English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1623-1636 DOI: 10.7536/PC190446 前一篇   后一篇

• •

多肽超分子手性自组装与应用

林代武1, 邢起国1, 王跃飞1,**(), 齐崴1,2, 苏荣欣1,2, 何志敏1   

  1. 1. 化学工程联合国家重点实验室 天津大学化工学院 天津 300072
    2. 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2019-04-30 出版日期:2019-12-15 发布日期:2019-10-15
  • 通讯作者: 王跃飞
  • 作者简介:
    † These authors contributed equally.
  • 基金资助:
    国家自然科学基金项目资助(21621004); 国家自然科学基金项目资助(21606166); 国家自然科学基金项目资助(51773149)

Supramolecular Chiral Self-Assembly of Peptides and Its Applications

Daiwu Lin1, Qiguo Xing1, Yuefei Wang1,**(), Wei Qi1,2, Rongxin Su1,2, Zhimin He1   

  1. 1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2. The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
  • Received:2019-04-30 Online:2019-12-15 Published:2019-10-15
  • Contact: Yuefei Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21621004); National Natural Science Foundation of China(21606166); National Natural Science Foundation of China(51773149)

多肽分子作为一类重要的生物手性小分子,能够通过分子自组装形成包括纳米螺旋、纳米管、手性凝胶等在内的有着独特生物效应和光学活性的手性纳米材料。这类材料具有易于功能化修饰的优点,在化学、生物、医药、材料科学等领域有着广泛应用,成功对多肽手性自组装结构进行精准多级调控,是进一步实现其功能化应用的基础。本文重点介绍了多肽分子氨基酸序列组成与构型等内部因素,以及溶液pH、溶剂、添加剂等外界因素对多肽分子手性自组装行为的影响,并归纳得出其关键作用机制;同时,还介绍了多肽手性自组装材料在手性催化、手性检测、模板合成、手性光学等领域的应用。

Chiral self-assembly of peptides is an important way to prepare chiral nanomaterials, including nanohelices, nanotubes and chiral hydrogels. The self-assembled chiral nanomaterials with unique biological and optical activities have important applications in the fields of biology, chemistry, medicine and materials science. Although many chiral nanomaterials have been designed and synthesized based on the self-assembly of peptides, the precise control of their chiral assembly process and their chirality is still a challenge. This paper focuses on the design of peptide molecules and the regulation strategies for peptide chiral self-assembly, including the regulation of internal factors such as the amino acid sequences and configuration of polypeptide molecules, and the regulation of external factors such as pH, solvents and additives. Moreover, the applications of peptide-based chiral nanomaterials in the fields of chiral catalysis, chiral sensing, template synthesis and chiroptics are also reviewed.

