English
新闻公告
More
化学进展 2019, Vol. 31 Issue (1): 38-49 DOI: 10.7536/PC181220 前一篇   后一篇

• 综述 •

人工光合成制氢

陈雅静1,2, 李旭兵1,2, 佟振合1,2, 吴骊珠1,2,**()   

  1. 1. 中国科学院理化技术研究所 光化学转换与功能材料重点实验室 北京 100190
    2. 中国科学院大学未来技术学院 北京 100049
  • 收稿日期:2018-12-29 修回日期:2019-01-02 出版日期:2019-01-15 发布日期:2019-01-04
  • 通讯作者: 吴骊珠
  • 基金资助:
    国家自然科学基金项目(91427303); 国家自然科学基金项目(21861132004); 国家自然科学基金项目(21603248S); 科技部和王宽诚基金资助(2017YFA0206903)

Artificial Photosynthesis for Hydrogen Production

Yajing Chen1,2, Xubing Li1,2, Chenho Tung1,2, Lizhu Wu1,2,**()   

  1. 1. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
    2. School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-12-29 Revised:2019-01-02 Online:2019-01-15 Published:2019-01-04
  • Contact: Lizhu Wu
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(91427303); The work was supported by the National Natural Science Foundation of China(21861132004); The work was supported by the National Natural Science Foundation of China(21603248S); The Ministry of Science and Technology of China Science and Technology of China and K.C.Wong Education Foundation(2017YFA0206903)

氢气的燃烧热值高(285.8 kJ/mol),且燃烧时只生成水不生成任何污染物,被认为是理想的能源载体。模拟自然界光合作用系统活性中心的结构和功能,利用光催化分解水制取氢气是将太阳能转换为化学能的重要方式,也是人工光合成的重要内容。本文对近年来国内外人工光合成制氢领域取得的重要进展进行了总结,并对人工光合成制氢的发展趋势和前景进行了展望。

Hydrogen (H2) gas acquires a high combustion calorific value (285.8 kJ/mol) and only produces water during combustion, so it is considered as an ideal energy carrier. Photocatalytic H2 evolution from water by simulating the structure and function of active center in natural photosynthesis is not only an important way to convert solar light into chemical energy but also an essential part of artificial photosynthesis. Here, we summarize the recent major progress of this field and forecast the development and potential applications of artificial photosynthetic H2 production in the near future.

