English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 55-71 DOI: 10.7536/PC190505 前一篇   后一篇

所属专题: 电化学有机合成

• •

脱氢氨基酸的合成及其在药物研发中的应用

王童, 文姣, 李良春, 郑仁林, 孙德群*()   

  1. 1. 西南科技大学生命科学与工程学院 绵阳 621000
  • 收稿日期:2019-05-08 出版日期:2020-01-15 发布日期:2019-12-11
  • 通讯作者: 孙德群

Synthesis of Dehydroamino Acids and Their Applications in the Drug Research and Development

Tong Wang, Wenjiao Zhao, Liangchun Li, Renlin Zheng, Dequn Sun*()   

  1. 1. School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621000, China
  • Received:2019-05-08 Online:2020-01-15 Published:2019-12-11
  • Contact: Dequn Sun
  • About author:

传统多肽所具有的容易被酶解、细胞膜通透性差以及构象容易发生变化等缺点,限制了它作为药物在疾病治疗领域的应用。将脱氢氨基酸引入多肽,对其进行构象限制,能够有效改善它的代谢稳定性和生物利用度。本文主要综述了α,β-脱氢-α-氨基酸、β,γ-脱氢-α-氨基酸、α-脱氢-β-氨基酸、α,β-脱氢-β-氨基酸四种脱氢氨基酸的合成方法以及近几年来在药物设计中的应用,希望为相关的研究提供参考。

Traditional polypeptides usually have the disadvantages of easy hydrolyzation, poor cell membrane permeability, and unstable conformation, which limits their application as a drug in the field of disease treatment. The conformational restriction caused by incorporation of dehydroamino acids into polypeptide can effectively improve the metabolic stability and bioavailability of peptides. In this paper, the synthesis methods and the recent applications in drug design of four kinds of dehydroamino acids including α,β-dehydro-α-amino acids, β,γ-dehydro-α-amino acids, α-dehydro-β-amino acids and α,β-dehydro-β-amino acids are reviewed, which could provide reference for the related research.