()
图1 (a)两亲肽类分子和对应组装体结构示意图[38];(b)Fmoc-三肽自组装形成不同手性的纳米螺旋结构示意图[42]
Fig. 1 (a) Molecular structures and self-assembly structures of tetrapeptide amphiphiles[38]; (b) Schematic illustration showing the chiral self-assembly of Fmoc-tripeptide into chiral nanostructures with different chirality[42]
图2 静电相互作用影响六肽分子组装体结构示意图[43]
Fig. 2 Schematic illustration showing the effect of electrostatic interaction on hexapeptide self-assembly process[43]
图3 两亲性短肽对映体手性组装示意图[46]
Fig. 3 The schematic illustration of chiral self-assembly of enantiomeric short amphiphilic peptides[46]
图4 多肽对映异构体单独组装及共组装示意图[51,52].(a)含有L-或D-氨基酸的三段型肽形成不同结构的自组装体;(b)对映体Ac-(FKFE)2-NH2肽共组装形成具有β-折叠结构的纳米带(1)或自组装形成对映手性的纳米螺旋(2)
Fig. 4 Schematic illustration showing the self-assembly process of enantiomer polypeptides[51,52].(a) Atomic force microscopic images showing the triblock-type peptides composed of L- or D-amino acid self-assemble into different nanostructures;(b) Schematic and TEM images showing the enantiomeric Ac-(FKFE)2-NH2 peptides assemble into β-sheet nanoribbons(1) or self-sorted enantiomeric nanohelices(2)
图5 淀粉样多肽在pH变化下形成手性组装体示意图[53]
Fig. 5 Schematic illustration of the chiral self-assembly of amyloid fibrils at different pH[53]
图6 不同pH下S233HisL12和S263His2L12手性组装体的透射电镜图(a~h)和组装示意图(i)[54]。由S263His2L12在10 mM TBS(pH=7.4,a和b)和10 mM CBS(pH=5.0,c和d;pH=3.0,e和f)中组装形成的纳米结构;由S233HisL12在10 mM CBS(pH=3.0,g和h)中组装形成的纳米结构
Fig. 6 TEM images(a~h) and schematic illustration(i) of the chiral nanostructures self-assembled by S233HisL12 and S263His2L12 at different pH[54]. The molecular assemblies were prepared from S263His2L12 in 10 mM TBS(pH=7.4, a and b) and 10 mM CBS(pH=5.0, c and d; pH=3.0, e and f); The molecular assemblies were prepared from S233HisL12 in 10 mM CBS(pH=3.0, g and h)
图7 pH 诱导Fmoc-FWK组装体手性动态反转示意图[56]
Fig. 7 Schematic illustration of dynamic chirality inversion of self-assembled Fmoc-FWK nanostructures induced by pH[56]
图8 8种凝胶分子的设计(a)及其形成的宏观凝胶照片(b)[58]
Fig. 8 (a) Molecular design of small-molecular gelators and (b) photographs showing the gel formation of G1~G8 in ethanol after ultrasonic treatment[58]
图9 (a)谷氨酸衍生物4BLGA与不同金属离子形成凝胶宏观及微观形貌图[60];(b)由不同金属离子的L型对映体单体(LPF和LPPG)组装而成的纳米结构[61]
Fig. 9 (a) Photo images of the 4BLGA gels with different metal ions and the SEM images of helical nanofibers formed by 4BLGA with different metal ions[60];(b) Nanostructures assembled from L-type enantiomeric monomers(LPF and LPPG) with different metal ions[61]
图10 Fc-FF在不同对离子诱导下手性自组装过程示意图[64]
Fig. 10 Schematic illustration showing helical nanofibers of Fc-FF with different counterions[64]
图11 (a)光响应Azo-GFGH分子结构式和肽基水解酶模拟物的催化性能[66];(b)阳离子苯丙氨酸二肽与偶氮苯衍生物超分子组装体的光响应特性示意图[67];(c) 酪氨酸-酪氨酸紫外光交联制备具有荧光特性的中空纳米囊和自支撑薄膜[68]
Fig. 11 (a) Molecular structures of the designed Azo-GFGH and the photo-switchable assembly and the catalytic properties of the peptide-based hydrolase mimic[66];(b) Description of Photo-response Characteristics of Supramolecular Assembly of Cationic Phenylalanine Dipeptide and Azobenzene Derivative[67];(c) Synthesis of fluorescent hollow nanocapsule and free-standing thin lamella film by tyrosine-tyrosine UV crosslinking[68]
图12 (a)一种两亲肽分子随时间变化形成手性组装体形貌的透射电镜图及示意图[73];(b)C12-β12手性自组装形貌随时间变化示意图[74]
Fig. 12 (a) Cryo-TEM images and schematic illustration of the self-assembled helical assemblies of the peptide amphiphile at different time[73];(b) Cryo-TEM images and schematic illustration of pathway to nanotubes by chiral C12-β12 self-assembly[74]
图13 (a)多肽形成囊泡组装体及其催化羟醛缩合反应过程示意图[75];(b)手性纳米管组装体模型及催化过程示意图[76]
Fig. 13 (a) The schematic illustration of self-assembly of vesicles and the model for the aldol reaction[75];(b) The schematic illustration of chiral nanotubes formed by Pro-Lys dipeptide derivative[76]
图14 (a)Cu2+-肽共组装体催化剂催化不对称Diels-Alder反应和(b)Bi3+-肽共组装体催化剂催化不对称aldol反应示意图[35,77]
Fig. 14 The schematic illustration of the assembly mechanism of(a) Cu(Ⅱ)-HN catalysis and its asymmetric catalysis for Diels-Alder reaction and(b) Bi(Ⅲ)-HN catalysis and its asymmetric catalysis for Mukaiyama Aldol reaction[35,77]
图15 两亲肽分子用于手性化合物可视性识别[78,79]
Fig. 15 The illustration showing visualized recognition functions of amphiphilic peptides[78,79]
图16 (a)丙氨酸衍生物组装及手性识别应用示意图[80];(b)两亲凝胶分子与不同金属离子组装机理图[81]
Fig. 16 (a) The illustration showing self-assembly of racemic alanine derivatives and its capacity for the discrimination of chiral species[80]; (b) The assembly mechanism of new amphiphilic gelators with different metal ions[81]
图17 手性二氧化硅纳米材料合成机理示意图[83,84]
Fig. 17 The mechanism illustration of the formation of chiral silica nanostructures[83,84]
图18 (a)半胱氨酸控制合成手性金纳米颗粒示意图[86];(b)金纳米颗粒合成及手性组装示意图[87]
Fig. 18 (a) Schematic diagram of cysteine-controlled synthesis of chiral gold nanoparticles[86];(b) The illustration of Au-nanoparticle synthesis and chiral self-assembly strategy[87]
图19 (a)Fmoc-Glu与嘌呤核苷自组装成螺旋结构及手性从Fmoc-Glu到ThT的手性转移示意图[90]; (b)谷氨酸衍生物作为纳米模板手性诱导荧光染料产生CPL示意图[91]
Fig. 19 (a) Self-assembly of Fmoc-Glu and purine nucleosides into helical structures and chiral transfer from Fmoc-Glu to ThT[90];(b) Chiral Induction of Fluorescent Dyes by Glutamic Acid Derivatives as Nanotemplates[91]
[1]
Whitesides G M, Bartosz G . Science, 2002,295(5564):2418. https://www.ncbi.nlm.nih.gov/pubmed/11923529

