English
新闻公告
More
化学进展 2019, Vol. 31 Issue (11): 1460-1471 DOI: 10.7536/PC190809 前一篇   后一篇

• •

对映-贝壳杉烷型二萜的合成

李武, 汪俊洁, 马大为*()   

  1. 中国科学院上海有机化学研究所 上海 200032
  • 收稿日期:2019-08-08 出版日期:2019-11-15 发布日期:2019-10-23
  • 通讯作者: 马大为

The Total Synthesis of ent-Kaurane Diterpenoids

Wu Li, Junjie Wang, Dawei Ma*()   

  1. Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2019-08-08 Online:2019-11-15 Published:2019-10-23
  • Contact: Dawei Ma
  • About author:

对映-贝壳衫烷类二萜是陆生植物二萜中种类最为繁多、分子结构和生物活性最为多样的一类天然产物。近年来研究表明,该家族的一些成员具有抗菌和抗肿瘤等活性。这类四环二萜分子可通过分子内环化、氧化断裂和降解重排等方式,转化为复杂的分子骨架。这些天然产物重要的生理活性与多变的骨架结构引起了国内外合成化学家的浓厚兴趣,已经成为全合成研究的又一类热门分子。本文总结了2014年以来国内外学者关于对映-贝壳杉烷型二萜的合成报道,根据这类分子的不同结构类型分别进行阐述。

The ent-kaurane diterpenoids, widely distributed in terrestrial plants, represent an important group of tetracyclic diterpenes with diverse scaffolds and varied bioactivities. More and more studies have revealed that these compounds possess potent antitumor, antibacterial and anti-inflammatory activities. The tetracyclic ent-kaurane diterpenoids have attractive structural diversity owing to intramolecular cyclization, oxidative cleavage and rearrangements of their parent compounds. As a result, the total synthesis of ent-kaurane diterpenoids has received great attention from synthetic community during the past decades. This review describes the recent progress in this field, which includes total synthesis of C-20 non-oxygenated ent-kauranes such as(+)-lungshengenin D and pharicins A-C; total synthesis of C-20 oxygenated ent-kauranes such as maoecrystal P, eriocalyxin B, neolaxiflorin L and xerophilusin I; total synthesis of seco-ent-kauranes such as sculpomeatin N, trichorabdal A, maoecrystal Z, enmein, isodocarpin, sculponin R, londirabdiol, longirabdolactone and effusin; and total synthesis of nor or rearranged-ent-kauranes such as jungermannenones B and C, maoecrystal V, jungermatrobrunin A and kauradienone.