()
图式1 α,β-脱氢-α-氨基酸的Z、E异构体[11]
Scheme. 1 The Z, E isomers of α,β-dehydro-α-amino acids[11]
图式2 β,γ-脱氢-α-氨基酸Z、E异构体[30]
Scheme. 2 The Z, E isomers of β,γ-dehydro-α-amino acids[30]
表1 MTT法检测的四种N保护的α,β-脱氢丙氨酸衍生物在三株肿瘤细胞和非肿瘤细胞(MRC-5)中的IC50(μM)值[32]
Table 1 IC50 (μM)values of the N-protected α,β-dehydroalanine derivatives assessed in A549, AGS, SH-SY5Y and MRC-5 cell lines by MTT assay[32]
图式3 四种α,β-脱氢丙氨酸衍生物化学结构[32]
Scheme. 3 Chemical structure of four α,β-dehydroalanine derivatives[32]
图式4 ΔFd的化学结构[33]
Scheme. 4 Chemical structure of ΔFd[33]
图式5 甲维激素和艾维激素的化学结构[41,42]
Scheme. 5 Chemical structures of methoxyvinylglycine and aminoethoxyvinylglycine[41,42]
图式6 β-羟基消除法合成α,β-脱氢-α-氨基酸[43,44]
Scheme. 6 Synthesis of α,β-dehydro-α-amino acids by β-hydroxyl elimination[43,44]
图式7 Phomopsin A和B的化学结构[45]
Scheme. 7 Chemical structure of phomopsin A and B[45]
图式8 两种脱氢苯丙氨酸类似物[46]
Scheme. 8 Two dehydrophenylalanine analogues[46]
图式9 3-邻苯二甲酰-1,5-苯并二氮杂卓-2-酮衍生物的合成路线[47]
Scheme. 9 The synthesis route of 3-phthalimido-1,5-benzodiazepine-2-one derivatives[47]
图式10 N-取代消除法合成α,β-脱氢-α-氨基酸[52]
Scheme. 10 Synthesis of α,β-dehydro-α-amino acids by N-hydroxyl/chlorinated elimination[52]
图式11 HWE反应合成α,β-脱氢-α-氨基酸[54,55]
Scheme. 11 Synthesis of α,β-dehydro-α-amino acids by HWE reaction[54,55]
图式12 NOSO-95C的化学结构[56]
Scheme. 12 The chemical structure of NOSO-95[56]
图式13 Telcagepant的化学结构[57]
Scheme. 13 The chemical structure of Telcagepant[57]
图式14 Erlenmeyer合成法及口恶唑酮开环合成α,β-脱氢-α-氨基酸[59]
Scheme. 14 Synthesis of α,β-dehydro-α-amino acids by erlenmeyer synthesis and oxazolone ring opening[59]
图式15 Topuzyan合成的具有抗胆碱酯酶活性的化合物[61]
Scheme. 15 Synthesis of compound with anticholinesterase activity by Topuzyan [61]
图式16 由硝基化合物合成α,β-脱氢-α-氨基酸[62]
Scheme. 16 Synthesis of α,β-dehydro-α-amino acids by nitro compound[62]
图式17 雅库酰胺A的化学结构[66]
Scheme. 17 The chemical structure of Yaku’amide A[66]
图式18 铜催化交叉偶联合成α,β-脱氢-α-氨基酸[66]
Scheme. 18 Synthesis of α,β-dehydro-α-amino acids by Cu-catalyzed cross-coupling method[66]
图式19 炔酯亲核加成合成α,β-脱氢-α-氨基酸[67]
Scheme. 19 Synthesis of α,β-dehydro-α-amino acids by nucleophilic addition of alkynyl ester[67]
图式20 环二肽2,5-二酮哌嗪的化学结构[69]
Scheme. 20 The chemical structure of cyclodipeptide 2,5-diketopiperazines[69]
图式21 Schöllkopf反应合成α,β-脱氢-α-氨基酸[71]
Scheme. 21 Synthesis of α,β-dehydro-α-amino acids by Schöllkopf reaction[71]
图式22 化合物56~59的化学结构[73]
Scheme. 22 The chemical structures of compounds 56~59[73]
图式23 由α-酮酸酯合成α,β-脱氢-α-氨基酸[76]
Scheme. 23 Synthesis of α,β-dehydro-α-amino acids by α-keto acids ester[76]
图式24 Antrimycins的化学结构[76]
Scheme. 24 The chemical structure of Antrimycins[76]
图式25 由MAHOs合成α,β-脱氢-α-氨基酸[79]
Scheme. 25 Synthesis of α,β-dehydro-α-amino acids by MAHOs[79]
图式26 由α,β-不饱和酯合成α,β-脱氢-α-氨基酸[81]
Scheme. 26 Synthesis of α,β-dehydro-α-amino acids by α,β-unsaturated ester[81]
图式27 炭疽致死性因子抑制剂的化学结构[83]
Scheme. 27 The chemical structure of AnthraxLethal factor inhibitor[83]
图式28 通过Mukaiyama-Michael加成反应合成α,β-脱氢-α-氨基酸[84]
Scheme. 28 Synthesis of α,β-dehydro-α-amino acids by Mukaiyama-Michael addition[84]
图式29 四种环状α,β-脱氢-α-氨基酸 [86]
Scheme. 29 Four cyclic α,β-dehydro-amino acids[86]
图式30 Li的环状脱氢氨基酸合成路线[87]
Scheme. 30 Li’s synthetic route of cyclic α,β-dehydro-amino acids[87]
图式31 Kublitskii的环状脱氢氨基酸合成路线[88]
Scheme. 31 Kublitskii’s synthetic route of cyclic α,β-dehydro-amino acids[88]
图式32 Huy的环状脱氢氨基酸合成路线[89]
Scheme. 32 Huy’s synthetic route of cyclic α,β-dehydro-amino acids[89]
图式33 Williams的环状脱氢氨基酸合成路线[90]
Scheme. 33 Williams’ synthetic route of cyclic α,β-dehydro-amino acids[90]
图式34 Palacios的环状脱氢氨基酸合成路线[91]
Scheme. 34 Palacios’ synthetic route of cyclic α,β-dehydro-amino acids[91]
图式35 由α-烯基酸加成反应合成β,γ-脱氢-α-氨基酸[21,94,95]
Scheme. 35 Synthesis of β,γ-dehydro-α-amino acids by α-alkenyl acids[21,94,95]
图式36 由α-氨基酸氧化后热解合成β,γ-脱氢-α-氨基酸[97,100,101]
Scheme. 36 Synthesis of β,γ-dehydro-α-amino acids by oxidation and pyrolysis of α-amino acids[97,100,101]
图式37 缩醛法合成β,γ-脱氢-α-氨基酸[102, 103]
Scheme. 37 Synthesis of β,γ-dehydro-α-amino acids by acetal method[102,103]
图式38 口恶唑烷开环合成β,γ-脱氢-α-氨基酸[105]
Scheme. 38 Synthesis of β,γ-dehydro-α-amino acids by oxazolane open-loop[105]
图式39 (S,Z)-APPA的合成路线[108]
Scheme. 39 Synthetic route of (S,Z)-APPA[108]
图式40 双环原甲酸酯保护法合成β,γ-脱氢-α-氨基酸[109]
Scheme. 40 Synthesis of β,γ-dehydro-α-amino acids by cyclic ortho ester protection[109]
图式41 高丝氨酸内酯开环合成β,γ-脱氢-α-氨基酸[111]
Scheme. 41 Synthesis of β,γ-dehydro-α-amino acids by ring opening of high-serine lactone[111]
图式42 环状β,γ-脱氢-α-氨基酸的合成[113,114,115]
Scheme. 42 Synthesis of cyclic β,γ-dehydro-α-amino acids[113,114,115]
图式43 三种β-脱氢氨基酸的化学结构
Scheme. 43 The chemical structure of three β-dehydroamino acids
图式44 Rajesh的α-脱氢-β-氨基酸合成路线[117]
Scheme. 44 Rajesh’s synthetic route of cyclic α-dehydro-β-amino acids[117]
图式45 Paira的α-脱氢-β-氨基酸合成路线[120]
Scheme. 45 Paira’s synthetic route of α-dehydro-β-amino acids[120]
图式46 Ghosh的α-脱氢-β-氨基酸合成路线[121]
Scheme. 46 Ghosh’s synthetic route of α-dehydro-β-amino acids[121]
图式47 Buchholz 和Hoffmann的α-脱氢-β-氨基酸合成路线[123]
Scheme. 47 The α-dehydro-β-amino acids synthetic route of Buchholz and Hoffmann[123]
图式48 Tanaka合成的糜蛋白酶抑制物[125]
Scheme. 48 The chymotrypsin inhibitor synthesized by Tanaka[125]
图式49 Bierbaum的α-脱氢-β-氨基酸合成路线[127]
Scheme. 49 The α-dehydro-β-amino acids synthetic route of Bierbaum[127]
图式50 通过aza-Morita-Baylis-Hillman反应合成α-脱氢-β-氨基酸[128]
Scheme. 50 Synthesis of α-dehydro-β-amino acids by aza-Morita-Baylis-Hillman reaction[128]
图式51 Crotanecine的化学结构[130]
Scheme. 51 The chemical structure of Crotanecine[130]
图式52 Reeve的α,β-脱氢-β-氨基酸合成路线[131]
Scheme. 52 The α,β-dehydro-β-amino acids synthetic route of Reeve[131]
图式53 Jeong的α,β-脱氢-β-氨基酸合成路线[132]
Scheme. 53 The α,β-dehydro-β-amino acids synthetic route of Jeong[132]
图式54 Liu的α,β-脱氢-β-氨基酸合成路线[134]
Scheme. 54 The α,β-dehydro-β-amino acids synthetic route of Liu[134]
[1]
Gante J . Angew. Chem. Int. Ed. Engl., 1994,33:1699. http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773     URL    
[2]
Adessi C , Soto C. Curr. Med. Chem., 2002,9:963. https://www.ncbi.nlm.nih.gov/pubmed/11966456