doi: 10.1126/science.1070821     URL     pmid: 11923529
[2]
Ghadiri M R, Granja J R, Milligan R A, McRee D E, Khazanovich N . Nature, 1993,366:324. https://www.ncbi.nlm.nih.gov/pubmed/8247126

doi: 10.1038/366324a0     URL     pmid: 8247126
[3]
Meital R, Ehud G . Science, 2003,300(5619):625. https://www.ncbi.nlm.nih.gov/pubmed/12714741

doi: 10.1126/science.1082387     URL     pmid: 12714741
[4]
Hartgerink J D, Beniash E, Stupp S I . Science, 2001,294(5547):1684. https://www.ncbi.nlm.nih.gov/pubmed/11721046

doi: 10.1126/science.1063187     URL     pmid: 11721046
[5]
Sylvain V, Steve S, Haiyan G, Nicki W, Shuguang Z . Proc. Natl. Acad. Sci. U. S. A., 2002,99(8):5355. https://www.ncbi.nlm.nih.gov/pubmed/11929973

doi: 10.1073/pnas.072089599     URL     pmid: 11929973
[6]
Horne W S, Stout C D, Ghadiri M R . J. Am. Chem. Soc., 2003,125(31):9372. https://www.ncbi.nlm.nih.gov/pubmed/12889966

doi: 10.1021/ja034358h     URL     pmid: 12889966
[7]
Manuel A, Luis C, Granja J R . J. Am. Chem. Soc., 2003,125(10):2844. https://www.ncbi.nlm.nih.gov/pubmed/12617629

doi: 10.1021/ja0296273     URL     pmid: 12617629
[8]
Ron O, Lihi A A, Sivan Z, Iris M H, Dror S, Ehud G . Biomacromolecules, 2009,10(9):2646. https://www.ncbi.nlm.nih.gov/pubmed/19705843

doi: 10.1021/bm900584m     URL     pmid: 19705843
[9]
Fan Z, Sun L, Huang Y, Wang Y, Zhang M . Nat. Nanotechnol., 2016,11(4):388. https://www.ncbi.nlm.nih.gov/pubmed/26751169

doi: 10.1038/nnano.2015.312     URL     pmid: 26751169
[10]
Kumar D, Workman V L, O'Brien M, McLaren J, White L, Ragunath K, Rose F, Saiani A, Gough J E . Adv. Funct. Mater., 2017,27(38):1702424.
[11]
Bedford N M, Hughes Z E, Tang Z, Li Y, Briggs B D, Ren Y, Swihart M T, Petkov V G, Naik R R, Knecht M R ; Walsh. R. J. Am. Chem. Soc., 2016,138:540. https://www.ncbi.nlm.nih.gov/pubmed/26679562

doi: 10.1021/jacs.5b09529     URL     pmid: 26679562
[12]
Liu M, Zhang L, Wang T . Chem. Rev., 2015,115(15):7304. https://www.ncbi.nlm.nih.gov/pubmed/26189453

doi: 10.1021/cr500671p     URL     pmid: 26189453
[13]
Xing R, Yuan C, Li S, Song J, Li J, Yan X . Angew. Chem. Int. Ed. Engl., 2018,57(6):1537. https://www.ncbi.nlm.nih.gov/pubmed/29266653

doi: 10.1002/anie.201710642     URL     pmid: 29266653
[14]
Wang X, Duan P, Liu M . Chem.-Asian J., 2014,9:770. https://www.ncbi.nlm.nih.gov/pubmed/24449380