()
图1 自然界绿色植物光合作用过程示意图[1]
Fig.1 Natural photosynthesis in green plants[1]. Copyright 2013, Elsevier Ltd.
图2 人工光合成制氢反应过程
Fig.2 The process of artificial photosynthesis for H2 production
图3 天然[FeFe]氢化酶活性中心结构及产氢过程[32]
Fig.3 The active site of natural [FeFe]-hydrogenase and the process of proton reduction[32]. Copyright 2011, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图4 基于CdTe量子点和水溶性[FeFe]氢化酶模拟物的人工光合成制氢体系[32]
Fig.4 Photocatalytic H2 production based on CdTe QDs and water-soluble [FeFe]-hydrogenase mimics[32]. Copyright 2011, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图5 基于水溶性量子点与无机金属盐(Ni2+)的空腔结构可见光催化产氢体系[51]
Fig.5 Schematic diagram of photocatalytic hydrogen production based on water-soluble QDs and non-noble metal salts[51]. Copyright 2014, American Chemical Society
图6 量子点/催化剂组装体高效光催化产氢[52]
Fig.6 Photocatalytic hydrogen production from QDs/Pt NPs assembly[52]. Copyright 2017, American Chemical Society
图7 光催化产氢催化循环数(TON)的提升
Fig.7 The progress of TON value of solar hydrogen production
图8 基于光阴极的全解水光电化学池结构示意图[87]
Fig.8 PEC water-splitting system[87]. Copyright 2018, MacMillan Publishers Limited, part of Springer Nature
图9 基于PSII、氢化酶的光电化学电池示意图(光阳极:IO-介孔ITO/PSII;阴极:IO-介孔ITO/氢化酶)[71]
Fig.9 Scheme of PEC cell based on IO-mesoITO/PSII photoanode and IO-mesoITO/H2ase photocathode[71]. Copyright 2015, American Chemical Society
图10 基于PSⅡ、硅PEC电池的天然人工杂化PEC体系[72]
Fig.10 Natural/artificial hybrid PEC system based on PSⅡ and Si PEC battery[72]. Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheims
图11 基于CdSe量子点的敏化光阴极的全解水制氢[89]
Fig.11 CdSe QDs sensitized NiO Photocathode for photoelectrochemical (PEC) H2 evolution from water[89]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图12 SrTiO3:La,Rh/Au/BiVO4:Mo全解水产氢示意图[68]
Fig.12 Schematic diagram of overall water splitting in SrTiO3:La,Rh/Au/BiVO4:Mo system[68]. Copyright 2016, MacMillan Publishers Limited
图13 基于eosin Y、G-RuO2的交叉偶联放氢反应[94]
Fig.13 Cross-coupling hydrogen evolution reaction with eosin Y as photosensitizer and G-RuO2 as photocatalyst[94]. Copyright 2013, American Chemical Society
图14 光催化不对称交叉脱氢偶联反应[99]
Fig.14 Photocatalytic asymmetric cross-dehydrogenative coupling reaction[99]. Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
图15 光催化苯C—H胺化和羟基化并放出氢气[100]
Fig.15 Photocatalytic benzene C—H amination and hydroxylation with hydrogen production[100]. Copyright 2016, American Chemical Society
图16 CdSe量子点将硫醇转化为二硫化物和H2的机理图[102]
Fig.16 Mechanism diagram for the conversion of thiols to disulfides and H2 by CdSe QDs[102]. Copyright 2014, Wile1y-VCH Verlag GmbH & Co. KGaA, Weinheim
图17 Ni/CdS光催化剂可见光照条件下分解醇的机理图[104]
Fig.17 Mechanism diagram of photocatalytic decomposition of alcohol by Ni/CdS[104]. Copyright 2016, American Chemical Society
图18 (a)超薄Ni/CdS纳米片光催化生物质重整放氢反应(b)糠醇和5-羟甲基糠醛氧化成醛或酸的反应过程[107]