()
图式1 对映-贝壳杉烯的四环骨架结构
Scheme. 1 Skelton of ent-Kaurene
图式2 对映-贝壳杉烯的生源合成
Scheme. 2 Biosynthesis of ent-kaurene
图式3 一些对映-贝壳杉烯的结构
Scheme. 3 Structures of some ent-kaurenes
图式4 马大为小组报道的对映-贝壳杉烷二烯酮的不对称合成
Scheme. 4 The first asymmetric total synthesis of 1α,6α-diacetoxy-ent-kaura-9(11),16-dien-12,15-dione by Ma group
图式5 马大为小组报道的首次lungshengenin D的不对称合成
Scheme. 5 The first asymmetric total synthesis of lungshengenin D by Ma group
图式6 丁寒锋小组对pharicins A~C 和7-O-acetyl- pharicin C的首次不对称全合成
Scheme. 6 The first asymmetric total synthesis of pharicins A~C and(+)-7-O-acetylpharicin C by Ding group
图式7 罗佗平小组对maoecrystal P的首次全合成
Scheme. 7 Luo’s first total synthesis of maoecrystal P
图式8 李志成小组对(±)-eriocalyxin B,(±)-neolaxiflorin L和(±)-xerophilusin I的首次全合成
Scheme. 8 The first total synthesis of(±)-eriocalyxin B,(±)-neolaxiflorin L and(±)-xerophilusin I by the Lee group
图式9 延命素型和螺环内酯型的生源
Scheme. 9 Biosynthesis of enmein type and spiro-lactone type diterpenoids
图式10 翟宏斌小组对(±)-sculpomeatin N的首次全合成
Scheme. 10 The first total synthesis of(±)-sculpomeatin N by the Zhai group
图式11 Thomson小组对(±)-sculpomeatin N的全合成
Scheme. 11 The total synthesis of(±)-sculpomeatin N by Thomson group
图式12 梁广鑫小组对(±)-trichorabdal A和(±)-maoecrystal Z的全合成
Scheme. 12 The total synthesis of(±)-trichorabdal A and(±)- maoecrystal Z by Liang group
图式13 董广斌小组对(-)-enmein,(-)-isodocarpin和(-)-sculponin R的全合成
Scheme. 13 The asymmetric total synthesis of(-)-enmein,(-)-isodocarpin and(-)-sculponin R by Dong group
图式14 李超小组对(+)-londirabdiol,(-)-longirabdolactone和(-)-effusin的全合成
Scheme. 14 The asymmetric total synthesis of(+)-londirabdiol,(-)-longirabdolactone and(-)-effusin by Li group
图式15 雷晓光小组对(±)-jungermannenones B 和(±)-jungermannenones C的合成
Scheme. 15 The total synthesis of(±)-jungermannenones B and(±)-jungermannenones C by Lei group
图式16 Baran小组对(-)-maoecrystal V的合成
Scheme. 16 The asymmetric total synthesis of(-)-maoecrystal V by Baran group
图式17 雷晓光小组对(+)-jungermatrobrunin A的合成
Scheme. 17 Lei’s asymmetric total synthesis of(+)-jungermatrobrunin A
图式18 雷晓光小组对(+)-ent-kauradienone和(+)-Jungermannenones C的合成
Scheme. 18 The asymmetric total synthesis of(+)-ent-kauradienone and(+)-jungermannenones C by the Lei group
[1]
Quitt P, Mosettig E, Cambie R C, Rutledge P S, Briggs L H . J. Am. Chem. Soc., 1961,83:3720. https://pubs.acs.org/doi/abs/10.1021/ja01478a040

doi: 10.1021/ja01478a040     URL    
[2]
(a) Sun H D, Huang S X, Han Q B . Nat. Prod. Rep., 2006,23:673.
(b) Sun H D, Xu Y L, Jiang B . Diterpenoids from Isodon Species; Science Press: Beijing, 2001.
[3]
García P A, De Oliveira A B, Batista R . Molecules, 2007,12:455. https://www.ncbi.nlm.nih.gov/pubmed/17851404

doi: 10.3390/12030455     URL     pmid: 17851404
[4]
Bohlmann J, Meyer-Gauen G, Croteau R . Proc. Natl. Acad. Sci. U. S. A., 1998,95:4126. https://www.ncbi.nlm.nih.gov/pubmed/9539701

doi: 10.1073/pnas.95.8.4126     URL     pmid: 9539701
[5]
杜明军(Du M J), 雷晓光(Lei X G) . 有机化学(Youji Huaxue), 2015,35:2447.
[6]
Zhao X B, Li W, Wang J J, Ma D W . J. Am. Chem. Soc., 2017,139:2932. https://www.ncbi.nlm.nih.gov/pubmed/28186744

doi: 10.1021/jacs.7b00140     URL     pmid: 28186744
[7]
(a) Levine S R, Krout M R, Stoltz B M . Org. Lett., 2009,11:289. https://www.ncbi.nlm.nih.gov/pubmed/19093809

doi: 10.1021/ol802409h     URL     pmid: 19093809
(b) Mohr J T D, Behenna C, Harned A M, Stoltz B M . Angew. Chem., Int. Ed., 2005,44:6924.;

pmid: 19093809
(c) Behenna D C, Stoltz B M . J. Am. Chem. Soc., 2004,126:15044.;

pmid: 19093809
(d) Hong A Y, Stoltz B M . Eur. J. Org. Chem, 2013,2013:2745.

