English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 1930-1951 DOI: 10.7536/PC200323 前一篇   后一篇

• 综述 •

氨硼烷催化水解制氢

姚淇露1, 杜红霞1, 卢章辉1,**()   

  1. 1 江西师范大学先进材料研究院/化学化工学院 南昌 330022
  • 收稿日期:2020-03-24 修回日期:2020-04-16 出版日期:2021-10-15 发布日期:2020-10-13
  • 通讯作者: 卢章辉
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(No. 21763012); 国家自然科学基金项目(21802056); 江西省自然科学基金项目(No. 20192BAB203009); 江西师范大学青年英才项目资助

Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production

Qilu Yao1, Hongxia Du1, Zhang-Hui Lu1,**()   

  1. 1 Institute of Advanced Materials(IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
  • Received:2020-03-24 Revised:2020-04-16 Online:2021-10-15 Published:2020-10-13
  • Contact: Zhang-Hui Lu
  • Supported by:
    the National Natural Science Foundation of China(No. 21763012); the National Natural Science Foundation of China(21802056); the Natural Science Foundation of Jiangxi Province of China(No. 20192BAB203009); and the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal

氢气作为全球公认的清洁能源载体,备受关注。寻找安全高效的储氢材料以转型到氢能社会是当前氢能应用面临最大的挑战之一。氨硼烷(NH3BH3,AB)具有非常高的储氢质量分数(19.6 wt%)和体积储氢密度(0.145 kgH2/L),因其在储氢和放氢性能方面的显著优势,被认为是一种颇具应用潜力的化学储氢材料。氨硼烷能够通过热解、醇解和水解放出氢气。其中,氨硼烷水解制氢可以通过催化剂进行可控放氢,且具有反应条件温和、不产生CO(易使催化剂中毒)等优点,被认为是一种安全高效和实用性强的制氢技术。本文简要介绍了氨硼烷的性质和合成,阐述了氨硼烷水解制氢的机理,综述了近年来氨硼烷水解制氢催化剂的研究进展,分析了碱对氨硼烷水解制氢的促进作用,并讨论了水解产物回收利用问题。

Hydrogen has attracted much attention as a globally accepted clean energy carrier. Currently, the search of safe and efficient hydrogen storage materials is one of the most difficult challenges for the transformation to hydrogen powered society as a long-term solution for a secure energy future. Ammonia borane(NH3BH3, AB) has been considered to be a promising chemical hydrogen storage material due to its high hydrogen capacity(19.6 wt%), high volumetric hydrogen density(0.145 kgH2/L), and remarkable advantages in hydrogen storage and dehydrogenation performance. Hydrogen stored in ammonia borane can be released via pyrolysis, methanolysis, and hydrolysis routes. Among them, hydrolysis of ammonia borane can be easily controlled and without CO produced(easy to poison the catalyst) in the presence of an appropriate catalyst under mild conditions, which seems to be the most safe, effective, and convenient route for hydrogen storage applications. In this review, the properties and synthesis of ammonia borane are briefly introduced. The mechanism of hydrogen production from ammonia borane is described. Meanwhile, the research progress in catalytic hydrolytic dehydrogenation of ammonia borane for chemical storage is significantly reviewed. Moreover, the promoting effect of alkali for this hydrolysis reaction is concisely analyzed and the recovery of hydrolysate is also discussed.