doi: 10.2174/0929867024606731     URL     pmid: 11966456
[3]
Vlieghe P , Lisowski V , Martinez J , Khrestchatisky M . . Drug Discov. Today, 2010,15:40. https://www.ncbi.nlm.nih.gov/pubmed/19879957

doi: 10.1016/j.drudis.2009.10.009     URL     pmid: 19879957
[4]
Powers J P S , Hancock R E . Peptides, 2003,24:1681. https://www.ncbi.nlm.nih.gov/pubmed/15019199

doi: 10.1016/j.peptides.2003.08.023     URL     pmid: 15019199
[5]
Lau J L , Dunn M K . Bioorg. Med. Chem., 2018,26:2700. https://www.ncbi.nlm.nih.gov/pubmed/28720325

doi: 10.1016/j.bmc.2017.06.052     URL     pmid: 28720325
[6]
Danho W , Swistok J , Khan W , Chu X J , Cheung A , Fry D , Sun H , Kurylko G , Rumennik L , Cefalu J , Cefalu G , Nunn P . Peptides for Youth, 2009,611:467.
[7]
Du Q S , Xie N Z , Huang R B . Med. Chem., 2015,11:235. https://www.ncbi.nlm.nih.gov/pubmed/25548931

doi: 10.2174/1573406411666141229163355     URL     pmid: 25548931
[8]
Checco J W , Lee E F , Evangelista M , Sleebs N J , Rogers K , Pettikiriarachchi A , Kershaw N J , Eddinger G A , Belair D G , Wilson J L , Eller C H , Raines R T , Murphy W L , Smith B J , Gellman S H , Fairlie W D . J. Am. Chem. Soc., 2015,137:11365. https://www.ncbi.nlm.nih.gov/pubmed/26317395

doi: 10.1021/jacs.5b05896     URL     pmid: 26317395
[9]
Di L . The AAPS Journal, 2015,17:134. https://www.ncbi.nlm.nih.gov/pubmed/25366889

doi: 10.1208/s12248-014-9687-3     URL     pmid: 25366889
[10]
Avan I , Hall C D , Katritzky A R . Chem. Soc. Rev., 2014,43:3575. https://www.ncbi.nlm.nih.gov/pubmed/24626261

doi: 10.1039/c3cs60384a     URL     pmid: 24626261
[11]
侯辉(Hou H), 孙德群(Sun D Q) . 化学进展(Progress in Chemistry), 2015,27:1260.
[12]
周家驹(Zhou J J), 雷静(Lei J), 谢桂荣(Xie G R), 李仁利(Li R L). . 化学进展(Progress in Chemistry), 2000,12:332.
[13]
Nandy J P , Prakesch M , Khadem S , Reddy P T , Sharma U , Arya P . Chem. Rev., 2009,109:1999. https://www.ncbi.nlm.nih.gov/pubmed/19249849

doi: 10.1021/cr800188v     URL     pmid: 19249849
[14]
Bowers A A , Acker M G , Koglin A , Walsh C T . J. Am. Chem. Soc., 2010,132:7519. https://www.ncbi.nlm.nih.gov/pubmed/20455532

doi: 10.1021/ja102339q     URL     pmid: 20455532
[15]
De Bruijn A D , Roelfes G . Chemistry (Easton), 2018,24:11314.
[16]
Ueoka R , Ise Y , Ohtsuka S , Okada S , Yamori T , Matsunaga S . J. Am. Chem. Soc., 2010,132:17692. https://www.ncbi.nlm.nih.gov/pubmed/21121605

