English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 1895-1907 DOI: 10.7536/PC200320 前一篇   后一篇

• 综述 •

抗污染薄层复合聚酰胺膜的结构设计及改性策略

邓璐遥1, 李少路1, 秦一文1, 胡云霞1,**()   

  1. 1 天津工业大学材料科学与工程学院 分离膜与膜过程国家重点实验室 天津 300387
  • 收稿日期:2020-03-23 修回日期:2020-04-12 出版日期:2021-10-20 发布日期:2020-10-20
  • 通讯作者: 胡云霞
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(No. 21476249); 天津市科技发展计划重点平台项目(No. 17PTSYJC00060)

Structure Tailoring and Surface Modification of Antifouling Thin-Film Composite Polyamide Membrane

Luyao Deng1, Shaolu Li1, Yiwen Qin1, Yunxia Hu1,**()   

  1. 1 State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2020-03-23 Revised:2020-04-12 Online:2021-10-20 Published:2020-10-20
  • Contact: Yunxia Hu
  • Supported by:
    the National Natural Science Foundation of China(No. 21476249); the Tianjin Science and Technology Planning Project(No. 17PTSYJC00060)

由活性层和支撑层组成的薄层复合(TFC)聚酰胺(PA)膜,是目前广泛应用于纳滤、反渗透、正渗透和压力延迟渗透过程中的高性能脱盐膜,具有水通量大和截盐率高等优异性能。然而,由于TFC-PA膜存在活性层疏水性强、支撑层孔径大等特点,致使TFC-PA膜在实际使用过程中极易受到膜污染,制约了TFC-PA膜的进一步推广和使用。本文讨论分析了TFC-PA膜的结构特点和表面性质,总结归纳了在不同膜过程中TFC-PA膜污染形成的原因及特点,详细论述了国内外抗污染TFC-PA膜的研究进展。本文重点介绍了活性层抗污染改性和支撑层抗污染改性方法,并对其抗污染机理以及存在的问题进行了阐述与分析,最后对抗污染TFC-PA膜的结构设计与表面改性策略进行了总结及展望。

Membrane separation technologies have been widely used for water treatment and precise separation owing to their low operation cost and high separation efficiency. Thin-film composite(TFC) polyamide(PA) membrane is the state-of-art choice for separation membrane and has been widely used in nanofiltration(NF), reverse osmosis(RO), forward osmosis(FO) and pressure retarded osmosis(PRO) process. TFC-PA membrane is comprised of a dense active polyamide layer and a microporous support layer, and has excellent perm-selectivity with high water flux and high salt rejection. However, due to the hydrophobicity of the PA layer and the microporous structure of the support layer, TFC-PA membrane is highly susceptible to membrane fouling, which limits its further application. Intensive works have been done to modify the TFC-PA membrane for the improved surface hydrophilicity and the enhanced antifouling performance. In this review, the fouling characteristics of TFC-PA membrane in different membrane processes are discussed, and the research progress of the antifouling TFC-PA membrane is summarized. Furthermore, the antifouling modification methods of the PA layer and the support layer are comprehensively reviewed as well as their antifouling mechanisms and the problems to be solved. This review provides some insights into the structure tailoring and surface modification of TFC-PA membrane having excellent antifouling properties.