Contents

1 Introduction

2 Properties and synthesis of ammonia borane

2.1 Properties of ammonia borane

2.2 Synthesis of ammonia borane

3 Mechanism of catalytic ammonia borane hydrolysis

4 Metal catalysts for the hydrolysis of ammonia borane

4.1 Noble metal catalysts

4.2 Non-noble metal catalysts

4.3 Synergistic metal catalysts

4.4 Other catalysts

5 Promoting effect of alkali on catalytic ammonia borane hydrolysis

6 Regeneration of ammonia borane

7 Conclusion

()
图1 金属催化剂催化氨硼烷制氢机理的示意图
Fig.1 The schematic diagram of metal catalyst for hydrogen generation from hydrolysis of AB
图2 (a) Pt/CNT催化剂的高分辨TEM图;(b)截断八面体的示意图;(c) Pt颗粒表面不同位置原子数量随颗粒尺寸变化的关系图;(d) 不同位置原子归一化的TOF随颗粒尺寸变化的关系图[50]
Fig.2 (a) Typical HRTEM image of Pt nanoparticle supported on CNT.(b) Schematic diagram of truncated cuboctahedron.(c) Plots of number of surface atoms per mole of Pt with Pt particle size of truncated cuboctahedron.(d) Plots of normalized TOF with Pt particle size[50]. Reprinted with permission from ref [50]. Copyright 2014, American Chemical Society
图3 不同类型催化剂催化氨硼烷水解制氢循环性能图[52]
Fig.3 Turnover frequency(TOF) values of different catalysts in successive runs for the hydrolysis of AB at 25 ℃(Pt/AB=0.0079)[52]. Reprinted with permission from ref [52]. Copyright 2016, Wiley-VCH
图4 Ru@SBA-15纳米催化剂制备示意图[72]
Fig.4 Schematic illustration of preparation of Ru@SBA-15 catalys[72]. Reprinted with permission from ref[72]. Copyright 2015, Rights Managed by Nature Publishing Group
图5 Ru@SiO 2催化剂(Ru负载量:6 wt%;[Ru]:0.5 mM)催化氨硼烷水解制氢性能图;插图是不同Ru负载量与时间关系图;(b) 不同金属负载量的Ru@SiO2催化剂的TEM图[73]
Fig.5 (a) Hydrogen generation from hydrolysis of AB(200 mM, 10 mL) by Ru@SiO 2 nanospheres(Ru loading=6 wt% and [Ru]=0.5 mM) at 298 K. The inset shows the reaction time versus the loading of ruthenium;(b) Representative TEM images of the Ru@SiO2 nanospheres with different Ru loadings[73]. Reprinted with permission from ref [73]. Copyright 2014, Elsevier
图6 MCN、Pd 67Ni 33与Pd 74Ni 26/MCN催化剂在室温条件下催化氨硼烷水解制氢性能图;插图是不同催化剂对应的TOF值图[79]
Fig.6 Time plots for hydrogen release from aqueous AB solution(200 mM, 5 mL) catalyzed by MCN, Pd 67Ni 33, and Pd 74Ni 26/MCN NCs at room temperature. Inset: the corresponding TOF values of the catalysts[79]. Reprinted with permission from ref [79]. Copyright 2018, Wiley-VCH
表1 不同贵金属催化剂催化氨硼烷水解制氢的催化性能对比
Table 1 Catalytic performance of noble metal catalysts for hydrogen generation from the hydrolysis of ammonia borane
图7 (a) Co/MIL-101-1-U,(b) Co/MIL-101-1,(c) Co/MIL-101-2-U,(d) Co/MIL-101-2催化剂的合成示意图[104]
Fig.7 Schematic illustration for the synthesis of four types of MIL-101-supported Co NPs: (a) Co/MIL-101-1-U;(b) Co/MIL-101-1;(c) Co/MIL-101-2-U;(d) Co/MIL-101-2[104]. Reprinted with permission from ref [104]. Copyright 2017, American Chemical Society
表 2 不同非贵金属催化剂催化氨硼烷水解制氢的催化性能对比
Table 2 Catalytic performance of non-noble metal catalysts for hydrogen generation from the hydrolysis of ammonia borane.
图8 不同催化剂催化氨硼烷水解制氢性能图[128]
Fig.8 TOF values of the different catalysts for hydrogen generation from hydrolysis of AB[128]. Reprinted with permission from ref [128]. Copyright 2016, Royal Society of Chemistry
图9 不同催化剂催化氨硼烷水解制氢性能图[135]
Fig.9 Hydrogen productivity vs. reaction time for hydrogen release from an aqueous AB solution(200 mM, 5 mL) catalyzed by different catalysts at 298 K( n Ni/ n AB=0.08)[135]. Reprinted with permission from ref[135]. Copyright 2018, Tsinghua University Press and Springer-Verlag GmbH Germany
图10 (a) 不同催化剂催化氨硼烷水解制氢性能图;(b)Cu/RGO催化剂的TEM图[142]
Fig.10 (a) Hydrogen generation from hydrolysis of AB in presence of different catalysts;(b) TEM image of Cu/RGO[142]. Reprinted with permission from ref[142]. Copyright 2014, Royal Society of Chemistry
图11 Cu@SiO 2催化剂催化氨硼烷和肼硼烷水解制氢循环性能图[143]
Fig.11 Percent of initial activity retained in the successive runs for the hydrolysis of AB and HB in the presence of Cu@SiO 2 catalyst at 298 K[143]. Reprinted with permission from ref[143]. Copyright 2014, Rights Managed by Nature Publishing Group
表 3 不同多金属协同催化剂催化氨硼烷水解制氢的催化性能对比
Table 3 Catalytic performance of synergistic metal catalysts for hydrogen generation from the hydrolysis of ammonia borane
图12 一步原位晶种法形成Au@Co核壳纳米粒子的 (a)示意图和(b)溶液颜色变化照片[185]