doi: 10.1021/ja109275z     URL     pmid: 21121605
[17]
Jiang J , Ma Z , Castle S L . Tetrahedron, 2015,71:5431. https://linkinghub.elsevier.com/retrieve/pii/S004040201500839X

doi: 10.1016/j.tet.2015.06.001     URL    
[18]
Baldisserotto A , Ferretti V , Destro F , Franceschini C , Marastoni M , Gavioli R , Tomatis R . J. Med. Chem., 2010,53:6511. https://www.ncbi.nlm.nih.gov/pubmed/20687609

doi: 10.1021/jm100122e     URL     pmid: 20687609
[19]
Makowski M , Lenartowicz P , Oszywa B , Jewginski M , Pawelczak M , Kafarski P . Med. Chem. Res., 2015,24:3157. https://www.ncbi.nlm.nih.gov/pubmed/26190908

doi: 10.1007/s00044-015-1366-0     URL     pmid: 26190908
[20]
Siodłak D . Amino Acids, 2015,47:1. https://www.ncbi.nlm.nih.gov/pubmed/25323736

doi: 10.1007/s00726-014-1846-4     URL     pmid: 25323736
[21]
Baldwin J E , Haber S B , Hoskins C , Kruse L I . J. Org. Chem., 1977,42:1239. https://www.ncbi.nlm.nih.gov/pubmed/403264

doi: 10.1021/jo00427a031     URL     pmid: 403264
[22]
Singh T P , Kaur P . Prog. Biophys. Mol. Bio., 1996,66:141. https://www.ncbi.nlm.nih.gov/pubmed/9175427

doi: 10.1016/s0079-6107(97)85628-3     URL     pmid: 9175427
[23]
Mathur P , Ramakumar S , Chauhan V S . Biopolymers, 2004,76:150. https://www.ncbi.nlm.nih.gov/pubmed/15054895

doi: 10.1002/bip.10571     URL     pmid: 15054895
[24]
Humphrey J M , Chamberlin A R . Chem. Rev., 1997,97:2243. https://www.ncbi.nlm.nih.gov/pubmed/11848900

doi: 10.1021/cr950005s     URL     pmid: 11848900
[25]
Rudresh, Ramakumar S , Ramagopal U A , Inai Y , Goel S , Sahal D , Chauhan V S . Structure, 2004,12:389. https://www.ncbi.nlm.nih.gov/pubmed/15016355

doi: 10.1016/j.str.2004.02.014     URL     pmid: 15016355
[26]
Saavedra C J , Hernandez D , Boto A . Chemistry (Easton), 2018,24:599.
[27]
Trantzschel T , Plaumann M , Bernarding J , Lego D , Ratajczyk T , Dillenberger S , Buntkowsky G , Bargon J , Bommerich U . Appl. Magn. Reson., 2013,44:267.
[28]
Huang J , Hong M , Wang C C , Kramer S , Lin G Q , Sun X W . J. Org. Chem., 2018,83:12838. https://www.ncbi.nlm.nih.gov/pubmed/30207727

doi: 10.1021/acs.joc.8b01693     URL     pmid: 30207727
[29]
Cerutti E , Viale A , Nervi C , Gobetto R , Aime S . J. Phys. Chem. A, 2015,119:11271. https://www.ncbi.nlm.nih.gov/pubmed/26509884

doi: 10.1021/acs.jpca.5b06802     URL     pmid: 26509884
[30]
Dardenne G , Casimir J , Marlier M , Larsen P O . Phytochemistry, 1974,13:1897.
[31]
S’Wiatek-Kozłowska J , Brasuń J , Chruściński L , Chruścińska E , Makowski M , Kozłowski H . New J. Chem., 2000,24:893.
[32]
Videira R A , Andrade P B , Monteiro L S , Valentao P , Ferreira P M T , Pereira D M . Toxicol. in Vitro, 2018,47:26. https://www.ncbi.nlm.nih.gov/pubmed/29107685

doi: 10.1016/j.tiv.2017.10.027     URL     pmid: 29107685
[33]
Dewan P C , Anantharaman A , Chauhan V S , Sahal D . Biochemistry, 2009,48:5642. https://www.ncbi.nlm.nih.gov/pubmed/19432402

doi: 10.1021/bi900272r     URL     pmid: 19432402
[34]
Vilaça H , Pereira G , Castro T G , Hermenegildo B F , Shi J , Faria T Q , Micaêlo N , Brito R M M , Xu B , Castanheira E M S , Martins J A , Ferreira P M T . J. Mater. Chem. B, 2015,3:6355. https://www.ncbi.nlm.nih.gov/pubmed/32262754

doi: 10.1039/c5tb00501a     URL     pmid: 32262754
[35]
Gupta M , Bagaria A , Mishra A , Mathur P , Basu A , Ramakumar S , Chauhan V S . Adv. Mater., 2007,19:858.
[36]
Parween S , Misra A , Ramakumar S , Chauhan V S . J. Mater. Chem. B, 2014,2:3096. https://www.ncbi.nlm.nih.gov/pubmed/32261685