doi: 10.1002/asia.201301518     URL     pmid: 24449380
[15]
Jin Q, Zhang L, Liu M . Chemistry, 2013,19:9234. https://www.ncbi.nlm.nih.gov/pubmed/23729195

doi: 10.1002/chem.201300612     URL     pmid: 23729195
[16]
Shen Z, Wang T, Liu M . Chem. Commun., 2014,50:2096. https://www.ncbi.nlm.nih.gov/pubmed/24445810

doi: 10.1039/c3cc48350a     URL     pmid: 24445810
[17]
Deshmukh S A, Solomon L A, Kamath G, Fry H C, Sankaranarayanan S K . Nat. Commun., 2016,7:12367. https://www.ncbi.nlm.nih.gov/pubmed/27554944

doi: 10.1038/ncomms12367     URL     pmid: 27554944
[18]
Huang Z, Yao Y, Han L, Che S . Chem. Eur. J., 2014,20(51):17068. https://www.ncbi.nlm.nih.gov/pubmed/25323634

doi: 10.1002/chem.201403498     URL     pmid: 25323634
[19]
Liu X, Shen Z, Wang T, Liu M . J. Colloid. Interf. Sci., 2014,435:1.
[20]
Liu Y, Wang T, Huan Y, Li Z, He G, Liu M . Adv. Mater., 2013,25(41):5875. https://www.ncbi.nlm.nih.gov/pubmed/23943418

doi: 10.1002/adma.201302345     URL     pmid: 23943418
[21]
Rad-Malekshahi M, Visscher K M, Rodrigues J P, de Vries R, Hennink W E, Baldus M, Bonvin A M, Mastrobattista E, Weingarth M . J. Am. Chem. Soc., 2015,137:7775. https://www.ncbi.nlm.nih.gov/pubmed/26022089

doi: 10.1021/jacs.5b02919     URL     pmid: 26022089
[22]
Shen Z, Wang T, Liu M . Langmuir, 2014,30(35):10772. https://www.ncbi.nlm.nih.gov/pubmed/25136742

doi: 10.1021/la502799j     URL     pmid: 25136742
[23]
Ivan U, Jozef A, Raffaele M . ACS Nano, 2013,7(12):10465. https://www.ncbi.nlm.nih.gov/pubmed/24171389

doi: 10.1021/nn404886k     URL     pmid: 24171389
[24]
Ivan U, Raffaele M . ACS Nano, 2014,8(11):11035. https://www.ncbi.nlm.nih.gov/pubmed/25275956

doi: 10.1021/nn503530a     URL     pmid: 25275956
[25]
Volpatti L R, Michele V, Dobson C M, Knowles T P J. ACS Nano, 2013,7:10443.
[26]
Backlund F G, Elfwing A, Musumeci C, Ajjan F, Babenko V, Dzwolak W, Solin N, Inganas O . Soft Matter, 2017,13:4412. https://www.ncbi.nlm.nih.gov/pubmed/28590474

doi: 10.1039/c7sm00068e     URL     pmid: 28590474
[27]
Gao N, Du Z, Guan Y, Dong K, Ren J, Qu X . J. Am. Chem. Soc., 2019,141:6915. https://www.ncbi.nlm.nih.gov/pubmed/30969760

doi: 10.1021/jacs.8b12537     URL     pmid: 30969760
[28]
Kumar J, Erana H, Lopez-Martinez E, Claes N, Martin V F, Solis D M, Bals S, Cortajarena A L, Castilla J, Liz-Marzan L M . Proc. Natl. Acad. Sci. U. S. A., 2018,115(13):3225. https://www.ncbi.nlm.nih.gov/pubmed/29531058

doi: 10.1073/pnas.1721690115     URL     pmid: 29531058
[29]
Li M, Howson S E, Dong K, Gao N, Ren J, Scott P, Qu X . J. Am. Chem. Soc., 2014,136(33):11655. https://www.ncbi.nlm.nih.gov/pubmed/25062433

doi: 10.1021/ja502789e     URL     pmid: 25062433
[30]
Sanchez-Ferrer A, Adamcik J, Handschin S, Hiew S H, Miserez A, Mezzenga R . ACS Nano, 2018,12(9):9152. https://www.ncbi.nlm.nih.gov/pubmed/30106557

doi: 10.1021/acsnano.8b03582     URL     pmid: 30106557
[31]
Ulijn R V, Smith A M . Chem. Soc. Rev., 2008,37(4):664. https://www.ncbi.nlm.nih.gov/pubmed/18362975