Fig.12 (a) Schematic illustration,(b) color evolution in the formation process of Au@Co core-shell NPs via a one-step seeding-growth method at room temperature[185]. Reprinted with permission from ref [185]. Copyright 2010, American Chemical Society
图13 (a) Cu x Co 1- x @SiO 2催化剂催化氨硼烷水解制氢性能图;(b) Cu 0.5Co 0.5@SiO 2催化剂的TEM图[213]
Fig.13 (a) Cu x Co 1- x @SiO 2 core-shell nanospheres with different x values under an ambient atmosphere at 298 K;(b) TEM image of Cu 0.5Co 0.5@SiO2 [213]. Reprinted with permission from ref[213]. Copyright 2015, American Chemical Society
图14 不同催化剂催化氨硼烷水解制氢性能图;插图是原位合成Cu0.33Fe 0.67纳米合金的的照片[223]
Fig.14 Hydrogen generation from the hydrolysis of AB in the presence of different metal nanocatalysts(metal/AB=0.04). The insert shows photographs of the catalytic hydrolysis of AB via in situ synthesized Cu 0.33Fe 0.67 nanoalloy[223]. Reprinted with the permission from ref [223]. Copyright 2013, Elsevier
图15 Cu 0.72Co 0.18Mo 0.1催化剂在添加NaOH、KOH、Na 2CO 3、NH 4Cl、CH 3COONH 4和NH 3·H 2O条件下催化氨硼烷水解制氢性能图[222]
Fig.15 Hydrogen generation from the hydrolysis of AB with the addition of NaOH, KOH, Na 2CO 3, NH 4Cl, CH 3COONH 4 and NH 3·H 2O catalyzed by Cu 0.72Co 0.18Mo 0.1 NPs at 298 K[222]. Reprinted with the permission from ref[ 222]. Copyright 2018, Royal Society of Chemistry
图16 氨硼烷水解副产物再生使用示意图
Fig.16 Ammonia borane regeneration cycle from byproducts of hydrolysis
[1]
Schlapbach L , Zuttel A . Nature, 2001, 414: 353.
[2]
梁艳( Liang Y ), 王平( Wang P ), 戴洪斌( Dai H B ). 化学进展( Progress in Chemitry), 2009, 21: 2219.
[3]
张磊( Zhang L ), 涂倩( Tu Q ), 陈学年( Chen X N ), 刘蒲( Liu P ). 化学进展( Progress in Chemitry), 2014, 26: 749.
[4]
张世亮( Zhang S L ), 姚淇露( Yao Q L ), 卢章辉( Lu Z H ). 化学进展( Progress in Chemitry), 2017, 29: 426.
[5]
He T , Wu H , Wu G , Wang J , Zhou W , Xiong Z , Chen J , Zhang T , Chen P . Energy Environ. Sci., 2012, 5: 5686.
[6]
Li P Z , Xu Q . J. Chin. Chem. Soc., 2012, 59: 1181.
[7]
Singh S K , Xu Q . Catal. Sci. Technol., 2013, 3: 1889.
[8]
Zhu Q L , Xu Q . Energy Environ. Sci., 2015, 8: 478.
[9]
Singh A K , Singh S , Kumar A . Catal. Sci. Technol., 2016, 6: 12.
[10]
He L , Liang B L , Huang Y Q , Zhang T . Natl. Sci. Rev., 2018, 5: 356.
[11]
Yan J M , Li S J , Yi S S , Wulan B R , Zheng W T , Jiang Q . Adv. Mater., 2018, 30: 1703038.
[12]
Li S J , Zhou Y T , Kang X , Liu D X , Gu L , Zhang Q H , Yan J M , Jiang Q . Adv. Mater., 2019, 31: 1806781.
[13]
Zhang Z J , Lu Z H , Tan H L , Chen X S , Yao Q L . J. Mater. Chem. A, 2015, 3: 23520.
[14]
Zhang Z J , Wang Y Q , Chen X S , Lu Z H . J. Power Sources, 2015, 291: 14.
[15]
Zhang Z J , Zhang S L , Yao Q L , Chen X S , Lu Z H . Inorg. Chem., 2017, 56: 11938.
[16]
Wang K , Yao Q L , Qing S J , Lu Z H . J. Mater. Chem. A, 2019, 7: 9903.
[17]
Zhang Z J , Luo Y , Liu S W , Yao Q L , Qing S J , Lu Z H . J. Mater. Chem. A, 2019, 7: 21438.
[18]
Luo Y X , Yang Q F , Nie W D , Yao Q L , Zhang Z J , Lu Z H . ACS Appl. Mater. Interfaces, 2020, 12: 8082.
[19]
Chandra M , Xu Q . J. Power Sources, 2006, 156: 190.
[20]
Jiang H L , Xu Q . Catal. Today, 2011, 170: 56.
[21]
Zhan W W , Zhu Q L , Xu Q . ACS Catal., 2016, 6: 6892.
[22]
Alpaydın C Y , Gülbay S K , Colpan C O . Int. J. Hydrogen Energy, 2020, 45: 3414.
[23]
Lang C G , Jia Y , Yao X D . Energy Stroage Mater., 2020, 26: 290.
[24]
Lu Z H , Xu Q . Funct. Mater. Lett., 2012, 5: 1230001.
[25]
Lu Z H , Yao Q L , Zhang Z J , Yang Y W , Chen X S , J. Nanomater., 2014, 729029.
[26]
Yao Q L , Chen X S , Lu Z H . Energy Environ. Focus, 2014, 3: 236.
[27]
Sit V , Geanangel R A , Wendlandt W W . Thermochim. Acta, 1987, 113: 379.
[28]
Conley B L , Guess D , Williams T J . J. Am. Chem. Soc., 2011, 133: 14212.
[29]
Jaska C A , Manners I . J. Am. Chem. Soc., 2004, 126: 9776.
[30]
Rossin A , Caporali M , Gonsalvi L , Guerri A , Lledos A , Peruzzini M , Zanobini F . Eur. J. Inorg. Chem., 2009, 2009: 3055.
[31]
Keaton R J , Blacquiere J M , Baker R T . J. Am. Chem. Soc., 2007, 129: 1844.
[32]
Bluhm M E , Bradley M G , Butterick R , Kusari U , Sneddon L G . J. Am. Chem. Soc., 2006, 128: 7748.
[33]
Gutowska A , Li L , Wang C M , Li X S , Linehan J C , Smith R S , Kay B D , Schmid B , Shaw W , Gutowski M , Autrey T . Angew. Chem. Int. Ed., 2005, 44: 3578.
[34]
Li L , Yao X , Sun C H , Du A J , Cheng L N , Zhu Z H , Yu C Z , Zou J , Smith S C , Wang P , Cheng H M , Frost R L , Lu G Q . Adv. Funct. Mater., 2009, 19: 265.
[35]