doi: 10.1039/c3tb21856b     URL     pmid: 32261685
[37]
Varshney A , Panda J J , Singh A K , Yadav N , Bihari C , Biswas S , Sarin S K , Chauhan V S . Hepatology, 2018,67:1392. https://www.ncbi.nlm.nih.gov/pubmed/29108133

doi: 10.1002/hep.29643     URL     pmid: 29108133
[38]
Singh P K , Chibh S , Dube T , Chauhan V S , Panda J J . Pharm. Res., 2018,35:35. https://www.ncbi.nlm.nih.gov/pubmed/29362936

doi: 10.1007/s11095-017-2299-8     URL     pmid: 29362936
[39]
Rando R . Nature, 1974,250:586. https://www.ncbi.nlm.nih.gov/pubmed/4210878

doi: 10.1038/250586a0     URL     pmid: 4210878
[40]
Cornell N , Zuurendonk P , Kerich M , Straight C . Biochem. J., 1984,220:707. https://www.ncbi.nlm.nih.gov/pubmed/6466297

doi: 10.1042/bj2200707     URL     pmid: 6466297
[41]
Miles E W . Biochem. Bioph. Res. Co., 1975,66:94.
[42]
Torrigiani P , Bregoli A M , Ziosi V , Scaramagli S , Ciriaci T , Rasori A , Biondi S , Costa G . Postharvest. Biol. Tec., 2004,33:293.
[43]
Stohlmeyer M M , Tanaka H , Wandless T J . J. Am. Chem. Soc., 1999,121:6100.
[44]
Sai H , Ogiku T , Ohmizu H . Cheminform, 2003,2003:201.
[45]
Shangguan N , Joullie M . Tetrahedron Lett., 2009,50:6748. https://www.ncbi.nlm.nih.gov/pubmed/20802791

doi: 10.1016/j.tetlet.2009.09.072     URL     pmid: 20802791
[46]
Monteiro L S , Oliveira S , Paiva-Martins F , Ferreira P M T , Pereira D M , Andrade P B , Valentão P . Tetrahedron, 2017,73:6199.
[47]
Obara N , Watanabe T , Asakawa T , Kan T , Tanaka T . Synlett, 2018,29:1639. http://www.thieme-connect.de/DOI/DOI?10.1055/s-0037-1610026

doi: 10.1055/s-0037-1610026     URL    
[48]
Hoyt S B , London C , Wyvratt M J , Fisher M H , Cashen D E , Felix J P , Garcia M L , Li X , Lyons K A , Euan Macintyre D , Martin W J , Priest B T , Smith M M , Warren V A , Williams B S , Kaczorowski G J , Parsons W H . Bioorg. Med. Chem. Lett., 2008,18:1963. c1ccd531-fa7b-4f57-b694-9f229ec6f9c1 https://www.ncbi.nlm.nih.gov/pubmed/18289851

doi: 10.1016/j.bmcl.2008.01.123     URL     pmid: 18289851
[49]
Churcher I , Williams S , Kerrad S , Harrison T , Castro J L , Shearman M S , Lewis H D , Clarke E E , Wrigley J D , Beher D . J. Mater. Chem., 2003,46:2275.
[50]
Lauffer D J , Mullican M D . Bioorg. Med. Chem. Lett., 2002,12:1225. https://www.ncbi.nlm.nih.gov/pubmed/11934593

doi: 10.1016/s0960-894x(02)00107-5     URL     pmid: 11934593
[51]
Kawasaki D , Emori Y , Eta R , Iino Y , Hamano H , Yoshinaga K , Tanaka T , Takei M , Watson S A . Cancer Chemoth Pharm, 2008,61:883.
[52]
Poisel H , Schmidt U . Angew. Chem. Int. Ed. Engl., 1976,15:294. https://www.ncbi.nlm.nih.gov/pubmed/820218

doi: 10.1002/anie.197602942     URL     pmid: 820218
[53]
Kolasa T . Synthesis, 1983,1983:539.
[54]
Schmidt U , Griesser H , Leitenberger V , Lieberknecht A , Mangold R , Meyer R , Riedl B . Synthesis, 1992,1992:487.
[55]
Saavedra C J , Alicia B , Rosendo H . Org. Lett., 2012,14:3788. https://pubs.acs.org/doi/10.1021/ol301676z

doi: 10.1021/ol301676z     URL     pmid: 22783874
[56]
Sarciaux M , Pantel L , Midrier C , Serri M , Gerber C , Marcia De Figueiredo R , Campagne J M , Villain-Guillot P , Gualtieri M , Racine E . J. Med. Chem., 2018,61:7814. https://www.ncbi.nlm.nih.gov/pubmed/30086230

doi: 10.1021/acs.jmedchem.8b00790     URL     pmid: 30086230
[57]
Xu F , Zacuto M , Yoshikawa N , Desmond R , Hoerrner S , Itoh T , Journet M , Humphrey G R , Cowden C , Strotman N , Devine P . J. Org. Chem., 2010,75:7829. https://www.ncbi.nlm.nih.gov/pubmed/20954694

