English
新闻公告
More
化学进展 2020, Vol. 32 Issue (12): 1908-1916 DOI: 10.7536/PC200303 前一篇   后一篇

• 综述 •

基于水凝胶的细菌传感检测

苏喜1,2,4, 葛闯5, 陈李1,3,4, 徐溢1,2,3,4,**()   

  1. 1 重庆大学新型微纳器件与系统技术国防重点学科实验室&教育部光电技术及系统开放实验室 重庆 400044
    2 重庆大学化学化工学院 重庆 400044
    3 重庆大学光电工程学院 重庆 400044
    4 重庆大学微纳系统及新材料技术国际研发中心 重庆 400044
    5 重庆大学重庆大学附属肿瘤医院 重庆 400044
  • 收稿日期:2020-03-04 修回日期:2020-05-22 出版日期:2021-10-20 发布日期:2020-10-20
  • 通讯作者: 徐溢
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(No. 62071072); 科技部重点研发计划重点专项项目(No. 2020YFB2009001/2019YFC0214402); 重庆市研究生科研创新项目(No. CYB19035); 中央高校基础科学研究专项资金(No. 2019CDYGYB003)

Hydrogel-Based Sensing Detection of Bacteria

Xi Su1,2,4, Chuang Ge5, Li Chen1,3,4, Yi Xu1,2,3,4,**()   

  1. 1 Key Disciplines Lab of Novel Micro-Nano Devices and System Technology & Key Laboratory of Optoelectronic Technology and Systems & Ministry of Education, Chongqing University, Chongqing 400044, China
    2 School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
    3 School of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
    4 International R & D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing 400044, China
    5 Chongqing University Cancer Hospital; Chongqing University, Chongqing 400044, China
  • Received:2020-03-04 Revised:2020-05-22 Online:2021-10-20 Published:2020-10-20
  • Contact: Yi Xu
  • Supported by:
    the National Natural Science Foundation of China(No. 62071072); the Key Project of National Key Research and Development Plan of Ministry of Science and Technology(No. 2020YFB2009001/2019YFC0214402); the Graduate Scientific Research and Innovation Foundation of Chongqing, China(No. CYB19035); and the Special Funds for Basic Scientific Research in Central Universities(No. 2019CDYGYB003)

水凝胶具有含水量高、柔韧性好、黏弹性高、生物相容性高以及独特的刺激响应特性,这使得水凝胶材料在细菌传感检测方面备受关注。基于水凝胶的细菌传感器及传感芯片的研究,对细菌的基础科学研究具有重要意义,更对细菌的快速高效检测、特定环境中的细菌污染防控和疾病传播控制等具有重要应用价值。本文针对近年来水凝胶在细菌传感检测方面的研究工作进行综述。简要介绍了水凝胶的种类,水凝胶与细菌之间相互作用的影响因素。重点综述了基于温敏型水凝胶、pH敏感型水凝胶、酶敏感型水凝胶以及特异性标识物功能化修饰的水凝胶构建的传感器和传感检测方法,并综述了基于水凝胶的新型柔性传感器和微流控传感芯片的研究进展。基于水凝胶的细菌传感器在检测效率、信号采集和稳定性等方面仍需进一步提升和拓展。随着新型水凝胶材料的出现,智能细菌传感器、柔性细菌传感器和集成微流控细菌传感芯片是目前发展的方向,在细菌检测方面显示出良好的发掘潜力和应用前景。

Hydrogels have the features of high water content, good flexibility, high viscoelasticity, high biocompatibility, and unique stimulus response characteristic, which makes hydrogel materials attract much attention in the detection of bacteria. The research of hydrogel-based bacterial sensors and sensor chips is of great significance to the basic scientific research of bacteria, and it also has important application value for rapid and efficient detection of bacteria, prevention and control of bacterial pollution in specific environments, and control of disease transmission. The latest research works of hydrogel-based bacterial sensing detection are reviewed in this article. The types of hydrogel and the influence factors of the interaction between hydrogel and bacteria are briefly introduced. The sensors and sensing detection methods based on temperature-sensitive hydrogel, pH-sensitive hydrogel, enzyme-sensitive hydrogel and functionalized hydrogels with specific markers are reviewed and discussed in detail. The research progress of new type hydrogel-based flexible sensors and hydrogel-based microfluidic sensor chips are highlighted. The detection efficiency, signal acquisition, and stability of the hydrogel-based bacterial sensors still need to be further improved and expanded. With the emergence of new hydrogel materials, much more attention have been paid to developments of smart bacterial sensors, flexible sensors, and integrated microfluidic sensor chips which are shown good exploration potential and application prospects in terms of bacterial detection.