Contents

1 Introduction

2 Membrane fouling

2.1 Formation process of the membrane fouling

2.2 Parameters affecting the membrane fouling

2.3 Fouling location of TFC-PA membrane

3 Structure tailoring and surface modification of the antifouling TFC-PA membrane

3.1 Construction strategy of the active layer with antifouling properties

3.2 Construction strategy of the support layer with antifouling properties

4 Conclusion and outlook

()
图1 TFC膜在FO过程中的AL-DS模式 (a)和AL-FS模式(b)以及相应操作模式下膜污染的发生位置
Fig.1 Schematic of AL-DS mode (a) and AL-FS mode(b), and the corresponding membrane fouling of the TFC FO membrane
图2 BIBB参与界面聚合反应并引发ATRP反应接枝两性离子机理示意图 [58]
Fig.2 Schematic of the reaction mechanism for BIBB participating in the interfacial polymerization followed by initiating the ATRP reaction for the grafting of zwitterions [58]
图3 PA表面层层界面聚合接枝hPG示意图 (a);接枝前后膜水通量与反向盐通量变化(进料液:去离子水;汲取液:1 mol/L 氯化钠溶液)(b);以BSA为模型污染物,AL-FS模式下FO动态污染测试时改性膜与原始膜的归一化通量变化情况(c) [68]
Fig.3 Schematic of the grafting of hPG on the PA layer via layer-by-layer interfacial polymerization (a); the water fluxes and reverse salt fluxes of the membranes before and after grafting hPG(feed solution: deionized water; draw solution: 1 mol/L NaCl solution)(b); the normalized water flux of the pristine and the hPG-grafted membrane during the long-term FO(AL-FS) dynamic fouling experiment(BSA was used as the model foulant.)(c) [68] . Copyright 2017, The Royal Society of Chemistry
图4 利用EDC/NHS羧基活化剂 [76] (a)与利用CMPI羧基活化剂 [79] (b)进行PA层表面接枝反应机理示意图
Fig.4 Schematic of the grafting mechanism for the PA layer in the presence of carboxyl activator of EDC/NHS [76] (a) or CMPI [79] (b)
图5 利用酰胺键进行PA层表面接枝反应示意图 [82]
Fig.5 Schematic of activation of amide groups and grafting reaction of MPDSAH on the PA layer [82] . Copyright 2014, Wiley Online Library
图6 利用ATRP反应在PA层表面接枝两性离子 [88]
Fig.6 Schematic of the zwitterion grafting modification on the PA layer via ATRP [88] . Copyright 2017, American Chemical Society
图7 利用GA在PA层表面接枝PVA示意图 [101]
Fig.7 Schematic of the grafting of PVA on the PA layer in the presence of GA [101]
图8 BSA吸附实验后TFC-PA膜支撑层表面BSA的荧光显微图像 (a,对照膜,以PSF为支撑层;b,改性膜,以PEG- b-PSF- b-PEG为支撑层)以及长期动态FO(AL-DS)污染测试下清洗前后改性膜与对照膜的归一化通量变化(以BSA为模型污染物;TFC(PSF):对照膜;Annealed TFC(PEG- b-PSF- b-PEG):改性膜) [118]
Fig.8 Fluorescence microscopy images of the support surfaces of the TFC-PA membrane with PSF support (a) and the TFC-PA membrane with PEG- b-PSF- b-PEG support(b); the normalized water flux of the fabricated TFC-PA membranes during the long-term FO(AL-DS) dynamic fouling experiment(BSA was used as the model foulant. TFC(PFS) and Annealed TFC(PEG- b-PSF- b-PEG) refer to the membrane with PSF support and PEG- b-PSF- b-PEG support, respectively.) [118] . Copyright 2019, Springer Nature