pmid: 19093809
[8]
Trost B M, Bream R N, Xu J . Angew. Chem., Int. Ed., 2006,45:3109. https://www.ncbi.nlm.nih.gov/pubmed/16596689

doi: 10.1002/anie.200504421     URL     pmid: 16596689
[9]
(a) Hoppe D, Hense T . Angew. Chem., Int. Ed., 1997,36:2282. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773     URL    
(b) Hoppe D . Synthesis, 2009,2009:43.
[10]
He C, Hu J L, Wu Y B, Ding H F . J. Am. Chem. Soc., 2017,139:6098. https://www.ncbi.nlm.nih.gov/pubmed/28426216

doi: 10.1021/jacs.7b02746     URL     pmid: 28426216
[11]
(a) Ylijoki K E O, Stryker J M . Chem. Rev., 2013,113:2244. https://www.ncbi.nlm.nih.gov/pubmed/23153111

doi: 10.1021/cr300087g     URL     pmid: 23153111
(b) Green J C, Pettus T R R . J. Am. Chem. Soc., 2011,133:1603.

pmid: 23153111
[12]
(a) Bach R D, Domagala J M . J. Org. Chem., 1984,49:4181. https://pubs.acs.org/doi/abs/10.1021/jo00196a016

doi: 10.1021/jo00196a016     URL    
(b) Bach R D, Klix R C . J. Org. Chem., 1985,50:5438.
(c) Crane S N, Burnell D J . J. Org. Chem., 1998,63:5708.
[13]
Su F, Lu Y D, Kong L R, Liu J J, Luo T P . Angew. Chem., Int. Ed., 2018,57, 760. https://www.ncbi.nlm.nih.gov/pubmed/29205726

doi: 10.1002/anie.201711084     URL     pmid: 29205726
[14]
Szostak M, Fazakerley N J, Parmar D, Procter D J . Chem. Rev., 2014,114:5959. https://www.ncbi.nlm.nih.gov/pubmed/24758360

doi: 10.1021/cr400685r     URL     pmid: 24758360
[15]
Zhu L Z, Ma W J, Zhang M X, Lee M M, Wong W Y, Chan B D, Yang Q Q, Wong W T, Tai W C, Lee C S . Nature Communications, 2018,9, 1283. https://www.ncbi.nlm.nih.gov/pubmed/29599469

doi: 10.1038/s41467-018-03546-9     URL     pmid: 29599469
[16]
(a) Zhu L Z, Zhou C S, Yang W, He S Z, Cheng G J, Zhang X H, Lee C S . J. Org. Chem., 2013,78:7912. https://www.ncbi.nlm.nih.gov/pubmed/23859063

doi: 10.1021/jo401105q     URL     pmid: 23859063
(b) Du G Y, Wang G P, Ma W J, Yang Q Q, Bao W L, Liang X F, Zhu L Z, Lee C S . Synlett, 2017,28:1394.

pmid: 23859063
[17]
Pan Z Q, Zheng C Y, Wang H Y, Chen Y H, Li Y, Cheng B, Zhai H B . Org. Lett., 2014,16:216. https://www.ncbi.nlm.nih.gov/pubmed/24295285

doi: 10.1021/ol403208g     URL     pmid: 24295285
[18]
(a) Brieger G, Bennett J N . Chem. Rev. 1980,80:63. https://pubs.acs.org/doi/abs/10.1021/cr60323a004