doi: 10.1039/b609047h     URL     pmid: 18362975
[32]
Silvia M, Easton C D, Firdawosia K, Lynne W, Hartley P G . Chem. Commun., 2012,48:2195. https://www.ncbi.nlm.nih.gov/pubmed/22159641

doi: 10.1039/c2cc16609g     URL     pmid: 22159641
[33]
Jozef A, Valeria C, Sreenath B, Hamley I W, Raffaele M . Angew. Chem., 2011,50(24):5495. https://www.ncbi.nlm.nih.gov/pubmed/21538748

doi: 10.1002/anie.201100807     URL     pmid: 21538748
[34]
Xie Y, Wang X, Huang R, Qi W, Wang Y, Su R, He Z . Langmuir, 2015,31(9):2885. https://www.ncbi.nlm.nih.gov/pubmed/25694059

doi: 10.1021/la504757c     URL     pmid: 25694059
[35]
Jiang J, Meng Y, Zhang L, Liu M . J. Am. Chem. Soc., 2016,138(48):15629. https://www.ncbi.nlm.nih.gov/pubmed/27934018

doi: 10.1021/jacs.6b08808     URL     pmid: 27934018
[36]
Iglesias D, Melle-Franco M, Kurbasic M, Melchionna M, Abrami M, Grassi M, Prato M, Marchesan S . ACS Nano, 2018,12(6):5530. https://www.ncbi.nlm.nih.gov/pubmed/29787672

doi: 10.1021/acsnano.8b01182     URL     pmid: 29787672
[37]
Zhao Y, Wang J, Deng L, Zhou P, Wang S, Wang Y, Xu H, Lu J R . Langmuir, 2013,29(44):13457. https://www.ncbi.nlm.nih.gov/pubmed/24090051

doi: 10.1021/la402441w     URL     pmid: 24090051
[38]
Cui H, Cheetham A G, Pashuck E T, Stupp S I . J. Am. Chem. Soc., 2014,136(35):12461. https://www.ncbi.nlm.nih.gov/pubmed/25144245

doi: 10.1021/ja507051w     URL     pmid: 25144245
[39]
Cao M, Lu S, Zhao W, Deng L, Wang M, Wang J, Zhou P, Wang D, Xu H, Lu J R . ACS Appl. Mater. Interfaces, 2017,9(45):39174. https://www.ncbi.nlm.nih.gov/pubmed/29067798

doi: 10.1021/acsami.7b11681     URL     pmid: 29067798
[40]
Bowerman C J, Liyanage W, Federation A J, Nilsson B L . Biomacromolecules, 2011,12(7):2735. https://www.ncbi.nlm.nih.gov/pubmed/21568346

doi: 10.1021/bm200510k     URL     pmid: 21568346
[41]
Lee N R, Bowerman C J, Nilsson B L . Biomacromolecules, 2013,14(9):3267. https://www.ncbi.nlm.nih.gov/pubmed/23952713

doi: 10.1021/bm400876s     URL     pmid: 23952713
[42]
Xing Q, Zhang J, Xie Y, Wang Y, Qi W, Rao H, Su R, He Z . ACS Nano, 2018,12(12):12305. https://www.ncbi.nlm.nih.gov/pubmed/30452865

doi: 10.1021/acsnano.8b06173     URL     pmid: 30452865
[43]
Hu Y, Lin R, Zhang P, Fern J, Cheetham A G, Patel K, Schulman R, Kan C, Cui H . ACS Nano, 2016,10(1):880. https://www.ncbi.nlm.nih.gov/pubmed/26646791

doi: 10.1021/acsnano.5b06011     URL     pmid: 26646791
[44]
Basak S, Singh I, Ferranco A, Syed J, Kraatz H B . Angew. Chem. Int. Ed. Engl., 2017,56(43):13288. https://www.ncbi.nlm.nih.gov/pubmed/28837256

doi: 10.1002/anie.201706162     URL     pmid: 28837256
[45]
Clarke D E, Parmenter C D J, Scherman O A . Angew. Chem., 2018,130:7835.
[46]
Wang M, Zhou P, Wang J, Zhao Y, Ma H, Lu J R, Xu H . J. Am. Chem. Soc., 2017,139(11):4185. https://www.ncbi.nlm.nih.gov/pubmed/28240550

doi: 10.1021/jacs.7b00847     URL     pmid: 28240550
[47]
Fu Y, Li B, Huang Z, Li Y, Yang Y . Langmuir, 2013,29(20):6013. https://www.ncbi.nlm.nih.gov/pubmed/23617232

