natural Science Foundation of China(No. 21503144); the National Natural Science Foundation of China(21690083); and Tianjin Research Program of Ecological Environmental Treatment(No. 18ZXSZSF00210); and Tianjin Research Program of Ecological Environmental Treatment(18ZXSZSF00060)

氮氧化物(NO x )是造成大气污染的主要污染物之一,工业窑炉和燃煤电厂等固定源以及以机动车为代表的移动源所排放的氮氧化物对生态环境造成了一系列的危害。为此控制并降低NO x 排放是当前十分艰巨的任务。金属有机骨架材料(MOFs)这种新型的多孔聚合材料由于其多活性位点、高比表面积、结构可修饰、易于功能化而表现出突出的多相催化性能近年来在低温工业脱硝领域逐渐受到关注。本文总结了MOFs材料在氨低温催化还原氮氧化物反应中的应用进展,重点阐述了单金属和双金属的MOFs材料的应用以及MOFs衍生物催化剂的研究。最后对MOFs在低温脱硝领域中目前存在的问题并对其发展方向和前景进行了展望。

Nitrogen oxides(NO x ) are one of the main pollutants causing atmospheric pollution. Nitrogen oxides emitted from fixed sources such as industrial furnaces and coal-fired power plants and mobile sources such as motor vehicles have caused a series of damage to the ecological environment. Controlling and reducing NO x emission is a very difficult task at present. In the past decades, metal-organic frameworks(MOFs) have shown prominent heterogeneous catalytic activity due to their multiple active sites, large BET surface area, structural diversity and easy functionalization. These characteristics have attracted more and more attention to MOFs catalyst materials in the field of low-temperature industrial denitration in recent years. This review summarizes the application progress of MOFs materials in the low-temperature selective catalytic reduction of nitrogen oxides by ammonia. This review focuses on the application of MOFs materials of single and hybrid metals and the study of MOFs-derived composite catalysts. Finally, the current problems of MOFs in the field of low-temperature denitrification are proposed, and the development directions and prospects are prospected.

Contents

1 Introduction

2 Synthesis and classification of MOFs and derivatives

3 Application of MOFs for low-temperature NH3-SCR

3.1 Single metal MOF-SCR

3.2 Hybrid MOFs-SCR

3.3 MOF derivatives-SCR

4 Conclusions and Perspective

()
表1 各种MOFs作为NH3-SCR催化剂的活性
Table 1 Activity of various MOFs as NH3-SCR catalysts
Catalyst Reaction condition Catalytic performance ref
Cu-BTC(pre-treated at 230 ℃) [NO]=500 ppm, [O2]=5 vol%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=100 mL/min, GHSV=30 000 h-1 Max conversion: 100%
(220~280 ℃)
46
Cu-MOF-74 [NO]=1000 ppm, [O2]=2%, [NH3]=1000 ppm, Ar as balance gas, total gas flow rate=100 mL/min, GHSV=50 000 h -1 Max NO conversion: 97.8%(230 ℃); 100% N 2 selectivity(230 ℃) 47
Mn-MOF-74 [NO]=1000 ppm, [O2]=2%, [NH3]=1000 ppm, Ar as balance gas, total gas flow rate=100 mL/min Max conversion: 99%
(220 ℃)
48
P123-Mn-MOF-74 [NO]=500 ppm, [O2]=5 vol%, [NH3]=500 ppm, Ar as balance gas, 5 vol% H2O(when used), total gas flow rate=100 mL/min Max conversion: 92.1%
(250 ℃)
49