图9 TFC-PA膜支撑层背面构建超薄碳纳米管截留层前后的电镜照片 (a和b),以及构建前后TFC-PA膜的传质参数( A、 B、 S值)(c)和长期动态FO(AL-DS)污染下膜归一化通量变化(d)(BSA为模型污染物;TFC-control:支撑层未构建碳纳米管截留层;TFC-modified:支撑层背面构建碳纳米管截留层) [133]
Fig.9 SEM images of the backside of TFC-PA membrane before (a) and after(b) constructing an ultrathin carbon nanotube layer; the intrinsic transport parameters including A, B, and S of the fabricated TFC-PA membranes(c); the normalized water flux of the fabricated TFC-PA membranes during the long-term FO(AL-DS) dynamic fouling experiment(BSA was used as the model foulant)(d). TFC-modified and TFC-control refer to the support coated with and without a carbon nanotube back layer, respectively.) [133] . Copyright 2020, Elsevier
[1]
Awad A M , Jalab R , Minier-Matar J , Adham S , Nasser M S . Judd S J . Desalination, 2019, 461: 10.
[2]
Qi Y , Zhu L , Shen X , Sotto A , Gao C , Shen J . Separation and Purification Technology, 2019, 222: 117.
[3]
Dong X , Ge Q . ACS Appl Mater Interfaces, 2019, 11( 40): 37163.
[4]
Roy D , Rahni M , Pierre P , Yargeau V . Chemical Engineering Journal, 2016, 287: 277.
[5]
Yip N Y , Tiraferri A , Phillip W A , Schiffman J D , Elimelech M . Environmental Science & Technology, 2010, 44( 10): 3812.
[6]
高勇强( Gao Y Q ). 天津大学硕士论文(Master Dissertation of Tianjin University), 2018.
[7]
Tong T , Wallace A F , Zhao S , Wang Z . Journal of Membrane Science, 2019, 579: 52.
[8]
Choudhury R R , Gohil J M , Mohanty S , Nayak S K . Journal of Materials Chemistry A, 2018, 6( 2): 313.
[9]
Kucera J. Membranes(Basel), 2019, 9: 111.
[10]
Pan S , Wang C , Zeng X , Wen Y , Wu H , Feng M . International Journal of Pharmaceutics, 2011, 420( 2): 206.
[11]
Van der Bruggen B, Braeken L , Vandecasteele C. Desalination, 2002, 147( 1): 281.
[12]
Motsa M M , Mamba B B , Verliefde A R D . Journal of Membrane Science, 2015, 493: 539.
[13]
刘彩锋( Liu C F ), 刘中云( Liu Z Y ), 胡云霞( Hu Y X ). 化学进展( Progress in Chemistry), 2017, 29( 11): 1395.
[14]
李银( Li Y ), 张林( Zhang L ). 膜科学与技术( Membrane Science and Technology), 2018, 38( 2): 111.
[15]
杨立宝( Yang L B ). 科技经济导刊( Technology and Economic Guide), 2017, 27: 115.
[16]
李雪凝( Li X N ), 王毅霖( Wang Y L ), 仉潮( Ji C ), 张文雯( Zhang W W ). 绿色科技( Journal of Green Science and Technology), 2017, 2: 87.
[17]
Goh P S , Zulhairun A K , Ismail A F , Hilal N . Desalination, 2019, 468: 114072.
[18]
Sánchez O. Journal of Membrane Science, 2018, 545: 240.
[19]
Nagaraj V , Skillman L , Li D , Ho G . J Environ Manage, 2018, 223: 586.
[20]
Li Y , Xu Y , Fleischer C C , Huang J , Lin R , Yang L , Mao H . J. Mater. Chem. B, 2018, 6( 1): 9.
[21]
Bucs S S , Farhat N , Kruithof J C , Picioreanu C , van Loosdrecht M C M, Vrouwenvelder J S . Desalination, 2018, 434: 189.
[22]
Rana D , Matsuura T . Chem. Rev., 2010, 110( 4): 2448.
[23]
Kochkodan V , Johnson D J , Hilal N . Adv. Colloid Interface Sci., 2014, 206: 116.