Li Z Y , Zhu G S , Lu G Q , Qiu S L , Yao X D . J. Am. Chem. Soc., 2010, 132: 1490.
[36]
Ramachandran P V , Gagare P D . Inorg. Chem., 2007, 46: 7810.
[37]
Yao Q L , Huang M , Lu Z H , Yang Y W , Zhang Y X , Chen X S , Yang Z . Dalton Trans., 2015, 44: 1070.
[38]
Li X G , Zhang C L , Luo M H , Yao Q L , Lu Z H . Inorg. Chem. Front., 2020, 7: 1298.
[39]
Staubitz A , Robertson A P , Manners I . Chem. Rev., 2010, 110: 4079.
[40]
Shore S G , Parry R W . J. Am. Chem. Soc., 1955, 77: 6084.
[41]
Heldebrant D J , Karkamkar A , Linehan J C , Autrey T . Energy Environ. Sci., 2008, 1: 156.
[42]
Xu Q , Chandra M . J. Power Sources, 2006, 163: 364.
[43]
Kalidindi S B , Sanyal U , Jagirdar B R . Phys. Chem. Chem. Phys., 2008, 10: 5870.
[44]
Yang X , Cheng F , Tao Z , Chen J . J.Power Sources, 2011, 196: 2785.
[45]
Peng C Y , Kang L , Cao S , Chen Y , Lin Z S , Fu W F . Angew. Chem. Int. Ed., 2015, 54: 15725.
[46]
Li Z , He T , Liu L , Chen W , Zhang M , Wu G , Chen P . Chem. Sci., 2017, 8: 781.
[47]
Chen W , Li D , Wang Z , Qian G , Sui Z , Duan X , Zhou X , Yeboah I , Chen D . AIChE J., 2017, 63: 60.
[48]
Chandra M , Xu Q . J. Power Sources, 2007, 168: 135.
[49]
Aijaz A , Karkamkar A , Choi Y J , Tsumori N , Ronnebro E , Autrey T , Shioyama H , Xu Q . J. Am. Chem. Soc., 2012, 134: 13926.
[50]
Chen W , Ji J , Feng X , Duan X , Qian G , Li P , Zhou X , Chen D , Yuan W . J. Am. Chem. Soc., 2014, 136: 16736.
[51]
Wang X , Liu D , Song S , Zhang H . Chem. Commun., 2012, 48: 10207.
[52]
Yao Q L , Shi Y , Zhang X , Chen X , Lu Z H . Chem. Asian J., 2016, 11: 3251.
[53]
Yan H , Lin Y , Wu H , Zhang W , Sun Z , Cheng H , Liu W , Wang C , Li J , Huang X , Yao T , Yang J , Wei S , Lu J . Nat. Commun., 2017, 8: 1070.
[54]
Li J J , Guan Q Q , Qu H , Liu W , Lin Y , Sun Z H , Ye X X , Zheng X S , Pan H B , Zhu J F , Chen S , Zhang W H , Wei S Q , Lu J L . J. Am. Chem. Soc., 2019, 141: 14515.
[55]
Clark T J , Whittell G R , Manners I . Inorg. Chem., 2007, 46: 7522.
[56]
Ayvali T , Zahmakiran M , Ozkar S . Dalton Trans., 2011, 40: 3584.
[57]
Durap F , Zahmakıran M , Özkar S . Appl. Catal. A: Gen., 2009, 369: 53.
[58]
Metin Ö , Şahin Ş , Özkar S . Int. J. Hydrogen Energy, 2009, 34: 6304.
[59]
Zahmakıran M , Özkar S . Appl. Catal. B: Environ., 2009, 89: 104.
[60]
Zhava D , Özkar S . Appl. Catal. B: Environ., 2016, 181: 716.
[61]
Akbayrak S , Gençtürk S , Morkani, Özkar S. RSC Adv., 2014, 4: 13742.
[62]
Akbayrak S , Tonbul Y , Özkar S . Appl. Catal. B: Environ., 2016, 198: 162.
[63]
Akbayrak S , Ozcifci Z , Tabak A . J. Colloid Interface Sci., 2019, 546: 324.
[64]
Shen J , Yang L , Hu K , Luo W , Cheng G . Int. J. Hydrogen Energy, 2015, 40: 1062.
[65]
Yao Q L , Lu Z H , Jia Y , Chen X , Liu X . Int. J. Hydrogen Energy, 2015, 40: 2207.
[66]
Sun Q , Wang N , Zhang T , Bai R , Mayoral A , Zhang P , Zhang Q , Terasaki O , Yu J . Angew. Chem. Int. Ed., 2019, 58: 18570.
[67]
Rachiero G P , Demirci U B , Miele P . Catal. Today, 2011, 170: 85.
[68]
Can H , Metin Ö . Appl. Catal. B: Environ., 2012, 125: 304.
[69]
Liang H , Chen G , Desinan S , Rosei R , Rosei F , Ma D . Int. J. Hydrogen Energy, 2012, 37: 17921.
[70]
Xu C , Ming M , Wang Q , Yang C , Fan G , Wang Y , Gao D , Bi J , Zhang Y . J. Mater. Chem. A, 2018, 6: 14380.
[71]
Chen J M , Lu Z H , Xiong L H . Chin. J. Inorg. Chem., 2016, 32: 1816.
[72]
Yao Q L , Lu Z H , Yang K K , Chen X S , Zhu M . Sci. Rep., 2015, 5: 15186.
[73]
Yao Q L , Shi W , Feng G , Lu Z H , Zhang X L , Tao D J , Kong D J , Chen X S . J. Power Sources, 2014, 257: 293.
[74]
Hu Y J , Wang Y Q , Lu Z H , Chen X S , Xiong L H . Appl. Surface Sci., 2015, 341: 185.
[75]
Yao Q L , Lu Z H , Hu Y J , Chen X S . RSC Adv., 2016, 6: 89450.
[76]
Xi P , Chen F , Xie G , Ma C , Liu H , Shao C , Wang J , Xu Z , Xu X , Zeng Z . Nanoscale, 2012, 4: 5597.
[77]
Metin Ö , Kayhan E , Özkar S , Schneider J J . Int. J. Hydrogen Energy, 2012, 37: 8161.
[78]
Kılıç B , Şencanlı S , Metin Ö . J. Mol. Catal. A: Chem., 2012, 361/362: 104.
[79]
Wang W , Lu Z H , Luo Y , Zou A H , Yao Q L , Chen X S . ChemCatChem, 2018, 10: 1620.
[80]
Fuku K , Hayashi R , Takakura S , Kamegawa T , Mori K , Yamashita H . Angew. Chem. Int. Ed., 2013, 52: 7446.
[81]
Qian X , Kuwahara Y , Mori K , Yamashita H . Chem. Eur. J., 2014, 20: 15746.
[82]