Contents

1 Introduction

2 Research on hydrogel and its interaction with bacteria

2.1 Functional polymer hydrogel material

2.2 The interaction between hydrogels and bacteria

3 Hydrogel-based bacterial sensing detection

3.1 Bacterial sensing detection based on temperature-sensitive hydrogel

3.2 Bacterial sensing detection based on pH-sensitive hydrogel

3.3 Bacterial sensing detection based on enzyme-sensitive hydrogel

3.4 Bacterial sensor detection based on specific marker functional hydrogel

4 Hydrogel-based flexible bacteria sensor

5 Microfluidic bacterial sensor chip integrated with hydrogel

6 Conclusion and outlook

()
图1 PEG水凝胶厚度对细菌黏附的影响[29]
Fig.1 Effect of PEG hydrogel thickness on bacterial adhesion[29]
图2 PNIPAm-GR复合水凝胶与大肠杆菌相互作用的示意图[32]
Fig.2 Schematic diagram of the interaction between PNIPAm-GR gel layer and bacteria[32]
图3 (A)光寻址传感器示意图[24];(B)荧光传感器监测细菌代谢过程[37]
Fig.3 (A) Schematic representation of the NF-LAPS sensor[24]; (B) Monitoring bacterial metabolism with fluorescence sensor[37]
图4 (A)基于壳聚糖水凝胶的荧光传感器检测特异性酶的示意图[40]; (B)基于葡萄糖水凝胶的荧光传感器检测细菌的示意图[41]
Fig.4 (A) Schematic diagram of detection of specific enzymes by a chitosan hydrogel-based fluorescence sensor[40]; (B) Schematic diagram of detection of bacteria by a glucose hydrogel-based fluorescence sensor[41]
图5 (A) 免疫电流传感器检测沙门氏菌的示意图[44];(B)基于刀豆凝集素A水凝胶的薄膜光衍射法检测白色念珠菌的示意图[46]
Fig.5 (A) Schematic diagram of detection of E. coli by Immune current sensor[44]; (B) Schematic diagram of detection of Candida albicans by optical sensor based on Con A hydrogel[46]
图6 (A) 水凝胶弹性拭子的制备过程及细菌的采集检测[49];(B) FNFM传感器检测细菌的示意图[50]
Fig.6 (A) Preparation of hydrogel elastic swab and the results of bacterial collection and detection[49]; (B) Schematic diagram of bacteria detection by FNFM sensor[50]
图7 (A)芯片上海藻酸钙凝胶捕获释放酵母菌的示意图[52];(B)集成硅水凝胶的微流控芯片示意图及金葡菌检测流程图[53];(C)琼脂糖水凝胶芯片的制备及其浓缩细菌的过程示意图[54]
Fig.7 (A) Schematic diagram of the capture and release of yeast by calcium alginate gel in the chip[52]; (B) Schematic of microfluidic device integrated with silicon hydrogel and flow chart of S. aureus detection[53]; (C) Schematic illustration of the preparation of agarose hydrogel chip and the concentration process of bacteria in the chip[54]
[1]
Sauer S , Kliem M . Nature Reviews Microbiology, 2010, 8( 1): 74.
[2]
Lazcka O , Campo F J D , Muñoz F X . Biosensors and Bioelectronics, 2007, 22( 7): 1205.
[3]
Chen Y , Wang Z , Liu Y , Wang X , Li Y , Ma P , Gu B , Li H . European Journal of Clinical Microbiology & Infectious Diseases, 2018, 37( 6): 1021.
[4]
蒋艳( Jiang Y ), 徐溢( Xu Y ), 王人杰( Wang R J ), 苏喜( Su X ), 董春燕( Dong C Y ). 化学进展( Prog. Chem.), 2015, 27( 9): 1240.
[5]
赵华宙( Zhao H Z ), 王春艳( Wang C Y ), 徐溢( Xu Y ), 王蓉( Wang R ), 蒋艳( Jiang Y ), 廖鑫( Liao X ), 郑祥权( Zheng X Q ). 分析测试学报( J. Instr. Anal.), 2015, 34( 3): 268.
[6]
崔飞云( Cui F Y ), 徐溢( Xu Y ), 赵斌( Zhao B ), 车玉兰( Che Y L ), 刘露露( Liu L L ). 分析测试学报( J. Instr. Anal.), 2017, 36( 6): 817.
[7]