Fig.18 (a) Ultrathin Ni/CdS nanosheets for photocatalytic biomass valorization with H2 production and (b) Oxidation reaction of furfural alcohol and 5-hydroxymethylfurfural to their corresponding aldehydes or acids[107]. Copyright 2017, American Chemical Society
[1]
Kim J H, Nam D H, Park C B . Curr. Opin. Biotechnol., 2014,28:1.
[2]
Lazarides T, Delor M, Sazanovich I V, McCormick T M, Georgakaki I, Charalambidis G, Weinstein J A, Coutsolelos A GS . Chem. Commun., 2014,50:521.
[3]
Leung C F, Ng S M, Ko C C, Man W L, Wu J S, Chen L J, Lau T C . Energy. Environ. Sci., 2012,5:7903.
[4]
Khnayzer R S, Thoi V S, Nippe M, King A E, Jurss J W, El Roz K A, Long J R, Chang C J, Castellano F N . Energy. Environ. Sci., 2014,7:1477.
[5]
Martindale B C M, Hutton G A M, Caputo C A, Reisner E . J. Am. Chem. Soc., 2015,137:6018.
[6]
Porcher J P, Fogeron T, Gomez-Mingot M, Derat E, Chamoreau L M, Li Y, Fontecave M . Angew. Chem. Int. Ed., 2015,54:14090.
[7]
Lazarides T, McCormick T, Du P W, Luo G G, Lindley B, Eisenberg R . J. Am. Chem. Soc., 2009,131:9192.
[8]
Le T T, Akhtar M S, Park D M, Lee J C, Yang O B . Appl. Catal. B -Environ., 2012,111:397.
[9]
Hartley C L, DiRisio R J, Screen M E, Mayer K J, McNamara W R . Inorg. Chem., 2016,55:8865.
[10]
Guo L, Yang Z, Marcus K, Li Z, Luo B, Zhou L, Wang X, Du Y, Yang Y . Energy. Environ. Sci., 2018,11:106.
[11]
Han Q, Cheng Z H, Wang B, Zhang H M, Qu L T . ACS Nano., 2018,12:5221.
[12]
Hao X Q, Jin Z L, Yang H, Lu G X, Bi Y P . Appl. Catal.B-Environ., 2017,210:45.
[13]
Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, Schomacker R, Thomas A, Schmidt J . J. Am. Chem. Soc., 2018,140:1423.
[14]
Quo Q, Liang F, Gao X Y, Gan Q C, Li X B, Li J, Lin Z S, Tung C H, Wu L Z . ACS Catal., 2018,8:5890.
[15]
Sandroni M, Gueret R, Wegner K D, Reiss P, Fortage J, Aldakov D, Collomb M N . Energy. Environ. Sci., 2018,11:1752.
[16]
Zeng D Q, Xu W J, Ong W J, Xu J, Ren H, Chen Y Z, Zheng H F, Peng D L . Appl. Catal.B-Environ., 2018,221:47.
[17]
Chen X B, Liu L, Yu P Y, Mao S S . Science., 2011,331:746.
[18]
Liu G, Yin L C, Wang J Q, Niu P, Zhen C, Xie Y P, Cheng H M . Energy. Environ. Sci., 2012,5:9603.
[19]
Xiao M, Luo B, Lyu M Q, Wang S C, Wang L Z . Adv. Energy Mater., 2018, 8: 180:2820.
[20]
Lubner C E, Knorzer P, Silva P J, Vincent K A, Happe T, Bryant D A, Golbeck J H . Biochemistry., 2010,49:10264.
[21]
Brown K A, Wilker M B, Boehm M, Dukovic G, King P W . J. Am. Chem. Soc., 2012,134:5627.
[22]
Greene B L, Joseph C A, Maroney M J, Dyer R B . J. Am. Chem. Soc., 2012,134:11108.
[23]
Brown K A, Dayal S, Ai X, Rumbles G, King P W . J. Am. Chem. Soc., 2010,132:9672.
[24]
Brown K A, Song Q, Mulder D W, King P W . ACS Nano, 2014,8:10790.
[25]
Caputo C A, Gross M A, Lau V W, Cavazza C, Lotsch B V, Reisner E . Angew. Chem. Int. Ed. Engl., 2014,53:11538.
[26]
Caputo C A, Wang L, Beranek R, Reisner E . Chem.Sci, 2015,6:5690.