Co-MOF-74 [NO]=1000 ppm, [O2]=2%, [NH3]=1000 ppm, Ar as balance gas, total gas flow rate=100 mL/min Max conversion: 70%
(210 ℃)
48
Co/Mn-MOF-74 [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, Ar as balance gas, [SO2]=100 ppm(when used), 5 vol% H2O(when used), total gas flow rate=100 mL/min, GHSV=50 000 h-1 Max conversion: 99%(200 ℃)
180~240 ℃
50
MIL-100(Fe) [NO]=500 ppm, [O2]=4%, [NH3]=500 ppm, N2 as balance gas, GHSV=30 000 h-1 Max conversion: 100%
(260 ℃)
44
MIL-100(Fe-Mn) [NO]=500 ppm, [O2]=4%, [NH3]=500 ppm, N2 as balance gas, GHSV=30 000 h-1 Max conversion: 96%
(260 ℃)
51
IM-CeO 2/MIL-100(Fe) [NO]=500 ppm, [O2]=4%, [NH3]=500 ppm, N2 as balance gas, [SO 2]=500 ppm(when used), 5 vol% H2O(when used), GHSV=30 000 h-1 Max conversion: 100%
196~300 ℃
52
Mn-Ce/UiO-67 [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=450 mL/min, GHSV=45 000 h-1 Max conversion: 98%
(200~300 ℃)
53
Mn/Cu 3(BTC) 2 [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, GHSV=30 000 h-1 Max conversion: 100%
230~260 ℃
54
Ag/Cu 3(BTC) 2 [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=100 mL/min, GHSV=30 000 h-1 Max conversion: 100%
200~260 ℃
55
Ni-MOF(pre-treated at 230 ℃) [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=100 mL/min, GHSV=15 000 h-1 Max conversion: 92%(275 ℃)
275~440 ℃
56
Cu+/Ni-MOF [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=100 mL/min, GHSV=15 000 h-1 Max conversion: 95%
200~300 ℃
56
MnO x/MIL-125(Ti) [NO]=500 ppm, [O2]=5%, [NH3]=500 ppm, N2 as balance gas, [SO 2]=200 ppm(when used), 5 vol% H2O(when used), GHSV=30 000 h-1 Max conversion: 100%
175~425 ℃
57
MnO x/UiO-66 [NO]=500 ppm, [O2]=5%, [NH3]=500ppm, Ar as balance gas, [SO2]=100 ppm(when used), 5 vol% H2O(when used), total flow rate=100 mL/min, GHSV=50 000 h-1 Max conversion: 99%
125~250 ℃
58
Ce 10/Zr-CAU-24 [NO]=500 ppm, [O2]=10%, [NH3]=500 ppm, N2 as balance gas, total gas flow rate=150 mL/min. Max conversion: 88%(210 ℃) 59
图1 单金属MOF-SCR反应活性: (a)多种在不同温度下预处理的Cu-BTC样品的NO转化率[46](b) 250 ℃ MIL-100(Fe)SCR反应的稳定性测试[10].(c) 220 ℃ Mn-MOF-74的SCR活性[48].(d) 200 ℃ Co-MOF-74SCR反应的稳定性测试[48].(e) P123-Mn-MOF-74、PVP-Mn-MOF-74和Mn-MOF-74-CH 3的低温SCR活性[49].(f) Mn-MOF-74、P123-Mn-MOF-74、PVP-Mn-MOF-74和Mn-MOF-74-CH 3 在通H 2O气氛下各自最佳条件下的SCR活性结果[49]
Fig.1 MOF-SCR reaction activity. (a)NO conversions for various Cu-BTC samples pre-treated at different temperatures[46]. Copyright 2016, Taylor & Francis Group, LLC.(b)The stability tests of SCR reaction at 250 ℃ over MIL-100(Fe)[10]. Copyright the Royal Society of Chemistry 2014.(c)SCR activity of used Mn-MOF-74 at 220 ℃[48]. Copyright 2016, American Chemical Society.(d)Stability test of SCR reaction at 200 ℃ over Co-MOF-74[48]. Copyright 2016, American Chemical Society.(e)Low-temperature selective catalytic reduction(SCR) activities of P123-Mn-MOF-74, PVP-Mn-MOF-74, and Mn-MOF-74-CH[49]. Copyright 2019, the authors.(f)Stability test results of Mn-MOF-74, P123-Mn-MOF-74, PVP-Mn-MOF-74, and Mn-MOF-74-CH 3 under an SCR-H 2O atmosphere at their own optimal conditions[49]. Copyright 2019, the authors