[24]
Miller D J , Dreyer D R , Bielawski C W , Paul D R , Freeman B D . Angewandte Chemie International Edition, 2017, 56( 17): 4662.
[25]
张立卿( Zhang L Q ), 王磊( Wang L ), 王旭东( Wang X D ). 水处理科技( Technology of Water Treatment), 2009, 35( 1): 24.
[26]
Kumar R , Ismail A F . Journal of Applied Polymer Science, 2015, 132( 21): 22.
[27]
Kang G D , Cao Y M . Water Res, 2012, 46( 3): 584.
[28]
Yang J , Lee S , Yu Y , Kuk J , Hong S , Lee S , Min K . Separation Science and Technology, 2010, 45( 7): 948.
[29]
Callow M E , Fletcher R L . International Biodeterioration & Biodegradation, 1994, 34( 3): 333.
[30]
Shahkaramipour N , Tran T N , Ramanan S , Lin H . Membranes(Basel), 2017, 7: 13.
[31]
赵频( Zhao P ). 山东大学博士论文(Doctoral Dissertation of Shandong University), 2018.
[32]
Wang Y N , Li X , Wang R . Journal of Membrane Science, 2017, 541: 73.
[33]
Bogler A , Lin S , Bar-Zeev E . Journal of Membrane Science, 2017, 542: 378.
[34]
She Q , Zhang L , Wang R , Krantz W B , Fane A G . Journal of Membrane Science, 2017, 542: 233.
[35]
Yip N Y , Elimelech M . Environmental Science & Technology, 2013, 47( 21): 12607.
[36]
Yip N Y , Elimelech M . Environmental Science & Technology, 2011, 45( 23): 10273.
[37]
Jin J , Liu D , Zhang D , Yin Y , Zhao X , Zhang Y . Desalination, 2015, 355: 141.
[38]
Ang M B M Y, Ji Y Huang S, Tsai H , Hung W , Hu C , Lee K , Lai J . Journal of Membrane Science, 2017, 539: 52.
[39]
Xiong S , Zuo J , Ma Y , Liu L , Wu H , Wang Y . Journal of Membrane Science, 2016, 520: 400.
[40]
Mi Y , Zhao F , Guo Y , Weng X , Ye C , An Q . Journal of Membrane Science, 2017, 541: 29.
[41]
Xiong S , Xu S , Zhang S , Phommachanh A , Wang Y . Journal of Membrane Science, 2019, 572: 281.
[42]
Xiong S , Zhang D , Mei S , Liu J , Shi Y , Wang Y . Journal of Membrane Science, 2018, 551: 294.
[43]
Chiao Y Sengupta A, Chen S , Hung W , Lai J , Upadhyaya L , Qian X , Wickramasinghe S R. Separation Science and Technology, 2020, 55( 3): 590.
[44]
Zhang H , Xu Z , Sun J . RSC Advances, 2018, 8( 51): 29455.
[45]
Ma T , Su Y , Li Y , Zhang R , Liu Y , He M , Li Y , Dong N , Wu H , Jiang Z . Journal of Membrane Science, 2016, 503: 101.
[46]
Sum J Y , Ahmad A L , Ooi B S . Journal of Membrane Science, 2014, 466: 183.
[47]
Lianchao L , Baoguo W , Huimin T , Tianlu C , Jiping X . Journal of Membrane Science, 2006, 269( 1): 84.
[48]
Chiao Y , Sengupta A , Chen S , Huang S , Hu C , Hung W , Chang Y , Qian X , Wickramasinghe S R , Lee K , Lai J . Separation and Purification Technology, 2019, 212: 316.
[49]
Ma R , Ji Y , Weng X , An Q , Gao C . Desalination, 2016, 381: 100.
[50]
Weng X , Ji Y , Zhao F , An Q , Gao C . RSC Advances, 2015, 5( 120): 98730.
[51]
An Q , Sun W , Zhao Q , Ji Y , Gao C . Journal of Membrane Science, 2013, 431: 171.