doi: 10.1021/la400910g     URL     pmid: 23617232
[48]
Luo Z, Wang S, Zhang S . Biomaterials, 2011,32(8):2013. https://www.ncbi.nlm.nih.gov/pubmed/21167593

doi: 10.1016/j.biomaterials.2010.11.049     URL     pmid: 21167593
[49]
Garcia A M, Iglesias D, Parisi E, Styan K E, Waddington L J, Deganutti C, De Zorzi R, Grassi M, Melchionna M, Vargiu A V, Marchesan S . Chem, 2018,4(8):1862.
[50]
Marchesan S, Easton C D, Kushkaki F, Waddington L, Hartley P G . Chem. Commun.(Camb), 2012,48(16):2195. https://www.ncbi.nlm.nih.gov/pubmed/22159641

doi: 10.1039/c2cc16609g     URL     pmid: 22159641
[51]
Tomoyuki K, Miho M, Nobuyuki H . J. Am. Chem. Soc., 2005,127(50):17596. https://www.ncbi.nlm.nih.gov/pubmed/16351076

doi: 10.1021/ja0558387     URL     pmid: 16351076
[52]
Swanekamp R J, DiMaio J T, Bowerman C J, Nilsson B L . J. Am. Chem. Soc., 2012,134:5556. https://www.ncbi.nlm.nih.gov/pubmed/22420540

doi: 10.1021/ja301642c     URL     pmid: 22420540
[53]
Kurouski D, Lu X, Popova L, Wan W, Shanmugasundaram M, Stubbs G, Dukor R K, Lednev I K, Nafie L A . J. Am. Chem. Soc., 2014,136(6):2302. https://www.ncbi.nlm.nih.gov/pubmed/24484302

doi: 10.1021/ja407583r     URL     pmid: 24484302
[54]
Uesaka A, Ueda M, Makino A, Imai T, Sugiyama J, Kimura S . Langmuir, 2014,30(4):1022. https://www.ncbi.nlm.nih.gov/pubmed/24410257

doi: 10.1021/la404784e     URL     pmid: 24410257
[55]
Duan P, Qin L, Zhu X, Liu M. Chem-Eur . J., 2011,17(23):6389. https://www.ncbi.nlm.nih.gov/pubmed/21538601

doi: 10.1002/chem.201003049     URL     pmid: 21538601
[56]
Xie Y, Wang Y, Qi W, Huang R, Su R, He Z . Small, 2017,13(30).
[57]
Li Y, Li B, Fu Y, Lin S, Yang Y . Langmuir, 2013,29(31):9721. https://www.ncbi.nlm.nih.gov/pubmed/23915244

doi: 10.1021/la402174w     URL     pmid: 23915244
[58]
Qing G, Shan X, Chen W, Lv Z, Xiong P, Sun T . Angew. Chem., 2014,53(8):2124. https://www.ncbi.nlm.nih.gov/pubmed/24453207

doi: 10.1002/anie.201308554     URL     pmid: 24453207
[59]
Li C, Deng K, Tang Z, Jiang L . J. Am. Chem. Soc., 2010,132(23):8202. https://www.ncbi.nlm.nih.gov/pubmed/20499874

doi: 10.1021/ja102827f     URL     pmid: 20499874
[60]
Wang X, Duan P, Liu M . Chem. Commun., 2012,48:7501. https://www.ncbi.nlm.nih.gov/pubmed/22728654

doi: 10.1039/c2cc33246a     URL     pmid: 22728654
[61]
Wang F, Feng C L . Angew. Chem. Int. Ed. Engl., 2018,57(20):5655. https://www.ncbi.nlm.nih.gov/pubmed/29571216

doi: 10.1002/anie.201800251     URL     pmid: 29571216
[62]
Dong J, Shokes J E, Scott R A, Lynn D G . J. Am. Chem. Soc., 2006,128(11):3540. https://www.ncbi.nlm.nih.gov/pubmed/16536526

doi: 10.1021/ja055973j     URL     pmid: 16536526
[63]
Liu G F, Zhu L Y, Ji W, Feng C L, Wei Z X . Angew. Chem. Int. Ed. Engl., 2016,55(7):2411. https://www.ncbi.nlm.nih.gov/pubmed/26663528

doi: 10.1002/anie.201510140     URL     pmid: 26663528
[64]
Wang Y, Qi W, Huang R, Yang X, Wang M, Su R, He Z . J. Am. Chem. Soc., 2015,137(24):7869. https://www.ncbi.nlm.nih.gov/pubmed/26018930