doi: 10.1021/jo101704b     URL     pmid: 20954694
[58]
Azuma H , Okano K , Fukuyama T , Tokuyama H . Org. Synth., 2003,88:152.
[59]
König B , Bonauer C , Walenzyk T . Synthesis, 2006,2006:1.
[60]
Tubaro M , Fedrigo M A , Cativiela C , Jimenez A I , Traldi P . Rapid Commun. Mass. Sp., 2003,17:107.
[61]
Topuzyan V O , Tosunyan S R , Chshmarityan S G , Paronikyan R V . Pharm. Chem. J., 2018,51:877.
[62]
Nagano T , Kinoshita H . B. Chem. Soc. Jpn., 2000,73:1605.
[63]
Shiraishi Y , Yamauchi H , Takamura T , Kinoshita H . B. Chem. Soc. Jpn., 2004,77:2219.
[64]
Baranov M S , Lukyanov K A , Yampolsky I V . Russ. J. Bioorg. Chem., 2013,39:223.
[65]
Yasuno Y , Nishimura A , Yasukawa Y , Karita Y , Ohfune Y , Shinada T . . Chem. Commun. (Camb.), 2016,52:1478. https://www.ncbi.nlm.nih.gov/pubmed/26658962

doi: 10.1039/c5cc08458j     URL     pmid: 26658962
[66]
Kuranaga T , Sesoko Y , Sakata K , Maeda N , Hayata A , Inoue M . J. Am. Chem. Soc., 2013,135:5467. https://www.ncbi.nlm.nih.gov/pubmed/23496281

doi: 10.1021/ja401457h     URL     pmid: 23496281
[67]
Trost B M , Dake G R . J. Am. Chem. Soc., 1997,119:7595. https://pubs.acs.org/doi/10.1021/ja971238z

doi: 10.1021/ja971238z     URL    
[68]
Zhou Q F , Wu Q P , Xue S . Tetrahedron Lett., 2008,49:7027. 12d56504-b93b-4d1a-8f90-b2be985ef1fa http://www.sciencedirect.com/science/article/pii/S0040403908018017

doi: 10.1016/j.tetlet.2008.09.132     URL    
[69]
Xi Y K , Zhang H , Li R X , Kang S Y , Li J , Li Y . Chemistry (Easton), 2019,25:3005.
[70]
Zhang M , Wang W L , Fang Y C , Zhu T J , Gu Q Q , Zhu W M . J. Nat. Prod., 2008,71:985. https://www.ncbi.nlm.nih.gov/pubmed/18505285

doi: 10.1021/np700737g     URL     pmid: 18505285
[71]
Schöllkopf U , Gerhart F , Schröder R , Hoppe D . Justus Liebigs Ann. Chem., 1973,766:116.
[72]
Enders D , Chen Z X , Raabe G . Synthesis, 2005,2005:306. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2004-834922

doi: 10.1055/s-2004-834922     URL    
[73]
Tolmachova N A , Kondratov I S , Dolovanyuk V G , Pridma S O , Chernykh A V , Daniliuc C G , Haufe G . Chem. Commun. (Camb.), 2018,54:9683. https://www.ncbi.nlm.nih.gov/pubmed/30101963

doi: 10.1039/c8cc05912h     URL     pmid: 30101963
[74]
Fujie A , Muramatsu H , Yoshimura S , Hashimoto M , Shigematsu N , Takase S . J. Antibiot., 2001,54:588. https://www.ncbi.nlm.nih.gov/pubmed/11560378

doi: 10.7164/antibiotics.54.588     URL     pmid: 11560378
[75]
Hashizume H , Igarashi M , Hattori S , Hori M , Hamada M , Takeuchi T . J. Antibiot., 2001,54:1054. https://www.ncbi.nlm.nih.gov/pubmed/11858660

doi: 10.7164/antibiotics.54.1054     URL     pmid: 11858660
[76]
Davies D T , Goodall K , Kapur N , O’brien M , Parsons A F . Synthetic Commun., 1997,27:3815.
[77]
Nakamura Y , Ito A , Shin C G . B. Chem. Soc. Jpn., 1994,67:2151. http://www.journal.csj.jp/doi/10.1246/bcsj.67.2151

doi: 10.1246/bcsj.67.2151     URL    
[78]
Shin C G , Ikeda M , Yonezawa Y . Agric. and Biol. Chem., 2014,49:2243.
[79]
Singjunla Y , Colombano S , Baudoux J , Rouden J . Tetrahedron, 2016,72:2369.
[80]
Liu B J , Zhang Y , Huang G , Zhang X , Niu P , Wu J , Yu W , Chang J . Org. Biomol. Chem., 2014,12:3912. https://www.ncbi.nlm.nih.gov/pubmed/24789674

doi: 10.1039/c4ob00309h     URL     pmid: 24789674
[81]
Chen D J , Guo L , Liu J , Kirtane S , Cannon J F , Li G . Org. Lett., 2005,7:921. https://www.ncbi.nlm.nih.gov/pubmed/15727475

doi: 10.1021/ol050002u     URL     pmid: 15727475
[82]
Sun H , Zhang G , Zhi S , Han J , Li G , Pan Y . Org. Biomol. Chem., 2010,8:4236. https://www.ncbi.nlm.nih.gov/pubmed/20714671