Chen J M , Lu Z H , Wang Y , Chen X S , Zhang L . Int. J. Hydrogen Energy, 2015, 40: 4777.
[83]
Akbayrak S , Kaya M , Volkan M , Özkar S . J. Mol. Catal. A: Chem., 2014, 394: 253.
[84]
Akbayrak S , Kaya M , Volkan M , Özkar S . Appl. Catal. B: Environ., 2014, 147: 387.
[85]
Zhao H , Yu G , Yuan M , Yang J , Xu D , Dong Z . Nanoscale, 2018, 10: 21466.
[86]
Khalily M A , Eren H , Akbayrak S , Susapto H H , Biyikli N , Özkar S , Guler M O . Angew. Chem. Int. Ed., 2016, 55: 12257.
[87]
Xu D , Wang W D , Tian M , Dong Z . J. Colloid Interface Sci., 2018, 516: 407.
[88]
Hu M , Ming M , Xu C L , Wang Y , Zhang Y , Gao D J , Bi J , Fan G Y . ChemSusChem, 2018, 11: 3253.
[89]
Zhang H , Huang M , Wen J , Li Y , Li A , Zhang L , Ali A M , Li Y . Chem. Commun., 2019, 55: 4699.
[90]
Akbayrak S , Özkar S . ACS Appl. Mater. Interfaces, 2012, 4: 6302.
[91]
Du C , Ao Q , Cao N , Yang L , Luo W , Cheng G . Int. J. Hydrogen Energy, 2015, 40: 6180.
[92]
Fan Y , Li X , He X , Zeng C , Fan G , Liu Q , Tang D . Int. J. Hydrogen Energy, 2014, 39: 19982.
[93]
Abo-Hamed E K , Pennycook T , Vaynzof Y , Toprakcioglu C , Koutsioubas A , Scherman O A . Small, 2014, 10: 3145.
[94]
Yan J M , Zhang X B , Han S , Shioyama H , Xu Q . Angew. Chem. Int. Ed., 2008, 47: 2287.
[95]
Yan J M , Zhang X B , Shioyama H , Xu Q . J. Power Sources, 2010, 195: 1091.
[96]
Umegaki T , Yan J M , Zhang X B , Shioyama H , Kuriyama N , Xu Q . Int. J. Hydrogen Energy, 2009, 34: 3816.
[97]
Metin Ö , Özkar S . Energy Fuels, 2009, 23: 3517.
[98]
Metin Ö , Özkar S . Int. J. Hydrogen Energy, 2011, 36: 1424.
[99]
Rakap M , Özkar S . Catal. Today, 2012, 183: 17.
[100]
Paladini M , Arzac G M , Godinho V , Haro M C J D, Fernández A . Appl. Catal. B: Environ., 2014, 158/159: 400.
[101]
Yu P J , Lee M H , Hsu H M , Tsai H M , Chen-Yang Y W . RSC Adv., 2015, 5: 13985.
[102]
Yang Y W , Feng G , Lu Z H , Hu N , Zhang F , Chen X S . Acta Phys . Chim. Sin., 2014, 30: 1180.
[103]
Hu J , Chen Z , Li M , Zhou X , Lu H . ACS Appl . Mater. Interfaces, 2014, 6: 13191.
[104]
Liu P , Gu X , Kang K , Zhang H , Cheng J , Su H . ACS Appl . Mater. Interfaces, 2017, 9: 10759.
[105]
Zhou L , Meng J , Li P , Tao Z , Mai L , Chen J . Mater. Horiz., 2017, 4: 268.
[106]
Wang H , Zhao Y , Cheng F , Tao Z , Chen J . Catal. Sci. Technol., 2016, 6: 3443.
[107]
Zhang X L , Zhang D X , Chang G G , Ma X C , Wu J , Wang Y , Yu H Z , Tian G , Chen J , Yang X Y . Ind. Eng. Chem. Res., 2019, 58: 7209.
[108]
Fang Y , Xiao Z , Li J , Lollar C , Liu L , Lian X , Yuan S , Banerjee S , Zhang P , Zhou H C . Angew. Chem. Int. Ed., 2018, 57: 5283.
[109]
Chen M , Xiong R , Cui X , Wang Q , Liu X . Langmuir, 2019, 35: 671.
[110]
Aranishi K , Zhu Q L , Xu Q . ChemCatChem, 2014, 6: 1375.
[111]
Men Y , Su J , Huang C , Liang L , Cai P , Cheng G , Luo W . Chin. Chem. Lett., 2018, 29: 1671.
[112]
Umegaki T , Yan J M , Zhang X B , Shioyama H , Kuriyama N , Xu Q . J. Power Sources, 2009, 191: 209.
[113]
Mahyari M , Shaabani A . J. Mater. Chem. A, 2014, 2: 16652.
[114]
Zhao G , Zhong J , Wang J , Sham T K , Sun X , Lee S T . Nanoscale, 2015, 7: 9715.
[115]
Zhang J , Chen C , Yan W , Duan F , Zhang B , Gao Z , Qin Y . Catal. Sci. Technol., 2016, 6: 2112.
[116]
Manna J , Akbayrak S , Özkar S . J. Colloid Interface Sci., 2017, 508: 359.
[117]
Wang C , Tuninetti J , Wang Z , Zhang C , Ciganda R , Salmon L , Moya S , Ruiz J , Astruc D . J. Am. Chem. Soc., 2017, 139: 11610.
[118]
Guo K , Li H , Yu Z . ACS Appl . Mater. Interfaces, 2018, 10: 517.
[119]
Metin Ö , Mazumder V , Özkar S , Sun S . J. Am. Chem. Soc., 2010, 132: 1468.
[120]
Metin Ö , Özkar S , Sun S . Nano Res., 2010, 3: 676.
[121]
Umegaki T , Xu Q , Kojima Y . J. Power Sources, 2012, 216: 363.
[122]
Yan J M , Zhang X B , Han S , Shioyama H , Xu Q . Inorg. Chem., 2009, 48: 7389.
[123]
Li P Z , Aranishi K , Xu Q . Chem. Commun., 2012, 48: 3173.
[124]
Li P Z , Aijaz A , Xu Q . Angew. Chem. Int. Ed., 2012, 51: 6753.
[125]
Li Y , Xie L , Li Y , Zheng J , Li X . Chem. Eur. J., 2009, 15: 8951.
[126]
Cao C Y , Chen C Q , Li W , Song W G , Cai W . ChemSusChem, 2010, 3: 1241.
[127]
Yang K K , Yao Q L , Huang W , Chen X S , Lu Z H . Int. J. Hydrogen Energy, 2017, 42: 6840.
[128]
Yao Q L , Lu Z H , Huang W , Chen X S , Zhu J . J. Mater. Chem. A, 2016, 4: 8579.
[129]