[27]
Chica B, Wu C H, Liu Y, Adams M W W, Lian T Q, Dyer R B . Energy. Environ. Sci., 2017,10:2245.
[28]
Peters J W, Lanzilotta W N, Lemon B J, Seefeldt L C . Science, 1998,282:1853.
[29]
Nicolet Y, Piras C, Legrand P, Hatchikian C E, Fontecilla-Camps J C . Structure, 1999,7:13.
[30]
Cao W N, Wang F, Wang H Y, Chen B, Feng K, Tung C H, Wu L Z . Chem. Commun., 2012,48:8081.
[31]
Jian J X, Ye C, Wang X Z, Wen M, Li Z J, Li X B, Chen B, Tung C H, Wu L Z . Energy. Environ. Sci., 2016,9:2083.
[32]
Wang F, Wang W G, Wang X J, Wang H Y, Tung C H, Wu L Z . Angew. Chem. Int. Ed. Engl., 2011,50:3193.
[33]
Wang F, Wang W G, Wang H Y, Si G, Tung C H, Wu L Z . ACS. Catal., 2012,2:407.
[34]
Gloaguen F, Lawrence J D, Rauchfuss T B . J. Am. Chem. Soc., 2001,123:9476.
[35]
Song L C, Tang M Y, Su F H, Hu Q M . Angew. Chem. Int. Ed., 2006,45:1130.
[36]
Song L C, Wang L X, Tang M Y, Li C G, Song H B, Hu Q M . Organometallics., 2009,28:3834.
[37]
Na Y, Wang M, Pan J X, Zhang P, Akermark B, Sun L C . Inorg. Chem., 2008,47:2805.
[38]
Kluwer A M, Kapre R, Hartl F, Lutz M, Spek A L, Brouwer A M, van Leeuwen P W N M, Reek J N H . Proc. Natl. Acad. Sci. USA., 2009,106:10460.
[39]
Wang W G, Wang F, Wang H Y, Si G, Tung C H, Wu L Z . Chem. Asian J., 2010,5:1796.
[40]
Wang H Y, Si G, Cao W N, Wang W G, Li Z J, Wang F, Tung C H, Wu L Z . Chem. Commun., 2011,47:8406.
[41]
Wen F Y, Wang X L, Huang L, Ma G J, Yang J H, Li C . ChemSusChem., 2012,5:849.
[42]
Li C B, Li Z J, Yu S, Wang G X, Wang F, Meng Q Y, Chen B, Feng K, Tung C H, Wu L Z . Energy. Environ. Sci., 2013,6:2597.
[43]
Jian J X, Liu Q, Li Z J, Wang F, Li X B, Li C B, Liu B, Meng Q Y, Chen B, Feng K, Tung C H, Wu L Z . Nat. Commun., 2013,4:2695.
[44]
Wang F, Liang W J, Jian J X, Li C B, Chen B, Tung C H, Wu L Z . Angew. Chem. Int. Ed. Engl., 2013,52:8134.
[45]
Wen M, Li X B, Jian J X, Wang X Z, Wu H L, Chen B, Tung C H, Wu L Z . Sci. Rep., 2016,6:29851.
[46]
Gimbert-Surinach C, Albero J, Stoll T, Fortage J, Collomb M N, Deronzier A, Palomares E, Llobet A . J. Am. Chem. Soc., 2014,136:7655.
[47]
Yuan Y J, Chen D Q, Xiong M, Zhong J S, Wan Z Y, Zhou Y, Liu S, Yu Z T, Yang L X, Zou Z G . Appl.Catal.B-Environ., 2017,204:58.
[48]
Lv H J, Ruberu T P A, Fleischauer V E, Brennessel W W, Neidig M L, Eisenberg R. J. Am. Chem. Soc., 2016,138:11654.
[49]
Han Z, Qiu F, Eisenberg R, Holland P L, Krauss T D . Science, 2012,338:1321.
[50]
Li Z J, Li X B, Wang J J, Yu S, Li C B, Tung C H, Wu L Z . Energy. Environ. Sci., 2013,6:465.
[51]
Li Z J, Fan X B, Li X B, Li J X, Ye C, Wang J J, Yu S, Li C B, Gao Y J, Meng Q Y, Tung C H, Wu L Z . J. Am. Chem. Soc., 2014,136:8261.
[52]
Li X B, Gao Y J, Wang Y, Zhan F, Zhang X Y, Kong Q Y, Zhao N J, Guo Q, Wu H L, Li Z J, Tao Y, Zhang J P, Chen B, Tung C H, Wu L Z . J. Am. Chem. Soc., 2017,139:4789.
[53]