[52]
Xu P , Wang W , Qian X , Wang H , Guo C , Li N , Xu Z , Teng K , Wang Z . Desalination, 2019, 449: 57.
[53]
Fan L , Zhang Q , Yang Z , Zhang R , Liu Y , He M , Jiang Z , Su Y . ACS Appl . Mater. Interfaces, 2017, 9( 15): 13577.
[54]
Pan Y , Xu R , Lü Z , Yu S , Liu M , Gao C . Journal of Membrane Science, 2017, 523: 282.
[55]
Zirehpour A , Rahimpour A , Arabi Shamsabadi A, Sharifian Gh M , Soroush M . Environmental Science & Technology, 2017, 51( 10): 5511.
[56]
Lai G , Lau W , Gray S , Matsuura T , Gohari R J , Subramanian M N , Lai S , Ong C , Ismail A F , Emazadah D , Ghanbari M . Journal of Materials Chemistry A, 2016, 4( 11): 4134.
[57]
Zhao Y , Zhang Z , Dai L , Zhang S . Journal of Membrane Science, 2017, 536: 98.
[58]
Guo Y , Weng X , Wu B , Mi Y , Zhu B , Ji Y , An Q , Gao C . Journal of Membrane Science, 2019, 583: 152.
[59]
Kang G , Liu M , Lin B , Cao Y , Yuan Q . Polymer, 2007, 48( 5): 1165.
[60]
Wang J , Zhang S , Wu P , Shi W , Wang Z , Hu Y . ACS Appl . Mater. Interfaces, 2019, 11( 12): 12043.
[61]
Shen L , Yi M , Tian L , Wang F , Ding C , Sun S , Lu A , Su L , Wang Y . Journal of Membrane Science, 2019, 586: 84.
[62]
Zhang H , Gao Y , Gai J . Journal of Materials Chemistry A, 2018, 6( 15): 6442.
[63]
Xu W , Ge Q . Journal of Membrane Science, 2018, 555: 507.
[64]
Zhang X , Tian J , Gao S , Zhang Z , Cui F , Tang C Y . Journal of Membrane Science, 2017, 527: 26.
[65]
Bao X , Wu Q , Shi W , Wang W , Zhu Z , Zhang Z , Zhang R , Zhang X , Zhang B , Guo Y , Cui F . Journal of Membrane Science, 2019, 573: 135.
[66]
Bao X , Wu Q , Shi W , Wang W , Yu H , Zhu Z , Zhang X , Zhang Z , Zhang R , Cui F . Water Res., 2019, 153: 1.
[67]
Shen L , Zhang X , Zuo J , Wang Y . Journal of Membrane Science, 2017, 534: 46.
[68]
Liu Z , An X , Dong C , Zheng S , Mi B , Hu Y . Journal of Materials Chemistry A, 2017, 5( 44): 23190.
[69]
Zhu W , Gao J , Sun S , Zhang S , Chung T . Journal of Membrane Science, 2015, 487: 117.
[70]
Shen L , Wang F , Tian L , Zhang X , Ding C , Wang Y . Journal of Membrane Science, 2018, 563: 284.
[71]
Mi Y , Zhao Q , Ji Y , An Q , Gao C . Journal of Membrane Science, 2015, 490: 311.
[72]
Bera A , Jewrajka S K . RSC Advances, 2016, 6( 6): 4521.
[73]
马超( Ma C ), 刘旸( Liu Y ), 顾继友( Gu J Y ). 高分子通报( Polymer Bulletin), 2015, 8: 34.
[74]
Lin S , Li Y , Zhang L , Chen S , Hou L . Environmental Science & Technology, 2018, 52( 7): 4457.
[75]
Xu J , Wang Z , Wang J , Wang S . Desalination, 2015, 365: 398.
[76]
Shaffer D L , Jaramillo H , Romero-Vargas CastrillÓn S, Lu X , Elimelech M . Journal of Membrane Science, 2015, 490: 209.
[77]
Perreault F , Tousley M E , Elimelech M . Environmental Science & Technology Letters, 2014, 1( 1): 71.
[78]
Tiraferri A , Kang Y , Giannelis E P , Elimelech M . ACS Appl . Mater. Interfaces, 2012, 4( 9): 5044.