Yang K , Yao Q L , Lu Z H , Kang Z B , Chen X S . Acta Phys . Chim. Sin., 2017, 33: 993.
[130]
Yao Q L , Lu Z H , Zhang R , Zhang S , Chen X S , Jiang H L . J. Mater. Chem. A, 2018, 6: 4386.
[131]
Chen J M , Lu Z H , Yao Q L , Feng G , Luo Y . J. Mater. Chem. A, 2018, 6: 20746.
[132]
Yao Q L , He M , Hong X , Chen X , Feng G , Lu Z H . Int. J. Hydrogen Energy, 2019, 44: 28430.
[133]
Yao Q L , He M , Hong X L , Zhang X L , Lu Z H . Inorg. Chem. Front., 2019, 6: 1546.
[134]
Yao Q L , Yang K K , Nie W D , Li Y X , Lu Z H . Renew. Energy, 2020, 147: 2024.
[135]
Yao Q L , Lu Z H , Yang Y W , Chen Y Z , Chen X S , Jiang H L . Nano Res., 2018, 11: 4412.
[136]
Yang Y W , Lu Z H , Chen X S , Mater. Technol., 2015, 30: 89.
[137]
Zahmakıran M , Durap F , Özkar S . Int. J. Hydrogen Energy, 2010, 35: 187.
[138]
Yamada Y , Yano K , Xu Q , Fukuzumi S . J. Phys. Chem. C, 2010, 114: 16456.
[139]
Yamada Y , Yano K , Fukuzumi S . Energy Environ. Sci., 2012, 5: 5356.
[140]
Kaya M , Zahmakiran M , Özkar S , Volkan M . ACS Appl . Mater. Interfaces, 2012, 4: 3866.
[141]
Zhang J , Wang Y , Zhu Y , Mi G , Du X , Dong Y . Renew. Energy, 2018, 118: 146.
[142]
Yang Y W , Lu Z H , Hu Y J , Zhang Z J , Shi W , Chen X S , Wang T . RSC Adv., 2014, 4: 13749.
[143]
Yao Q L , Lu Z H , Zhang Z J , Chen X S , Lan Y Q . Sci. Rep., 2014, 4: 7597.
[144]
Ozay O , Inger E , Aktas N , Sahiner N . Int. J. Hydrogen Energy, 2011, 36: 8209.
[145]
Yurderi M , Bulut A , Ertas I E , Zahmakiran M , Kaya M . Appl. Catal. B: Environ., 2015, 165: 169.
[146]
Cui L , Cao X , Sun X , Yang W , Liu J . ChemCatChem, 2018, 10: 710.
[147]
Chen Q Q , Li Q , Hou C C , Wang C J , Peng C Y , LÓpez N , Chen Y . Catal. Sci. Technol., 2019, 9: 2828.
[148]
Singh A K , Xu Q . ChemCatChem, 2013, 5: 652.
[149]
Shang N Z , Feng C , Gao S T , Wang C . Int. J. Hydrogen Energy, 2016, 41: 944.
[150]
Kang J X , Chen T W , Zhang D F , Guo L . Nano Energy, 2016, 23: 145.
[151]
Tong Y , Lu X , Sun W , Nie G , Yang L , Wang C . J. Power Sources, 2014, 261: 221.
[152]
Amali A J , Aranishi K , Uchida T , Xu Q . Part. Part. Syst. Charact., 2013, 30: 888.
[153]
Zhou Q X , Xu C X . Chem. Asian J., 2016, 11: 705.
[154]
Rakap M. J. Power Sources, 2015, 276: 320.
[155]
Rakap M. Appl. Catal. B: Environ., 2015, 163: 129.
[156]
Rakap M. Int. J. Green Energy, 2015, 12: 1288.
[157]
Rakap M. Appl. Catal. A: General, 2014, 478: 15.
[158]
Rakap M. J. Alloy Compd., 2015, 649: 1025.
[159]
Cheng F , Ma H , Li Y , Chen J . Inorg. Chem., 2007, 46: 788.
[160]
Yang X , Cheng F , Liang J , Tao Z , Chen J . Int. J. Hydrogen Energy, 2009, 34: 8785.
[161]
Yi R , Shi R , Gao G , Zhang N , Cui X , He Y , Liu X . J. Phys. Chem. C, 2009, 113: 1222.
[162]
Du J , Cheng F , Si M , Liang J , Tao Z , Chen J . Int. J. Hydrogen Energy, 2013, 38: 5768.
[163]
Yang X , Cheng F , Liang J , Tao Z , Chen J . Int. J. Hydrogen Energy, 2011, 36: 1984.
[164]
Qi X , Li X , Chen B , Lu H , Wang L , He G . ACS Appl . Mater. Interfaces, 2016, 8: 1922.
[165]
Ge Y , Ye W , Shah Z H , Lin X , Lu R , Zhang S . ACS Appl . Mater. Interfaces, 2017, 9: 3749.
[166]
Fu F , Wang C , Wang Q , Martinez-Villacorta A M , Escobar A , Chong H , Wang X , Moya S , Salmon L , Fouquet E , Ruiz J , Astruc D . J. Am. Chem. Soc., 2018, 140: 10034.
[167]
Fan G , Li X , Ma Y , Zhang Y , Wu J , Xu B , Sun T , Gao D , Bi J . New J. Chem., 2017, 41: 2793.
[168]
Wang Q , Fu F , Yang S , Martinez Moro M , Ramirez M D L A, Moya S , Salmon L , Ruiz J , Astruc D . ACS Catal., 2018, 9: 1110.
[169]
Zhang J , Chen W , Ge H , Chen C , Yan W , Gao Z , Gan J , Zhang B , Duan X , Qin Y . Appl. Catal. B: Environ., 2018, 235: 256.
[170]
Chen G , Desinan S , Rosei R , Rosei F , Ma D . Chem. Eur. J., 2012, 18: 7925.
[171]
Chen G , Desinan S , Nechache R , Rosei R , Rosei F , Ma D . Chem. Commun., 2011, 47: 6308.
[172]
Li X , Zeng C , Fan G . Int. J. Hydrogen Energy, 2015, 40: 3883.
[173]
Mori K , Miyawaki K , Yamashita H . ACS Catal., 2016, 6: 3128.
[174]
Roy S , Pachfule P , Xu Q . Eur. J. Inorg. Chem., 2016, 2016: 4353.
[175]
Rachiero G P , Demirci U B , Miele P . Int. J. Hydrogen Energy, 2011, 36: 7051.
[176]
Lu D , Yu G , Li Y , Chen M , Pan Y , Zhou L , Yang K , Xiong X , Wu P , Xia Q . J. Alloy Compd., 2017, 694: 662.
[177]
Chen M H , Zhou L Q , Di L , Yue L , Ning H H , Pan Y X , Xu H K , Peng W W , Zhang S R . Int. J. Hydrogen Energy, 2018, 43: 1439.