图2 醋酸改性Cu-MOF-199样品的SEM图:
Fig.2 The SEM images of Cu-MOF-199 samples modified by acetic acid: (a)10%-AA,(b)20%-AA,(c)25%-AA[68]. Copyright 2016, Tianjin University (a)10%-AA,(b) 20%-AA,(c) 25%-AA[68]
图3 Cu-BTC、Mn/Cu-BTC-X的NO转化率和N 2选择性[54]
Fig.3 NO conversion efficiency (a) and N 2 selectivity(b) of Cu-BTC and Mn/Cu-BTC-X catalysts as a function of temperatures[54]. Copyright 2019, Elsevier
图4 Fe-Mn双金属作用机理[51]
Fig.4 Fe-Mn bimetal action mechanism[51]. Copyright Springer Science+Business Media New York 2016
图5 (a)MIL-100(Fe-Mn)、MIL-100(Fe)和MIL-100(Mn)的NO x 转化率;(b)分别在280、260、240 ℃的MIL-100(Fe-Mn)上进行SCR反应时,无SO 2和H 2O(A、C、E)的稳定性测试以及有SO 2和H 2O(B、D、F)的稳定性测试[51]
Fig.5 (a)NO x conversions over MIL-100(Fe-Mn), MIL-100(Fe) and MIL-100(Mn);(b) The stability tests without SO 2 and H 2O(A/C/E) and stability tests with SO 2and H 2O(B/D/F) of SCR reaction over MIL-100(Fe-Mn) at 280/260/240 ℃[51]. Copyright Springer Science+Business Media New York 2016
图6 (a)Mn@CeMOF和MnCe@MOF的NO转化率;(b)SO 2和H 2O对MnCe@MOF的NO转化率影响[52]
Fig.6 (a)The NO conversion of Mn@CeMOF and MnCe@MOF;(b)The effect of SO 2 and H 2O on NO conversion over MnCe@MOF[52]. Copyright 2015, Elsevier
图7 (a)Mn/Co-MOF-74样品的低温SCR性能;(b) Mn 0.66Co 0.34-MOF-74在200 ℃时SCR反应的稳定性测试[50]
Fig.7 (a)The low-temperature SCR performance of Mn/Co-MOF-74 samples; (b)Stability test of SCR reaction at 200 ℃ for Mn 0.66Co 0.34-MOF-74[50]. Copyright 2018, Elsevier
图8 MnO x /MIL-125(Ti)反应机理图[57]
Fig.8 Reaction mechanism of MnO x /MIL-125(Ti)[57].Copyright 2019, Elsevier
图9 负载MnO x /SEP催化剂活性组分的机理图: (a)原位沉积法(DP),(b)浸渍法(IM)和(c)共沉淀法(CPM)[72]
Fig.9 Mechanism of Active Components Supporting MnO x /SEP Catalyst: (a)DP;(b)IM;(c)CPM[72]. Copyright 2019, Elsevier
图10 CuO/Cu 2O反应机理[77]
Fig.10 Reaction mechanism of CuO/Cu 2O[77]. Copyright 2019, Elsevier
表2 MOFs衍生物作为NH3-SCR催化剂的活性
Table 2 Activity of MOFs derivatives as NH3-SCR catalysts
Catalyst Reaction condition Catalytic performance ref
MnO x from Mn-MOF-74 template [NO]=500 ppm, [O 2]=5%, [NH 3]=500 ppm, N 2as balance gas, total gas flow rate=450 mL/min, GHSV=45 000 h -1 Max conversion: 98%
(220 ℃)
75
Co 3O 4/PC from ZIF-67 [NO x ]=[NH 3]=500 ppm, [O 2]=5 vol%, [SO 2]=60 ppm(when used), [H 2O]=5 vol%(when used), Ar balance, total gas flow rate=300 mL/min, GHSV=14 000 h -1 Max conversion: 90%
150~175 ℃
76
CuO/Cu 2O from Cu-MOF template [NO]=1000 ppm, [O 2]=3%, [NH 3]=1000 ppm, Ar as balance gas, total gas flow rate=200 mL/min, GHSV=40 000 h -1 Max conversion: 100%
170~220 ℃
77
MnO x from Mn-CP
template
[NO]=400 ppm, [O 2]=3%, [NH 3]=400 ppm, N 2 as balance gas, total gas flow rate=1000 mL/min, GHSV=15 000 h -1 Max conversion: 91.3%