doi: 10.1021/jacs.5b03925     URL     pmid: 26018930
[65]
Chu C W, Ravoo B J . Chem Commun, 2017,53(92):12450. https://www.ncbi.nlm.nih.gov/pubmed/29099528

doi: 10.1039/c7cc07859e     URL     pmid: 29099528
[66]
Zhao Y, Lei B, Wang M, Wu S, Qi W, Su R, He Z . J. Mater. Chem. B, 2018,6:2444. https://www.ncbi.nlm.nih.gov/pubmed/32254461

doi: 10.1039/c8tb00448j     URL     pmid: 32254461
[67]
Ma H, Fei J, Li Q, Li J . Small, 2015,11(15):1787. https://www.ncbi.nlm.nih.gov/pubmed/25405602

doi: 10.1002/smll.201402140     URL     pmid: 25405602
[68]
Min K I, Yun G, Jang Y, Kim K R, Ko Y H, Jang H S, Lee Y S, Kim K, Kim D P . Angew. Chem. Int. Edit., 2016,55(24):6925. https://www.ncbi.nlm.nih.gov/pubmed/27062089

doi: 10.1002/anie.201601675     URL     pmid: 27062089
[69]
Min K I, Kim D H, Lee H J, Lin L, Kim D P . Angew. Chem. Int. Edit., 2018,57(20):5630. https://www.ncbi.nlm.nih.gov/pubmed/29569831

doi: 10.1002/anie.201713261     URL     pmid: 29569831
[70]
Ding Y, Li Y, Qin M, Cao Y, Wang W . Langmuir, 2013,29(43):13299. https://www.ncbi.nlm.nih.gov/pubmed/24090141

doi: 10.1021/la4029639     URL     pmid: 24090141
[71]
Huang Y F, Lu S C, Huang Y C, Jan J S . Small, 2014,10:1939. https://www.ncbi.nlm.nih.gov/pubmed/24573970

doi: 10.1002/smll.201303462     URL     pmid: 24573970
[72]
Hamley I W, Dehsorkhi A, Castelletto V, Furzeland S, Atkins D, Seitsonen J, Ruokolainen J . Soft Matter, 2013,9(39):9290.
[73]
E Thomas P, Stupp S I . J. Am. Chem. Soc., 2010,132(26):8819. https://www.ncbi.nlm.nih.gov/pubmed/20552966

doi: 10.1021/ja100613w     URL     pmid: 20552966
[74]
Ziserman L, Lee H Y, Raghavan S R, Mor A, Danino D . J. Am. Chem. Soc., 2011,133(8):2511. https://www.ncbi.nlm.nih.gov/pubmed/21244023

doi: 10.1021/ja107069f     URL     pmid: 21244023
[75]
Qin L, Zhang L, Jin Q, Zhang J, Han B, Liu M . Angew. Chem. Int. Ed. Engl., 2013,52(30):7761. https://www.ncbi.nlm.nih.gov/pubmed/23776072

doi: 10.1002/anie.201302662     URL     pmid: 23776072
[76]
Lee K S, Parquette J R . Chem. Commun., 2015,51(86):15653. https://www.ncbi.nlm.nih.gov/pubmed/26360936

doi: 10.1039/c5cc06142c     URL     pmid: 26360936
[77]
Jin Q, Zhang L, Cao H, Wang T, Zhu X, Jiang J, Liu M . Langmuir, 2011,27(22):13847. https://www.ncbi.nlm.nih.gov/pubmed/21978005

doi: 10.1021/la203110z     URL     pmid: 21978005
[78]
Meng Y, Jiang J, Liu M . Nanoscale, 2017,9:7199. https://www.ncbi.nlm.nih.gov/pubmed/28513697

doi: 10.1039/c7nr02126g     URL     pmid: 28513697
[79]
Li S, Zhang L, Jiang J, Meng Y, Liu M . ACS Appl. Mater. Interfaces, 2017,9(42):37386. https://www.ncbi.nlm.nih.gov/pubmed/28972781

doi: 10.1021/acsami.7b10353     URL     pmid: 28972781
[80]
Cao H, Zhu X, Liu M . Angew. Chem. Int. Ed. Engl., 2013,52(15):4122. https://www.ncbi.nlm.nih.gov/pubmed/23495092

doi: 10.1002/anie.201300444     URL     pmid: 23495092
[81]
Jin Q, Zhang L, Zhu X, Duan P, Liu M . Chem. Eur. J., 2012,18(16):4916. https://www.ncbi.nlm.nih.gov/pubmed/22416042