[178]
Pachfule P , Yang X , Zhu Q L , Tsumori N , Uchida T , Xu Q . J. Mater. Chem. A, 2017, 5: 4835.
[179]
Jiang H L , Umegaki T , Akita T , Zhang X B , Haruta M , Xu Q . Chem. Eur. J., 2010, 16: 3132.
[180]
Zhu Q L , Li J , Xu Q . J. Am. Chem. Soc., 2013, 135: 10210.
[181]
Guo L , Gu X , Kang K , Wu Y , Cheng J , Liu P , Wang T , Su H . J. Mater. Chem. A, 2015, 3: 22807.
[182]
Kang K , Gu X , Guo L , Liu P , Sheng X , Wu Y , Cheng J , Su H . Int. J. Hydrogen Energy, 2015, 40: 12315.
[183]
Li J , Zhu Q L , Xu Q . Chem. Commun., 2014, 50: 5899.
[184]
Lu Z H , Jiang H L , Yadav M , Aranishi K , Xu Q . J. Mater. Chem., 2012, 22: 5065.
[185]
Yan J M , Zhang X B , Akita T , Haruta M , Xu Q . J. Am. Chem. Soc., 2010, 132: 5326.
[186]
Chen Y Z , Liang L , Yang Q , Hong M , Xu Q , Yu S H , Jiang H L . Mater. Horiz., 2015, 2: 606.
[187]
Wen M , Sun B , Zhou B , Wu Q , Peng J . J. Mater. Chem., 2012, 22: 11988.
[188]
Ke D , Li Y , Wang J , Zhang L , Wang J , Zhao X , Yang S , Han S . Int. J. Hydrogen Energy, 2016, 41: 2564.
[189]
Çiftci N S , Metin Ö . Int. J. Hydrogen Energy, 2014, 39: 18863.
[190]
Zhang L , Zhou L , Yang K , Gao D , Huang C , Chen Y , Zhang F , Xiong X , Li L , Xia Q . J. Alloy Compd., 2016, 677: 87.
[191]
Shang N , Zhou X , Feng C , Gao S , Wu Q , Wang C . Int. J. Hydrogen Energy, 2017, 42: 5733.
[192]
Sun D , Mazumder V , Metin Ö , Sun S . ACS Nano, 2011, 5: 6458.
[193]
Wang J , Qin Y L , Liu X , Zhang X B . J. Mater. Chem., 2012, 22: 12468.
[194]
Chen Y Z , Xu Q , Yu S H , Jiang H L . Small, 2015, 11: 71.
[195]
Aranishi K , Jiang H L , Akita T , Haruta M , Xu Q . Nano Res., 2011, 4: 1233.
[196]
Yang L , Su J , Meng X , Luo W , Cheng G . J. Mater. Chem. A, 2013, 1: 10016.
[197]
Yang L , Su J , Luo W , Cheng G . Int. J. Hydrogen Energy, 2014, 39: 3360.
[198]
Qiu F , Liu G , Li L , Wang Y , Xu C , An C , Chen C , Xu Y , Huang Y , Wang Y , Jiao L , Yuan H . Chem. Eur. J., 2014, 20: 505.
[199]
Wang H L , Yan J M , Wang Z L , Jiang Q . Int. J. Hydrogen Energy, 2012, 37: 10229.
[200]
Qiu F , Dai Y , Li L , Xu C , Huang Y , Chen C , Wang Y , Jiao L , Yuan H . Int. J. Hydrogen Energy, 2014, 39: 436.
[201]
Zhang H , Wang X , Chen C , An C , Xu Y , Huang Y , Zhang Q , Wang Y , Jiao L , Yuan H . Int. J. Hydrogen Energy, 2015, 40: 12253.
[202]
Yan J M , Zhang X B , Han S , Shioyama H , Xu Q . J. Power Sources, 2009, 194: 478.
[203]
Zhou X , Chen Z , Yan D , Lu H . J. Mater. Chem., 2012, 22: 13506.
[204]
Lai S W , Lin H L , Lin Y P , Yu T L . Int. J. Hydrogen Energy, 2013, 38: 4636.
[205]
Qiu F Y , Wang Y J , Wang Y P , Li L , Liu G , Yan C , Jiao L F , Yuan H T . Catal. Today, 2011, 170: 64.
[206]
Qiu F , Li L , Liu G , Wang Y , Wang Y , An C , Xu Y , Xu C , Wang Y , Jiao L , Yuan H . Int. J. Hydrogen Energy, 2013, 38: 3241.
[207]
Qiu F , Li L , Liu G , Wang Y , An C , Xu C , Xu Y , Wang Y , Jiao L , Yuan H . Int. J. Hydrogen Energy, 2013, 38: 7291.
[208]
Zhou S , Wen M , Wang N , Wu Q , Wu Q , Cheng L . J. Mater. Chem., 2012, 22: 16858.
[209]
Yang Y , Zhang F , Wang H , Yao Q L , Chen X , Lu Z H . J. Nanomater., 2014, 294350.
[210]
Wang Q , Zhang Z , Liu J , Liu R , Liu T . Mater. Chem. Phys., 2018, 204: 58.
[211]
Miao H , Ma K , Zhu H , Yin K , Zhang Y , Cui Y . RSC Adv., 2019, 9: 14580.
[212]
Yan J M , Wang Z L , Wang H L , Jiang Q . J. Mater. Chem., 2012, 22: 10990.
[213]
Yao Q L , Lu Z H , Wang Y , Chen X , Feng G . J. Phys. Chem. C, 2015, 119: 14167.
[214]
Li C , Zhou J , Gao W , Zhao J , Liu J , Zhao Y , Wei M , Evans D G , Duan X . J. Mater. Chem. A, 2013, 1: 5370.
[215]
Song F Z , Zhu Q L , Yang X C , Xu Q . ChemNanoMat, 2016, 2: 942.
[216]
Wang H , Zhou L , Han M , Tao Z , Cheng F , Chen J . J. Alloy Compd., 2015, 651: 382.
[217]
Bulut A , Yurderi M , Ertasí E , Celebi M , Kaya M , Zahmakiran M . Appl. Catal. B: Environ., 2016, 180: 121.
[218]
Li J , Zhu Q L , Xu Q . Catal. Sci. Technol., 2015, 5: 525.
[219]
Liu Y , Zhang J , Guan H , Zhao Y , Yang J H , Zhang B . Appl. Surface Sci., 2018, 427: 106.
[220]
Li H , Yan Y , Feng S , Zhu Y , Chen Y , Fan H , Zhang L , Yang Z . Int. J. Hydrogen Energy, 2019, 44: 8307.
[221]
Liao J , Lv F , Feng Y , Zhong S , Wu X , Zhang X , Wang H , Li J , Li H . Catal. Commun., 2019, 122: 16.
[222]