[79]
Li M , Lv Z , Zheng J , Hu J , Jiang C , Ueda M , Zhang X , Wang L . ACS Sustainable Chemistry & Engineering, 2016, 5( 1): 784.
[80]
Edward B , Kazuhiko S , Teruaki M . Chemistry Letters, 1975, 4( 11): 1163.
[81]
Wang J , Wang Z , Liu Y , Wang J , Wang S . Journal of Membrane Science, 2016, 514: 407.
[82]
Li X , Cao Y , Kang G , Yu H , Jie X , Yuan Q . Journal of Applied Polymer Science, 2014, 131( 23): 41144.
[83]
Liu M , Yu C , Dong Z , Jiang P , Lü Z , Yu S , Gao C . Separation and Purification Technology, 2019, 209: 443.
[84]
马平( Ma P ), 刘荣杰( Liu R J ), 王婷( Wang T ). 化工科技( Science & Technology in Chemical Industry), 2014, 22( 5): 64.
[85]
Laurent B A , Grayson S M . J. Am. Chem. Soc., 2011, 133( 34): 13421.
[86]
Zhang X , Tian J , Gao S , Shi W , Zhang Z , Cui F , Zhang S , Guo S , Yang X , Xie H , Liu D . Journal of Membrane Science, 2017, 544: 368.
[87]
Liu C , Lee J , Small C , Ma J , Elimelech M . Journal of Membrane Science, 2017, 544: 135.
[88]
Liu C , Lee J , Ma J , Elimelech M . Environmental Science & Technology, 2017, 51( 4): 2161.
[89]
Chinh N. T, Garden G, Adrian C. M, Chula V, Ratnasamy S, San D. US005234598A, 1993.
[90]
Tang C , Kwon Y , Leckie J O . Desalination, 2009, 242( 1): 149.
[91]
Ba C , Ladner D A , Economy J . Journal of Membrane Science, 2010, 347( 1): 250.
[92]
Wilf M , Alt S . Desalination, 2000, 132( 1): 11.
[93]
Hachisuka H , Ikeda K . US6177011B1, 2001.
[94]
Nikkola J , Liu X , Li Y , Raulio M , Alakomi H , Wei J , Tang C . Journal of Membrane Science, 2013, 444: 192.
[95]
Kim I , Ka Y , Park J , Lee K . Journal of Industrial and Engineering Chemistry, 2004, 10( 1): 115.
[96]
Kim I , Lee K . Desalination, 2006, 192( 1): 246.
[97]
Zhang Q , Zhang C , Xu J , Nie Y , Li S , Zhang S . Desalination, 2016, 379: 42.
[98]
Tang C , Kwon Y , Leckie J O . Desalination, 2009, 242( 1): 168.
[99]
Tang C , Kwon Y , Leckie J . Journal of Membrane Science, 2007, 287( 1): 146.
[100]
Liu M , Chen Q , Wang L , Yu S , Gao C . Desalination, 2015, 367: 11.
[101]
Hu Y , Lu K , Yan F , Shi Y , Yu P , Yu S , Li S , Gao C . Journal of Membrane Science, 2016, 501: 209.
[102]
李晶晶( Li J J ), 唐玉兰( Tang Y L ). 科技风( Technology Wind), 2016, 16: 4.
[103]
Yang H , Waldman R Z , Wu M , Hou J , Chen L , Darling S B , Xu Z . Advanced Functional Materials, 2018, 28( 8): 1705327.
[104]
Karkhanechi H , Takagi R , Matsuyama H . Desalination, 2014, 336: 87.
[105]
Guo H , Yao Z , Wang J , Yang Z , Ma X , Tang C . Journal of Membrane Science, 2018, 551: 234.
[106]
McCloskey B , Park H , Ju H , Rowe B W , Miller D , Freeman B . Journal of Membrane Science, 2012, 413/414: 82.
[107]
Li H , Peng L , Luo Y , Yu P . RSC Advances, 2015, 5( 119): 98566.
[108]
Yang Z , Wu Y , Wang J , Cao B , Tang C . Environ. Sci. Technol., 2016, 50( 17): 9543.