Wang R , Ni Y , Xu Y , Jiang Y , Dong C , Chuan N . Analytica Chimica Acta, 2015, 853: 710.
[8]
Che Y , Xu Y , Wang R , Chen L . Analytical and Bioanalytical Chemistry, 2017, 409( 20): 4709.
[9]
Cui F , Xu Y , Wang R , Liu H , Chen L , Zhang Q , Mu X . Biosensors and Bioelectronics, 2018, 103: 94.
[10]
Wang R , Xu Y , Sors T , Irudayaraj J , Ren W , Wang R . Microchimica Acta, 2018, 185( 3): 184.
[11]
Zhang Z J , Su X , Xu Y , Chen L . Chinese Journal of Analytical Chemistry, 2017, 45( 11): 1589.
[12]
Dmitri I , Ihab A H , Plamen A , Ebtisam W . Biosensors & Bioelectronics, 1999, 14: 26.
[13]
温路新( Wen L X ), 徐溢( Xu Y ), 项松涛( Xiang S T ), 陈李( Chen L ). 化学通报( Chemistry), 2018, 81( 1): 29.
[14]
Dickert F L , Lieberzeit P , Hayden O . Anal. Bioanal. Chem., 2003, 377( 3): 540.
[15]
Chen S H , Wu V C H , Chuang Y C , Lin C S . Journal of Microbiological Methods, 2008, 73( 1): 7.
[16]
Jung J H , Cheon D S , Liu F , Lee K B , Seo T S . Angewandte Chemie International Edition, 2010, 49( 33): 5708.
[17]
Arshak K , Velusamy V , Korostynska O , Oliwa S K , Adley C . IEEE Sensors Journal, 2009, 9( 12): 1942.
[18]
Ebrahimi M M S , Laabei M , Jenkins A T A , Schönherr H . Macromolecular Rapid Communications, 2015, 36( 24): 2123.
[19]
徐溢( Xu Y ), 车玉兰( Che Y L ), 王人杰( Wang R J ), 崔飞云( Cui Y F ), 赵斌( Zhao B ), 李泽全( Li Z Q ). CN106191199B.
[20]
Ulijn R V , Bibi N , Jayawarna V , Thornton P D , Todd S J , Mart R J , Smith A M , Gough J E . Materials Today, 2007, 10( 4): 40.
[21]
Ullah F , Othman M B H , Javed F , Ahmad Z , Akil H M . Materials Science & Engineering C, 2015, 57: 414.
[22]
Ahmed E M. Journal of Advanced Research, 2015, 6( 2): 105.
[23]
Rasmussen K , Østgaard K . Water Research, 2003, 37( 3): 519.
[24]
Shaibani P M , Jiang K , Haghighat G , Hassanpourfard M , Etayash H , Naicker S , Thundat T . Sensors & Actuators: B Chemical, 2016, 226: 176.
[25]
Fletcher M , Loeb G I . Applied and Environmental Microbiology, 1979, 37( 1): 67.
[26]
Cook A D , Sagers R D , Pitt W G . Journal of Biomedical Materials Research, 1993, 27( 1): 119.
[27]
Kalaji M , Neal A L . Biopolymers, 2000, 57( 1): 43.
[28]
Kolewe K W , Peyton S R , Schiffman J D . ACS Applied Materials & Interfaces, 2015, 7( 35): 19562.
[29]
Kolewe K W , Zhu J , Mako N R , Nonnenmann S S , Schiffman J D . ACS Applied Materials & Interfaces, 2018, 10( 3): 2275.
[30]
Yu Q , Cho J , Shivapooja P , Ista L K , López G P . ACS Applied Materials & Interfaces, 2013, 5( 19): 9295.
[31]
Wang Q , Feng Y , He M , Huang Y , Zhao W , Zhao C . Macromolecular Materials and Engineering, 2018, 303( 5): 1700590.
[32]
Khan M S , Misra S K , Dighe K , Wang Z , Schwartz-Duval A S , Sar D , Pan D . Biosensors and Bioelectronics, 2018, 110: 132.
[33]
He M , Wang Q , Zhang J , Zhao W , Zhao C . ACS Applied Materials & Interfaces, 2017, 9( 51): 44782.
[34]
Wei T , Yu Q , Zhan W , Chen H . Advanced Healthcare Materials, 2016, 5( 4): 449.
[35]