Yao Q L , Yang K , Hong X , Chen X , Lu Z H . Catal. Sci. Technol., 2018, 8: 870.
[223]
Lu Z H , Li J , Zhu A , Yao Q L , Huang W , Zhou R , Zhou R , Chen X . Int. J. Hydrogen Energy, 2013, 38: 5330.
[224]
Lu Z H , Li J , Feng G , Yao Q L , Zhang F , Zhou R , Tao D , Chen X , Yu Z . Int. J. Hydrogen Energy, 2014, 39: 13389.
[225]
Guo K , Ding Y , Luo J , Gu M , Yu Z . ACS Appl . Energy Mater., 2019, 2: 5851.
[226]
Yen H , Seo Y , Kaliaguine S , Kleitz F . ACS Catal., 2015, 5: 5505.
[227]
Yen H , Kleitz F . J. Mater. Chem.A, 2013, 1: 14790.
[228]
Yousef A , Barakat N A M , El-Newehy M , Kim H Y . Int. J. Hydrogen Energy, 2012, 37: 17715.
[229]
Zhou Y H , Wang S , Wan Y , Liang J , Chen Y , Luo S , Yong C . J. Alloy Compd., 2017, 728: 902.
[230]
Gao D , Zhang Y , Zhou L , Yang K . Appl. Surface Sci., 2018, 427: 114.
[231]
Wang C , Sun D , Yu X , Zhang X , Lu Z , Wang X , Zhao J , Li L , Yang X . Inorg. Chem. Front., 2018, 5: 2038.
[232]
Liu Q , Zhang S , Liao J , Feng K , Zheng Y , Pollet B G , Li H . J. Power Sources, 2017, 355: 191.
[233]
Liao J , Li H , Zhang X , Feng K , Yao Y . Catal. Sci. Technol., 2016, 6: 3893.
[234]
Liu Q , Zhang S , Liao J , Huang X , Zheng Y , Li H . Catal. Sci. Technol., 2017, 7: 3573.
[235]
Liao J , Lu D , Diao G , Zhang X , Zhao M , Li H . ACS Sustain . Chem. Eng., 2018, 6: 5843.
[236]
Lu D , Liao J , Zhong S , Leng Y , Ji S , Wang H , Wang R , Li H . Int. J. Hydrogen Energy, 2018, 43: 5541.
[237]
Feng K , Zhong J , Zhao B , Zhang H , Xu L , Sun X , Lee S T . Angew. Chem. Int. Ed., 2016, 55: 11950.
[238]
Li J , Ren X , Lv H , Wang Y , Li Y , Liu B . J. Hazard. Mater., 2020, 391: 122199.
[239]
Patel N , Fernandes R , Guella G , Miotello A . Appl. Catal. B: Environ., 2010, 95: 137.
[240]
Patel N , Kale A , Miotello A . Appl. Catal. B: Environ., 2012, 111/112: 178.
[241]
Cui L , Xu Y , Niu L , Yang W , Liu J . Nano Res., 2016, 10: 595.
[242]
Tang C , Qu F , Asiri A M , Luo Y , Sun X . Inorg. Chem. Front., 2017, 4: 659.
[243]
Zen Y F , Fu Z C , Liang F , Xu Y , Yang D D , Yang Z , Gan X , Lin Z S , Chen Y , Fu W F . Asian J . Org. Chem., 2017, 6: 1589.
[244]
Yang C , Men Y , Xu Y , Liang L , Cai P , Luo W . ChemPlusChem, 2019, 84: 382.
[245]
Qu X , Jiang R , Li Q , Zeng F , Zheng X , Xu Z , Chen C , Peng J . Green Chem., 2019, 21: 850.
[246]
Patel N , Fernandes R , Edla R , Lihitkar P B , Kothari D C , Miotello A . Catal. Commun., 2012, 23: 39.
[247]
Luo Y C , Liu Y H , Hung Y , Liu X Y , Mou C Y . Int. J. Hydrogen Energy, 2013, 38: 7280.
[248]
Figen A K. Int. J. Hydrogen Energy, 2013, 38: 9186.
[249]
Dai H B , Gao L L , Liang Y , Kang X D , Wang P . J. Power Sources, 2010, 195: 307.
[250]
Eom K S , Kim M J , Kim R H , Nam D H , Kwon H S . J. Power Sources, 2010, 195: 2830.
[251]
Rakap M , Kalu E E , Özkar S . Int. J. Hydrogen Energy, 2011, 36: 254.
[252]
Hou C C , Li Q , Wang C J , Peng C Y , Chen Q Q , Ye H F , Fu W F , Che C M , LÓpez N , Chen Y . Energy Environ. Sci., 2017, 10: 1770.
[253]
Chandra M , Xu Q . J. Power Sources, 2006, 159: 855.
[254]
Yan J , Liao J , Li H , Wang H , Wang R . Catal. Commun., 2016, 84: 12.
[255]
Fu Z C , Xu Y , Chan S L , Wang W W , Li F , Liang F , Chen Y , Lin Z S , Fu W F , Che C M . Chem. Commun., 2017, 53: 705.
[256]
Stephens F H , Pons V , Baker R T . Dalton Trans., 2007, 25: 2613.
[257]
Liu C H , Chen B H , Lee D J , Ku J R . Tsau F . Ind. Eng. Chem. Res., 2010, 49: 9864.
[258]
Liu C H , Wu Y C , Chou C C , Chen B H , Hsueh C L , Ku J R , Tsau F . Int. J. Hydrogen Energy, 2012, 37: 2950.
[259]
Tan Y , Yu X . RSC Adv., 2013, 3: 23879.
[260]
Ramachandran P V , Raju B C , Gagare P D . Org. Lett., 2012, 14: 6119.
[261]
Yadav M , Xu Q . Energy Environ. Sci., 2012, 5: 9698.
[262]
Summerscales O T , Gordon J C . Dalton Trans., 2013, 42: 10075.
[263]
Sanyal U , Demirci U B , Jagirdar B R , Miele P . ChemSusChem, 2011, 4: 1731.
[264]
Yao Q L , Ding Y Y , Lu Z H . Inorg. Chem. Front., 2020, 7: 3837.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[8] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[9] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[13] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[14] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[15] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
阅读次数
全文


摘要

氨硼烷催化水解制氢