100~200 ℃
78
Mn 3O 4@G-A from Mn-BTC-SA [NO]=[NH 3]=600 ppm, [O 2]=5 vol%, [SO 2]=50 ppm(when used), [H 2O]=5.6 vol%(when used), N 2as balance gas, GHSV=60 000 h -1 Max conversion: 100%
140~290 ℃
79
Fe 2O 3-2S from MIL-100(Fe) [NO]=[NH 3]=1000 ppm, [O 2]=4 vol%, [SO 2]=500 ppm(when used), [H 2O]=8 vol%(when used), N 2 as balance gas, GHSV=30,000 h -1 Max conversion: 100%
250~325 ℃
80
MnO x -FeO x nanoneedles from Mn/Fe-MOF [NO]=500 ppm, [O 2]=5%, [NH 3]=500 ppm, N 2as balance gas, total gas flow rate=600 mL/min, GHSV=36 000 h -1 Max conversion: 100%
120~240 ℃
81
CuO/Cu 3(BTC) 2 [NO]=[NH 3]=600 ppm, [O 2]=4 vol%, [SO 2]=150 ppm(when used), [H 2O]=4 vol%(when used), N 2 as balance gas, GHSV=60 000 h -1 Max conversion: 95%
180~240 ℃
82
图11 (a)催化剂的NO x 转化率和(b) MnO x -350在150 ℃下的稳定性测试[78]
Fig.11 (a)NO x conversion efficiency of the catalysts and(b)the stability test of MnO x -350 at 150 ℃[78]. Copyright the Royal Society of Chemistry, 2019
图12 MnO x -FeO x 制备及性能测试[81]
Fig.12 Preparation and performance test of MnOx-FeOx[81]. Copyright American Chemical Society, 2017
图13 (a)Fe 2O 3-1S、Fe 2O 3-2S和VTiC催化剂在不同温度下的NO x 转化率;(b)SO 2和H 2O对Fe 2O 3-2S催化剂活性和稳定性的影响[80]
Fig.13 (a)NO x conversion at different temperatures over Fe 2O 3-1S, Fe 2O 3-2S and VTiC catalysts;(b)Effect of SO 2 and H 2O on the activity and stability of Fe 2O 3-2S catalyst[80]. Copyright 2019, Elsevier
图14 (a)Mn 3O 4@G-A和Mn 3O 4-A的SCR活性;(b)SO 2对Mn 3O 4-A和Mn 3O 4@G-A上的低温SCR性能的影响[79]
Fig.14 (a)NO conversion during SCR deNOx process;(b)The effect of SO 2 on low-temperature SCR performance over Mn 3O 4-A and Mn 3O 4@G-A[79]. Copyright 2020, Elsevier
图15 CuO@Cu 3(BTC) 2核壳材料制备[82]
Fig.15 The preparation of CuO@Cu 3(BTC) 2 core-shell materials[82]. Copyright American Chemical Society, 2017
图16 (a)每个样品NO转化率和在200 ℃下抗水抗硫性能[82]
Fig.16 CuO@Cu 3(BTC) 2 (a)NO x conversion of each sample and (b) H 2O and SO 2 tolerance of CuO@Cu 3(BTC) 2 at 200 ℃[82]. Copyright American Chemical Society, 2017
[1]
Qi G , Yang R T , Chang R . Applied Catalysis B: Environmental, 2004, 51: 93.
[2]
Yu Z , Lei D , Thorjornlarssen L , Lan H H , Ji M H . Policy Analysis, 2007, 41: 1815.
[3]
Qi G , Yang R T . Applied Catalysis B: Environmental, 2003, 44: 217.
[4]
Mauzerall D , Sultan B , Kim N , Bradford D . Atmospheric Environment, 2005, 39: 2851.
[5]
黄诗坚( Huang S J ). 电力环境保护( Electric Power Environmental Protection), 2004, 20: 24.
[6]
China’s National Climate Change Programme, 2007. 7.
[7]
Liu F , Shan W , Lian Z , Xie L , Yang W , He H . Catalysis Science & Technology, 2013, 3: 2699.
[8]
Zhang M , Gu K , Huang X , Chen Y . Phys. Chem. Chem. Phys., 2019, 21: 19226.
[9]
邹斯诣( Zhou S Z ). 节能技术( Energy Conservation Technology), 2009, 6( 27): 510.
[10]
Wang P , Zhao H , Sun H , Yu H , Chen S , Quan X . RSC Adv., 2014, 4: 48912.