Wu J , Zhao S , Xu S , Pang X , Cai G , Wang J . Journal of Materials Chemistry B, 2018, 6( 45): 7462.
[36]
Shaibani P M , Etayash H , Jiang K , Sohrabi A , Hassanpourfard M , Naicker S , Sadrzadeh M , Thundat T . ACS Sensors, 2018, 3( 4): 815.
[37]
Xiong H , Zheng H , Wang W , Wang S , Liang J , Wen W , Zhang X . Biosensors and Bioelectronics, 2016, 86: 164.
[38]
Sadat E M M , Steinhoff B , Schönherr H . European Polymer Journal, 2015, 72: 180.
[39]
Sadat E M M , Dohm N , Müller M , Jansen B , Schönherr H . European Polymer Journal, 2016, 81: 257.
[40]
Jia Z , Müller M , Schönherr H . Macromolecular Symposia, 2018, 379( 1): 1600178.
[41]
Bhattacharya S , Nandi S , Jelinek R . RSC Advances, 2017, 7( 2): 588.
[42]
Gunda N S K , Chavali R , Mitra S K . The Analyst, 2016, 141( 10): 2920.
[43]
Wan Y , Lin Z , Zhang D , Wang Y , Hou B . Biosensors and Bioelectronics, 2011, 26( 5): 1959.
[44]
Xiang C , Li R , Li Y , Adhikari B , She Z , Kraatz H B . Talanta, 2015, 140: 122.
[45]
Massad-Ivanir N , Shtenberg G , Zeidman T , Segal E . Advanced Functional Materials, 2010, 20( 14): 2269.
[46]
Cai Z , Kwak D H , Punihaole D , Hong Z , Velankar S S , Liu X , Asher S A . Angewandte Chemie International Edition, 2015, 54( 44): 13036.
[47]
Hao N , Zhang Y , Zhang X , Zhou Z , Hua R , Liu Q , Qian J , Li H , Wang K . Biosensors and Bioelectronics, 2017, 97: 377.
[48]
Hua R , Hao N , Lu J , Qian J , Liu Q , Li H , Wang K . Biosensors and Bioelectronics, 2018, 106: 57.
[49]
Tian L , Jiang Q , Liu K K , Luan J , Naik R R , Singamaneni S . Advanced Materials Interfaces, 2016, 3( 15): 1.
[50]
Yu Z , Lu Z , Huang Y , Li M , Wang W , Liu K , Wang D . Chemical Communications, 2018, 54( 57): 7920.
[51]
Zhou W , Le J , Chen Y , Cai Y , Hong Z , Chai Y . Trends in Analytical Chemistry, 2019, 112: 175.
[52]
Braschler T , Johann R , Heule M , Metref L , Renaud P . Lab on a Chip, 2005, 5( 5): 553.
[53]
Lee C J , Jung J H , Seo T S . Analytical Chemistry, 2012, 84( 11): 4928.
[54]
Li Y , Yan X , Feng X , Wang J , Du W , Wang Y , Chen P , Xiong L , Liu B F . Analytical Chemistry, 2014, 86( 21): 10653.
[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[4] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[5] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[6] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[7] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[8] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[9] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[10] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[11] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[12] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[13] 蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺, 马晶军. 智能响应型水凝胶药物控释体系及其应用[J]. 化学进展, 2019, 31(12): 1653-1668.
[14] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[15] 窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. γ-聚谷氨酸水凝胶的制备及其应用[J]. 化学进展, 2018, 30(8): 1161-1171.
阅读次数
全文


摘要

基于水凝胶的细菌传感检测