[109]
Lu P , Li W , Yang S , Liu Y , Wang Q , Li Y . Separation and Purification Technology, 2019, 220: 231.
[110]
Liu Z , Hu Y . ACS Appl . Mater. Interfaces, 2016, 8( 33): 21666.
[111]
Qi L , Hu Y , Liu Z , An X , Bar-Zeev E . Environmental Science & Technology, 2018, 52( 17): 9684.
[112]
Choi W , Choi J , Bang J , Lee J . ACS Appl . Mater. Interfaces, 2013, 5( 23): 12510.
[113]
Rahaman M S , ThÉrien-Aubin H , Ben-Sasson M , Ober C K , Nielsen M , Elimelech M . Journal of Materials Chemistry B, 2014, 2( 12): 1724.
[114]
Ma W , Soroush A , Van Anh Luong T, Brennan G , Rahaman M S , Asadishad B , Tufenkji N . Water Res., 2016, 99: 188.
[115]
Ishigami T , Amano K , Fujii A , Ohmukai Y , Kamio E , Maruyama T , Matsuyama H . Separation and Purification Technology, 2012, 99: 1.
[116]
Li H , Zhang W , Xu W , Zhang X . Macromolecules, 2000, 33( 2): 465.
[117]
Duong P H , Chisca S , Hong P , Cheng H , Nunes S , Chung T . ACS Appl . Mater. Interfaces, 2015, 7( 7): 3960.
[118]
An X , Hu Y , Wang N , Wang T , Liu Z . NPG Asia Materials, 2019, 11( 1): 13.
[119]
Emadzadeh D , Lau W J , Matsuura T , Hilal N , Ismail A F . Desalination, 2014, 348: 82.
[120]
Arena J T , McCloskey B , Freeman B D , McCutcheon J R . Journal of Membrane Science, 2011, 375( 1/2): 55.
[121]
Han G , de Wit J S , Chung T . Water Res., 2015, 81: 54.
[122]
Wang S , Cai J , Ding W , Xu Z , Wang Z . Membranes(Basel), 2015, 5( 3): 369.
[123]
Lieu Le N , Quilitzsch M , Cheng H , Hong P , Ulbricht M , Nunes S P , Chung T . Journal of Membrane Science, 2017, 522: 1.
[124]
Zhao D , Qiu G , Li X , Wan C , Lu K , Chung T . Water Res., 2016, 104: 389.
[125]
Li X , Cai T , Chung T . Environmental Science & Technology, 2014, 48( 16): 9898.
[126]
Han G , Cheng Z L , Chung T . Journal of Membrane Science, 2017, 523: 497.
[127]
Song X , Wang L , Tang C , Wang Z , Gao C . Desalination, 2015, 369: 1.
[128]
Fang W , Wang R , Chou S , Setiawan L , Fane A G . Journal of Membrane Science, 2012, 394/395: 140.
[129]
Fang W , Liu C , Shi L , Wang R . Journal of Membrane Science, 2015, 492: 147.
[130]
Luo L , Zhou Z , Chung T , Weber M , Staudt C , Maletzko C . Environmental Science & Technology, 2016, 50( 14): 7696.
[131]
Fang L , Cheng L , Jeon S , Wang S , Takahashi T , Matsuyama H . Journal of Membrane Science, 2018, 552: 265.
[132]
Zhang X , Xie M , Yang Z , Wu H , Fang C , Bai L , Fang L , Yoshioka T , Matsuyama H . ACS Appl. Mater. Interfaces, 2019, 11( 21): 19462.
[133]
Deng L , Wang Q , An X , Li Z , Hu Y . Desalination, 2020, 479: 114311.
[1] 赵凤阳, 姜永健, 刘涛, 叶纯纯. 纳滤膜新型材料研究[J]. 化学进展, 2018, 30(7): 1013-1027.
[2] 徐佳, 唐媛媛, 高从堦. 正渗透膜支撑层结构优化的研究进展[J]. 化学进展, 2015, 27(8): 1025-1032.
[3] 王维, 周铭露, 梁露英, 王文*, 凌启淡*. 多功能可交联材料在聚合物太阳能电池中的应用[J]. 化学进展, 2013, 25(0203): 350-362.
阅读次数
全文


摘要