[11]
Gongshin Q , Ralph T Y . J. Phys. Chem. B, 2004, 108: 15738.
[12]
Sjoerd K W , Danny S B , Eduard K P , Alfred B . Journal of Catalysis, 1997, 171: 208.
[13]
Sjoerd K W , Danny S B , Hendrik I S , Eduard K P , Alfred B . Journal of Catalysis, 1997, 171: 219.
[14]
Marbán G , ValdÉs-Solís T , Fuertes A B . Phys. Chem. Chem. Phys., 2004, 6: 453.
[15]
Marban G. Journal of Catalysis, 2004, 226: 138.
[16]
Eigenmann F , Maciejewski M , Baiker A . Applied Catalysis B: Environmental, 2006, 62: 311.
[17]
Stolle R , Koeser H , Gutberlet H . Applied Catalysis B: Environmental, 2014, 144: 486.
[18]
Geotrey C B. J. Chem. Tech. Biotechnol., 1997, 68: 6.
[19]
Mo`nica C , Christian M . J. Phys. Chem. B, 2004, 108: 15679.
[20]
Zhang X , Li X , Wu J , Yang R , Zhang Z . Catalysis Letters, 2009, 130: 235.
[21]
Jiang H L , Xu Q . Chemical Communications, 2011, 47: 3351.
[22]
Mitsuru K , Tomomichi Y , Kenji S , Hiroyuki M , Susumu K . Angew. Chem. Int. Ed. EngI., 1997, 36: 16.
[23]
Liu F , Xu H . Talanta, 2017, 162: 261.
[24]
Fernández-Catalá J , Casco M E , Martínez-Escandell M , Rodríguez-Reinoso F , Silvestre-Albero J . Microporous and Mesoporous Materials, 2017, 237: 74.
[25]
Jiang H , Wang Q , Wang H , Chen Y , Zhang M . Catalysis Communications, 2016, 80: 24.
[26]
Zhang M , Huang X , Chen Y . Phys. Chem. Chem. Phys., 2016, 18: 28854.
[27]
刘宏利( Liu H L ). 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2013.
[28]
Bernard F H , Richard R . J. Am. Chem. Soc., 1989, 111: 5962.
[29]
Ying W L , Ralph T Y . J. Am. Chem. Soc., 2006, 128: 726.
[30]
Christian S , Franck M , Christelle T , Marc N , Ge'rard M , Daniel L , Ge'rard F . J. Am. Chem. Soc., 2002, 124: 13519.
[31]
Sheng Q M , Dao F S , Jason M S , Christopher D C , Da Q Y , Hong C Z . J. Am. Chem. Soc., 2008, 130: 1012.
[32]
Wang B , CôtÉ A P , Furukawa H , O’Keeffe M , Yaghi O M . Nature, 2008, 453: 207.
[33]
Mitsuru K , Takashi O , Akiko A , Shin-ichiro N , Tomomici Y , Susumu K , Tomohiko I , Hiroyuki M , Kenji S . Angew. Chem. Int. Ed., 1999, 38: 140.
[34]
Jasmina H C , Søren J , Unni O , Nathalie G , Carlo L , Silvia B , Karl P L . J. Am. Chem. Soc., 2008, 130: 13850.
[35]
Su Z , Fan J , Okamura T A , Sun W Y , Ueyama N . Crystal Growth & Design, 2010, 10: 3515.
[36]
Joshua A T , Catherine R B , Nicholas A B , Megan E L , Ryan P L , Christopher W J , Sankar N . Chem. Mater., 2012, 24: 1930.
[37]
Pei Z , Feng Q , Zhen H , Chao S , Wei S , Hua L X . Chemical Engineering Journal, 2018, 349: 72.
[38]
Zhong Y Y , Bao L S . J. Mater. Chem., 2006, 16: 663.
[39]
Parlett C M , Wilson K , Lee A F . Chem. Soc. Rev., 2013, 42: 3876.
[40]
Yang X Y , Chen L H , Li Y , Rooke J C , Sanchez C , Su B L . Chem. Soc. Rev., 2017, 46: 481.
[41]
Min C L , Wen X W , Ming Y Y , Fu C L , Lu J C , You G T , Rong S , Zhou G L . RSC Adv., 2015, 5: 7356.