doi: 10.1039/c0ob00283f     URL     pmid: 20714671
[83]
Shultz C S , Dreher S D , Ikemoto N , Williams J M , Grabowski E J , Krska S W , Sun Y , Dormer P G , Dimichele L . Org. Lett., 2005,7:3405. https://www.ncbi.nlm.nih.gov/pubmed/16048303

doi: 10.1021/ol050869s     URL     pmid: 16048303
[84]
Espinosa M , García-Ortiz A , Blay G , Cardona L , Muñoz M C , Pedro J R . RSC Advances, 2016,6:15655.
[85]
Kaur H , Heapy A M , Brimble M A . Org. Biomol. Chem., 2011,9:5897. https://www.ncbi.nlm.nih.gov/pubmed/21743891

doi: 10.1039/c1ob05777d     URL     pmid: 21743891
[86]
王英杰(Wang Y J), 张振锋(Zhang Z F), 张万斌(Zhang W B). 有机化学(Chinese J. Org. Chem.), 2015,35:528.
[87]
Li W R , Peng S Z . Tetrahedron Lett., 1998,39:7373.
[88]
Kublitskii V S , Stepanov A E , Trukhan V M . Russ. J. Org. Chem., 2008,44:933.
[89]
Huy P , NeudöRfl J R M , Schmalz H G N . Org. Lett., 2010,13:216. https://www.ncbi.nlm.nih.gov/pubmed/21158419

doi: 10.1021/ol102613z     URL     pmid: 21158419
[90]
Williams R M , Fegley G J . J. Am. Chem. Soc., 1991,113:8796. https://pubs.acs.org/doi/abs/10.1021/ja00023a030

doi: 10.1021/ja00023a030     URL    
[91]
Palacios F , Vicario J , Aparicio D . Eur. J. Org. Chem., 2006,2006:2843. http://doi.wiley.com/10.1002/%28ISSN%291099-0690

doi: 10.1002/(ISSN)1099-0690     URL    
[92]
Mandal A K , Hines J , Kuramochi K , Crews C M . Bioorg. Med. Chem. Lett., 2005,15:4043. f4099a7b-9558-45b8-b0b3-760d0d14d1de http://www.sciencedirect.com/science/article/pii/S0960894X0500764X

doi: 10.1016/j.bmcl.2005.06.020     URL     pmid: 15993592
[93]
Baldwin J E , Christie M A , Haber S B , Kruse L I . J. Am. Chem. Soc., 1976,98:3045. https://www.ncbi.nlm.nih.gov/pubmed/1262636

doi: 10.1021/ja00426a077     URL     pmid: 1262636
[94]
Petasis N A , Zavialov I A . J. Am. Chem. Soc., 1997,119:445.
[95]
Alexander P A , Marsden S P , Munoz Subtil D M , Reader J C . Org. Lett., 2005,7:5433. https://www.ncbi.nlm.nih.gov/pubmed/16288524

doi: 10.1021/ol052139q     URL     pmid: 16288524
[96]
Armstrong A , Challinor L , Moir J H . Angew. Chem. Int. Ed. Engl., 2007,46:5369. https://www.ncbi.nlm.nih.gov/pubmed/17562549

doi: 10.1002/anie.200701459     URL     pmid: 17562549
[97]
Afzali-Ardakani A , Rapoport H . J. Org. Chem., 1980,45:4817.
[98]
Patel S K , Long T E , . Tetrahedron Lett., 2009,50:5067.
[99]
Küchenthal C H , Migenda J , Polednia M , Maison W . Amino Acids, 2010,39:443. https://www.ncbi.nlm.nih.gov/pubmed/20108010

doi: 10.1007/s00726-009-0460-3     URL     pmid: 20108010
[100]
黄成美(Huang C M) . 南京理工大学硕士论文(Master Dissertation of Nanjing University of Science and Technology), 2009.
[101]
Hanessian S , Sahoo S P . Tetrahedron Lett., 1984,25:1425.
[102]
Keith D D , Tortora J A , Yang R . J. Org. Chem., 1978,43:3711.
[103]
Alks V , Sufrin J R . Tetrahedron Lett., 1990,31:5257.
[104]
Berkowitz D B , Charette B D , Karukurichi K R , McFadden J M . Tetrahedron Asymmetry, 2006,17:869. https://www.ncbi.nlm.nih.gov/pubmed/29977107

doi: 10.1016/j.tetasy.2006.02.026     URL     pmid: 29977107
[105]
Yonezawa Y , Shimizu K , Yoon K S , Shin C G . Synthesis, 2000,2000:634. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2000-6382

doi: 10.1055/s-2000-6382     URL    
[106]
Reginato G , Meffre P , Gaggini F . Amino Acids, 2005,29:81. f032a018-5938-413a-8c24-77789f6cfb36 http://www.springerlink.com/content/x7174p4957730646/

doi: 10.1007/s00726-005-0184-y     URL     pmid: 15812682
[107]
Berkowitz D B , Maiti G . Org. Lett., 2004,6:2661. https://www.ncbi.nlm.nih.gov/pubmed/15281738

doi: 10.1021/ol049159x     URL     pmid: 15281738
[108]
Gahungu M , Arguelles-Arias A , Fickers P , Zervosen A , Joris B , Damblon C , Luxen A . Bioorg. Med. Chem., 2013,21:4958. https://www.ncbi.nlm.nih.gov/pubmed/23891162