doi: 10.1021/cr60323a004     URL    
(b) Craig D . Chem. Soc. Rev., 1987,16:187.;
(c) Thomas E J . Acc. Chem. Res., 1991,24:229.
(d) Nicolaou K C, Snyder S A, Montagnon T, Vassilikogiannakis G, Angew . Chem., Int. Ed., 2002,41:1668.
(e) Takao K I, Munakata R, Tadano K I . Chem. Rev., 2005,105:4779.;
(f) Juhl M, Tanner D . Chem. Soc. Rev., 2009,38:2983.;
(13)(a) Horner L, Hoffmann H, Wippel H G . Chem. Ber., 1958,91:61.;
(b) Horner L, Hoffmann H, Wippel H G, Klahre G . Chem. Ber., 1959,92:2499.;
(c) Wadsworth W S, Emmons W D . J. Am. Chem. Soc., 1961,83:1733.;
(d) Wadsworth D H, Schupp O E, Seus E J, Ford J A . J. Org. Chem., 1965,30:680.;
(e) Arndt M, Hilt G, Khlebnikov A F, Kozhushkov S I, de Meijere A . Eur. J. Org. Chem., 2012,3112.
[19]
Moritz B J, Mack D J, Tong L, Thomson R J . Angew. Chem., Int. Ed, 2014,53:2988. https://www.ncbi.nlm.nih.gov/pubmed/24519748

doi: 10.1002/anie.201310060     URL     pmid: 24519748
[20]
Lazarski K E, Hu D X, Stern C L, Thomson R J . Org. Lett., 2010,12:3010. https://www.ncbi.nlm.nih.gov/pubmed/20521835

doi: 10.1021/ol101025r     URL     pmid: 20521835
[21]
Scholl M, Ding S, Lee C W, Grubbs R H . Org. Lett., 1999,1:953. https://www.ncbi.nlm.nih.gov/pubmed/10823227

doi: 10.1021/ol990909q     URL     pmid: 10823227
[22]
Lv Z, Chen B L, Zhang C, Liang G X . Chem. Eur. J., 2018,24:9773. https://www.ncbi.nlm.nih.gov/pubmed/29702738

doi: 10.1002/chem.201802083     URL     pmid: 29702738
[23]
(a) Renaud P, Salom-Roig X, Dénès F . Synthesis, 2004,1903.
(b) Bian M, Wang Z, Xiong X C, Sun Y, Matera C, Nicolaou K C, Li A . J. Am. Chem. Soc., 2012,134:8078.
(c) Li H L, Chen Q F, Lu Z H, Li A . J. Am. Chem. Soc. 2016,138:15555.
[24]
Pan S Y, Chen S C, Dong G B . Angew. Chem. Int. Ed. 2018,57:6333. https://www.ncbi.nlm.nih.gov/pubmed/29644802

doi: 10.1002/anie.201803709     URL     pmid: 29644802
[25]
Zhang J P, Li Z J, Zhuo J M, Cui Y, Han T, Li C . J. Am. Chem. Soc. 2019,141:8372. https://www.ncbi.nlm.nih.gov/pubmed/31060356

doi: 10.1021/jacs.9b03978     URL     pmid: 31060356
[26]
Huihui K M M, Caputo J A, Melchor Z, Oliveres A M, Spiewak A M, Johnson K A, DiBenedetto T A, Kim S, Ackerman L K G, Weix D J . J. Am. Chem. Soc. 2016,138:5016. https://www.ncbi.nlm.nih.gov/pubmed/27029833

doi: 10.1021/jacs.6b01533     URL     pmid: 27017436
(b) Johnson K A, Biswas S, Weix D J . Chem. Eur. J., 2016,22:7399. https://www.ncbi.nlm.nih.gov/pubmed/27017436

doi: 10.1002/chem.201601320     URL     pmid: 27017436
[27]
(a) Okada K, Okamato K, Morita N, Okubo K, Oda Masaji . J. Am. Chem. Soc. 1991,113:9401. https://pubs.acs.org/doi/abs/10.1021/ja00024a074