[42]
Zhou H C , Long J R , Yaghi O M . Chemical Reviews, 2012, 112: 673.
[43]
Howarth A J , Peters A W , Vermeulen N A , Wang T C , Hupp J T , Farha O K . Chemistry of Materials, 2017, 29: 26.
[44]
Ou S , Wu C D . Inorg. Chem. Front., 2014, 1: 721.
[45]
Zhou H C , Kitagawa S . Chem Soc Rev, 2014, 43: 673.
[46]
Li C , Shi Y , Zhang H , Zhao Q , Xue F , Li X . Integrated Ferroelectrics, 2016, 172: 169.
[47]
Jiang H , Zhou J , Wang C , Li Y , Chen Y , Zhang M . Industrial & Engineering Chemistry Research, 2017, 56: 3542.
[48]
Jiang H , Wang Q , Wang H , Chen Y , Zhang M . ACS Appl . Mater. Interfaces, 2016, 8: 26817.
[49]
Wang S , Gao Q , Dong X , Wang Q , Niu Y , Chen Y , Jiang H . Catalysts, 2019, 9: 1004.
[50]
Jiang H , Niu Y , Wang Q , Chen Y , Zhang M . Catalysis Communications, 2018, 113: 46.
[51]
Zhang W , Shi Y , Li C , Zhao Q , Li X . Catalysis Letters, 2016, 146: 1956.
[52]
Wang P , Sun H , Quan X , Chen S . J. Hazard. Mater., 2016, 301: 512.
[53]
Zhang X , Shen B X , Zhang X Q , Wang F M , Chi G L , Si M . RSC Adv., 2017, 7: 5928.
[54]
Yao Z , Qu D , Guo Y , Yang Y , Huang H . Advances in Materials Science and Engineering, 2019, 2019: 2935942.
[55]
石勇( Shi Y ), 牛丹阳( Niu D Y ), 武卓敏( Wu Z M ), 刘震震( Liu Z Z ), 肇启东( Zhao Q D ), 熊巍( Xiong W ), 李新勇( Li X Y ). 中国环境科学( China Environmental Science), 2018, 38: 2445.
[56]
Sun X , Shi Y , Zhang W , Li C , Zhao Q , Gao J , Li X . Catalysis Communications, 2018, 114: 104.
[57]
Sun H , Liu Z , Wang Y , Quan X , Zhao G . J. Hazard. Mater., 2019, 380: 120800.
[58]
Zhang M , Huang B , Jiang H , Chen Y . Frontiers of Chemical Science and Engineering, 2017, 11: 594.
[59]
Smolders S , Jacobsen J , Stock N , De Vos D . Catalysis Science & Technology, 2020, 10: 337.
[60]
Arnǒst Z , Maksym O , Miroslav R , Petr N , Jacek J . Catalysis Today, 2015, 243: 69.
[61]
Xiao F W , Zong B B , Bin Y , Jun W , Ying Q S , Hong M L , Shu G D . Microporous and Mesoporous Materials, 2013, 180: 114.
[62]
Sun W , Lin L C , Peng X , Smit B . AIChE Journal, 2014, 60: 2314.
[63]
Jiang H , Wang S , Wang C , Chen Y , Zhang M . Catalysis Surveys from Asia, 2018, 22: 95.
[64]
de Oliveira A, de Lima G F, De Abreu H A. Chemical Physics Letters, 2018, 691: 283.
[65]
Yu R , Zhao Z , Shi C , Zhang W . Journal of Physical Chemistry C, 2019, 123: 2217.
[66]
魏亚娟( Wei Y J ). 天津大学博士论文(Doctoral Dissertation of Tianjin University), 2017.
[67]
Zhang M , Wang W , Chen Y . Phys. Chem. Chem. Phys., 2018, 20: 2211.
[68]
王彩霞( Wang C X ). 天津大学硕士论文(Master Dissertation of Tianjin University), 2016.
[69]
Panagiotis G S , Pavani M S , Donovan A P , Robert G J . Ind. Eng. Chem. Res., 2006, 45: 6436.
[70]
Park E , Kim M , Jung H , Chin S , Jurng J . ACS Catalysis, 2013, 3: 1518.