doi: 10.1016/j.bmc.2013.06.064     URL     pmid: 23891162
[109]
Rose N G , Blaskovich M A , Wong A , Lajoie G A . Tetrahedron, 2001,57:1497. https://linkinghub.elsevier.com/retrieve/pii/S0040402000011467

doi: 10.1016/S0040-4020(00)01146-7     URL    
[110]
Fishlock D , Guillemette J G , Lajoie G A . J. Org. Chem., 2002,67:2352. https://www.ncbi.nlm.nih.gov/pubmed/11925253

doi: 10.1021/jo016242e     URL     pmid: 11925253
[111]
Berkowitz D B , Smith M K . Synthesis, 1996,1996:39. https://www.ncbi.nlm.nih.gov/pubmed/29962541

doi: 10.1055/s-1996-4177     URL     pmid: 29962541
[112]
Pellegrini N , Schmitt M , Guery S , Bourguignon J J . Tetrahedron Lett., 2002,43:3243.
[113]
Tiwari S K , Schneider A , Koep S , Gais H J . Tetrahedron Lett., 2004,45:8343.
[114]
Clayden J , Knowles F E , Menet C J . Tetrahedron Lett., 2003,44:3397.
[115]
Li Y , Xu M H . Org. Lett., 2012,14:2062. https://www.ncbi.nlm.nih.gov/pubmed/22480132

doi: 10.1021/ol300581n     URL     pmid: 22480132
[116]
袁硕(Yuan S), 孙德群(Sun D Q). 化学进展(Progress in Chemistry), 2016,28:1084.
[117]
Rajesh S , Banerji B , Iqbal J . J. Org. Chem., 2002,67:7852. https://www.ncbi.nlm.nih.gov/pubmed/12398513

doi: 10.1021/jo010981d     URL     pmid: 12398513
[118]
Lorion M M , Gasperini D , Oble J , Poli G . Org. Lett., 2013,15:3050. https://www.ncbi.nlm.nih.gov/pubmed/23734985

doi: 10.1021/ol401234v     URL     pmid: 23734985
[119]
Wang X M , Guo P , Han Z , Wang X , Wang Z , Ding K . J. Am. Chem. Soc., 2013,136:405. https://www.ncbi.nlm.nih.gov/pubmed/24328176

doi: 10.1021/ja410707q     URL     pmid: 24328176
[120]
Paira M , Mandal S K , Roy S C . Tetrahedron Lett., 2008,49:2432.
[121]
Ghosh S , Dey R , Chattopadhyay K , Ranu B C . Tetrahedron Lett., 2009,50:4892.
[122]
Docekal V , Simek M , Dracinsky M , Vesely J . Chemistry (Easton), 2018,24:13441.
[123]
Buchholz R , Hoffmann H M R . Helv. Chim. Acta, 1991,74:1213.
[124]
Martelli G , Orena M , Rinaldi S . Eur. J. Org. Chem., 2011,2011:7199.
[125]
Tanaka T , Muto T , Maruoka H , Imajo S , Fukami H , Tomimori Y , Fukuda Y , Nakatsuka T . Bioorg. Med. Chem. Lett., 2007,17:3431. https://www.ncbi.nlm.nih.gov/pubmed/17419055

doi: 10.1016/j.bmcl.2007.03.038     URL     pmid: 17419055
[126]
Tanaka T , Sugawara H , Maruoka H , Imajo S , Muto T . Bioorg. Med. Chem., 2013,21:4233. https://www.ncbi.nlm.nih.gov/pubmed/23719288

doi: 10.1016/j.bmc.2013.04.079     URL     pmid: 23719288
[127]
Bierbaum D J , Seebach D . Austr. J. Chem., 2004,57:859. http://www.publish.csiro.au/?paper=CH04052

doi: 10.1071/CH04052     URL    
[128]
Gajda A , Gajda T . J. Org. Chem., 2008,73:8643. https://www.ncbi.nlm.nih.gov/pubmed/18821802

doi: 10.1021/jo801616d     URL     pmid: 18821802
[129]
Milcent T , Hao J , Kawada K , Soloshonok V A , Ongeri S , Crousse B . Eur. J. Org. Chem., 2014,2014:3072.
[130]
Kothapalli Y , Puthukanoori R K , Ranga M , Alapati S R . Tetrahedron Lett., 2017,58:3831.
[131]
Reeve C D , Crout D H , Cooper K , Fray M J . Tetrahedron Asymmetry, 1992,3:785.
[132]
Jeong J U , Chen X , Rahman A , Yamashita D S , Luengo J I . Org. Lett., 2004,6:1013. https://www.ncbi.nlm.nih.gov/pubmed/15012088

doi: 10.1021/ol049921v     URL     pmid: 15012088
[133]
Bruneau C , Renaud J L , Jerphagnon T . Coordin. Chem. Rev., 2008,252:532.
[134]
Liu X , Cheng R , Zhao F , Zhang-Negrerie D , Du Y , Zhao K . Org. Lett., 2012,14:5480. https://www.ncbi.nlm.nih.gov/pubmed/23098266

doi: 10.1021/ol3025583     URL     pmid: 23098266
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[13] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.