doi: 10.1021/ja00024a074     URL    
(b) Chu L L, Ohta C, Zuo Z W, Macmillan D W C . J. Am. Chem. Soc., 2014,136:10886.;
(c) Pratsch G, Lackner G L, Overman L E . J. Org. Chem., 2015,80:6025.;
(d) Overman L E, Jamison C R . Acc. Chem. Res., 2016,49:1578.;
(e) Qin T, Malins L R, Edwards J T, Merchant R R, Novak A J, Zhong J Z, Mills L R, Yan M, Yuan C, Eastgate M D, Baran P S . Angew. Chem. Int. Ed., 2017,56:260.;
[28]
Liu W L, Li H H, Cai P J, Wang Z, Yu Z X, Lei X G . Angew. Chem. Int. Ed., 2016,55:3112. https://www.ncbi.nlm.nih.gov/pubmed/26823176

doi: 10.1002/anie.201511659     URL     pmid: 26823176
[29]
Youn S W, Pastine S J, Sames D . Org. Lett, 2004,6:581. https://www.ncbi.nlm.nih.gov/pubmed/14961628

doi: 10.1021/ol036385i     URL     pmid: 14961628
[30]
Cernijenko A, Risgaard R, Baran P S . J. Am. Chem. Soc., 2016,138:9425. https://www.ncbi.nlm.nih.gov/pubmed/27457680

doi: 10.1021/jacs.6b06623     URL     pmid: 27457680
[31]
Han Q B, Cheung S, Tai J, Qiao C F, Song J Z, Tso T F, Sun H D, Xu H X . Org. Lett., 2006,8:4727. https://www.ncbi.nlm.nih.gov/pubmed/17020288

doi: 10.1021/ol061757j     URL     pmid: 17020288
[32]
Wu J B, Kadonaga Y, Hong B K, Wang J, Lei X G . Angew. Chem. Int. Ed., 2019,131:10995. https://onlinelibrary.wiley.com/toc/15213757/131/32

doi: 10.1002/ange.v131.32     URL    
[33]
(a) Ponce M A, Ramirez J A, Galagovsky L R, Gros E G, Erra-Balsells R . J. Chem. Soc., Perkin Trans. 2., 2000: 2351.
(b) Yadav J S, Thirupathaiah B, Srihari P A . Tetrahedron., 2010,66:2005.;
(c) Han J G, Li X, Guan Y, Zhao W J, Wulff W D, Lei X G . Angew. Chem. Int. Ed. 2014,53:9257.
[34]
Hong B K, Liu W L, Wang J, Wu J B, Kadonaga Y, Cai P J, Lou H X, Yu Z X, Li H H, Lei X G . Chem., 5:1671. https://linkinghub.elsevier.com/retrieve/pii/S2451929419301810

doi: 10.1016/j.chempr.2019.04.023     URL    
[1] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[2] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[3] 刘小宇, 肖涛, 秦勇. 灯台生物碱Strictamine的全合成[J]. 化学进展, 2018, 30(5): 578-585.
[4] 郝小江. 粉花绣线菊复合群的化学与生物学[J]. 化学进展, 2009, 21(01): 84-99.
[5] 史海明,闵知大,屠鹏飞,李晓波. 中国大戟属植物中二萜成分的化学及生物活性[J]. 化学进展, 2008, 20(0203): 375-385.
[6]

伍贻康,吴毓林

.

有机合成的新世纪――-有机合成近年进展鉴赏

[J]. 化学进展, 2007, 19(01): 6-34.
[7] 曾繁星,蒋华良,杨玉社,陈凯先,嵇汝运. 石杉碱甲的合成及结构改造研究进展*[J]. 化学进展, 2000, 12(01): 63-.
[8] 赵宝祥. 硝酮在天然化合物全合成中的应用[J]. 化学进展, 2000, 12(01): 77-.
[9] 白东鲁,徐睿. 新型镇痛剂地棘蛙素的化学和药理[J]. 化学进展, 1999, 11(03): 313-.
阅读次数
全文


摘要

对映-贝壳杉烷型二萜的合成