[71]
Panagiotis G S , Donovan A P , Balu S U . Angew. Chem. Int. Ed., 2001, 40: 2479.
[72]
Zhang X , Wu Q , Diao Q , Wang J , Xiao K , Yang B , Wu X . Chemical Engineering Journal, 2019, 370: 364.
[73]
Zhang L , Huang L , Qin Y H , Chen B Z . Transactions of Nonferrous Metals Society of China, 2018, 28: 980.
[74]
Chen X , Chen X , Yu E , Cai S , Jia H , Chen J , Liang P . Chemical Engineering Journal, 2018, 344: 469.
[75]
Jiang H , Wang C , Wang H , Zhang M . Materials Letters, 2016, 168: 17.
[76]
Bai Y , Dong J , Hou Y , Guo Y , Liu Y , Li Y , Han X , Huang Z . Chemical Engineering Journal, 2019, 361: 703.
[77]
Wang Q , Xu H , Huang W , Pan Z , Zhou H . J. Hazard. Mater., 2019, 364: 499.
[78]
Ji B , Lee J , Kwak S Y . Dalton Trans., 2019, 48: 16395.
[79]
Liu Z , Wang M , Liu S , Chen Z , Yang L , Sun K , Chen Y , Zeng L , Wang W , Zhao J , Sun G , Liu B , Pan Y , Liu Y , Liu C . Applied Catalysis B: Environmental, 2020, 269: 118731.
[80]
Gong Z , Niu S L , Zhang Y J , Lu C M . Materials Research Bulletin, 2020, 123: 110693.
[81]
Fan Z , Shi J W , Gao C , Gao G , Wang B , Niu C . ACS Appl . Mater. Interfaces, 2017, 9: 16117.
[82]
Yu Y , Chen C , He C , Miao J , Chen J . ChemCatChem, 2019, 11: 979.
[83]
Liu B , Shioyama H , Akita T , Xu Q . J. Am. Chem. Soc., 2008, 130: 5390.
[84]
Tang J , Salunkhe R R , Liu J , Torad N L , Imura M , Furukawa S , Yamauchi Y . J. Am. Chem. Soc., 2015, 137: 1572.
[85]
Hui J , Chu H , Zhang W , Shen Y , Chen W , Hu Y , Liu W , Gao C , Guo S , Xiao G , Li S , Fu Y , Fan D , Zhang W , Huo F . Nanoscale, 2018, 10: 8772.
[86]
Zhou Y X , Chen Y Z , Cao L , Lu J , Jiang H L . Chem. Commun.(Camb), 2015, 51: 8292.
[87]
Wang X , Zhong W , Li Y . Catalysis Science & Technology, 2015, 5: 1014.
[88]
Guan B Y , Yu X Y , Wu H B , Lou X W D . Adv. Mater., 2017, 29: 1703614.
[89]
Zhang Y , Park S J . Applied Catalysis B: Environmental, 2019, 240: 92.
[90]
张艳梅( Zhang Y M ), 张静( Zhang J ), 田苗苗( Tian M M ), 储刚( Chu G ), 权春善( Quan C S ). 催化学报( Chinese Journal of Catalysis), 2016, 37: 420.
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[4] 董秀婷, 张文, 赵颂, 刘新磊, 王宇新. 金属有机骨架材料的复合成型[J]. 化学进展, 2021, 33(12): 2173-2187.
[5] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[6] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[7] 李盼盼, 于锋, 朱明远, 汤常金, 代斌, 董林. 选择性氧化还原脱硝催化剂[J]. 化学进展, 2016, 28(10): 1578-1590.
[8] 孙亮 许悠佳 曹青青 胡冰清 王超 荆国华. 氧化锰基催化剂低温NH3选择性还原NOx反应及其机理*[J]. 化学进展, 2010, 22(10): 1882-1900.
[9] 刘金强 钱超 陈新志. 钝化芳环的硝化研究进展*[J]. 化学进展, 2009, 21(12): 2635-2641.
[10] 郭丽红,刘咏,孟明. 稀燃NOx储存-还原催化剂*[J]. 化学进展, 2009, 21(05): 964-970.
[11] 马涛,王睿. NOx的催化分解研究*[J]. 化学进展, 2008, 20(06): 798-810.