doi: 10.1002/chem.201103187     URL     pmid: 22416042
[82]
Deng M, Zhang L, Jiang Y, Liu M . Angew. Chem. Int. Ed. Engl., 2016,55(48):15062. https://www.ncbi.nlm.nih.gov/pubmed/27809390

doi: 10.1002/anie.201608638     URL     pmid: 27809390
[83]
Wang Y, Qi W, Wang J, Li Q, Yang X, Zhang J, Liu X, Huang R, Wang M, Su R . He Z. Chem. Mater., 2018,30(21):7902.
[84]
Wang S, Ge X, Xue J, Fan H, Mu L, Li Y, Xu H, Lu J R . Chem. Mater., 2011,23(9):2466.
[85]
Jiang W, Pacella M S, Athanasiadou D, Nelea V, Vali H, Hazen R M, Gray J J, McKee M D . Nat. Commun., 2017,8:15066. https://www.ncbi.nlm.nih.gov/pubmed/28406143

doi: 10.1038/ncomms15066     URL     pmid: 28406143
[86]
Lee H E, Ahn H Y, Mun J, Lee Y Y, Kim M, Cho N H, Chang K, Kim W S, Rho J, Nam K T . Nature, 2018,556(7701):360. https://www.ncbi.nlm.nih.gov/pubmed/29670265

doi: 10.1038/s41586-018-0034-1     URL     pmid: 29670265
[87]
Chen C, Rosi N L . J. Am. Chem. Soc., 2010,132(20):6902. https://www.ncbi.nlm.nih.gov/pubmed/20429558

doi: 10.1021/ja102000g     URL     pmid: 20429558
[88]
Merg A D, Boatz J C, Mandal A, Zhao G, Mokashi-Punekar S, Liu C, Wang X, Zhang P, van der Wel P C A, Rosi N L . J. Am. Chem. Soc., 2016,138(41):13655. https://www.ncbi.nlm.nih.gov/pubmed/27726354

doi: 10.1021/jacs.6b07322     URL     pmid: 27726354
[89]
Mokashi-Punekar S, Merg A D, Rosi N L . J. Am. Chem. Soc., 2017,139(42):15043. https://www.ncbi.nlm.nih.gov/pubmed/28876058

doi: 10.1021/jacs.7b07143     URL     pmid: 28876058
[90]
Deng M, Zhang L, Jiang Y, Liu M . Angew. Chem. Int. Edit., 2016,55(48):15062. https://www.ncbi.nlm.nih.gov/pubmed/27809390

doi: 10.1002/anie.201608638     URL     pmid: 27809390
[91]
Goto T, Okazaki Y, Ueki M, Kuwahara Y, Takafuji M, Oda R, Ihara H . Angew. Chem. Int. Edit., 2017,56(11):2989. https://www.ncbi.nlm.nih.gov/pubmed/28146313

doi: 10.1002/anie.201612331     URL     pmid: 28146313
[92]
Niu D, Jiang Y, Ji L, Ouyang G, Liu M . Angew. Chem. Int. Edit., 2019,58(18):5946. https://www.ncbi.nlm.nih.gov/pubmed/30821078

doi: 10.1002/anie.201900607     URL     pmid: 30821078
[93]
Huo S, Duan P, Jiao T, Peng Q, Liu M . Angew. Chem. Int. Edit., 2017,56(40):12174. https://www.ncbi.nlm.nih.gov/pubmed/28759134

doi: 10.1002/anie.201706308     URL     pmid: 28759134
[1] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[2] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[3] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[4] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[5] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[6] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[7] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[8] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[9] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[10] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
[11] 王志鹏, 田长麟, 郑基深. 聚酰胺类多肽二级结构模拟物的结构设计与性质分析[J]. 化学进展, 2016, 28(9): 1328-1340.
[12] 马晓川, 费浩. 金属配位在多肽与蛋白质研究中的应用[J]. 化学进展, 2016, 28(2/3): 184-192.
[13] 龚德君, 高冠斌, 张明曦, 孙涛垒. 手性金团簇的制备、性质及应用[J]. 化学进展, 2016, 28(2/3): 296-307.
[14] 王见伟, 宋利锋, 赵瑾, 原续波. 基于多肽结构的聚合物水凝胶[J]. 化学进展, 2015, 27(4): 373-384.
[15] 王生杰, 蔡庆伟, 杜明轩, 曹美文, 徐海. 二氧化硅的仿生矿化[J]. 化学进展, 2015, 27(2/3): 229-241.
阅读次数
全文


摘要

多肽超分子手性自组装与应用