Liu M, Chen Y, Su J, Shi J, Wang X, Guo L J . Nat. Energy., 2016,1:16151.
[54]
Wu L Z, Chen B, Li Z J, Tung C H . Acc. Chem. Res., 2014,47:2177.
[55]
Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N, Ikuhara Y, Domen K . Angew. Chem. Int. Ed. Engl., 2015,54:2955.
[56]
Maeda K, Takata T, Hara M, Saito N, Inoue Y, Kobayashi H, Domen K . J. Am. Chem. Soc., 2005,127:8286.
[57]
Mu L C, Zhao Y, Li A L, Wang S Y, Wang Z L, Yang J X, Wang Y, Liu T F, Chen R T, Zhu J, Fan F T, Li R G, Li C . Energy. Environ. Sci., 2016,9:2463.
[58]
Wang B, Shen S H, Guo L J . ChemCatChem., 2016,8:798.
[59]
Wang D A, Hisatomi T, Takata T, Pan C S, Katayama M, Kubota J, Domen K . Angew. Chem. Int. Ed., 2013,52:11252.
[60]
Takata T, Pan C S, Nakabayashi M, Shibata N, Domen K . J. Am. Chem. Soc., 2015,137:9627.
[61]
Bard A J . J. Photochem., 1979,10:59.
[62]
Abe R, Sayama K, Domen K, Arakawa H . Chem. Phys. Lett., 2001,344:339.
[63]
Maeda K, Higashi M, Lu D L, Abe R, Domen K . J. Am. Chem. Soc., 2010,132:5858.
[64]
Liu J, Ke J, Li Y, Liu B J, Wang L D, Xiao H N, Wang S B . Appl. Catal. B-Environ., 2018,236:396.
[65]
Abe R, Shinmei K, Koumura N, Hara K, Ohtani B . J. Am. Chem. Soc., 2013,135:16872.
[66]
Wang W, Chen J, Li C, Tian W . Nat.Commun, 2014,5:4647.
[67]
Zhu M, Sun Z, Fujitsuka M, Majima T . Angew. Chem. Int. Ed. Engl., 2018,57:2160.
[68]
Wang Q, Hisatomi T, Jia Q X, Tokudome H, Zhong M, Wang C Z, Pan Z H, Takata T, Nakabayashi M, Shibata N, Li Y B, Sharp I D, Kudo A, Yamada T, Domen K . Nat.Mater, 2016,15:611.
[69]
Wang Q, Hisatomi T, Suzuk Y, Pan Z, Seo J, Katayama M, Minegishi T, Nishiyama H, Takata T, Seki K, Kudo A, Yamada T, Domen K . J. Am. Chem. Soc., 2017,139:1675.
[70]
Fujishima A, Honda K . Nature, 1972,238:37.
[71]
Mersch D, Lee C Y, Zhang J Z, Brinkert K, Fontecilla-Camps J C, Rutherford A W, Reisner E . J. Am. Chem. Soc., 2015,137:8541.
[72]
Wang W, Wang H, Zhu Q, Qin W, Han G, Shen J R, Zong X, Li C . Angew. Chem. Int. Ed., 2016,55:9229.
[73]
Li Z, Wang W, Ding C, Wang Z, Liao S, Li C . Energy. Environ. Sci., 2017,10:765.
[74]
Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, Frydrych J, Graetzel M . J. Am. Chem. Soc., 2010,132:7436.
[75]
Kment S, Schmuki P, Hubicka Z, Machala L, Kirchgeorg R, Liu N, Wang L, Lee K, Olejnicek J, Cada M, Gregora I, Zboril R . ACS Nano, 2015,9:7113.
[76]
Luo Z, Li C, Liu S, Wang T, Gong J . Chem.Sci, 2017,8:91.
[77]
Tang P, Xie H, Ros C, Han L, Biset-Peiro M, He Y, Kramer W, Rodriguez A P, Saucedo E, Galan-Mascaros J R, Andreu T, Morante J R, Arbiol J Energy. Environ. Sci., 2017,10:2124.
[78]
Seabold J A, Choi K S . J. Am. Chem. Soc., 2012,134:2186.
[79]
Kim T W, Choi K S . Science, 2014,343:990.
[80]
Gao X, Li J, Du R, Zhou J, Huang M Y, Liu R, Li J, Xie Z, Wu L Z, Liu Z, Zhang J . Adv Mater, 2017,29:1605308.
[81]
Oh K, Meriadec C, Lassalle-Kaiser B, Dorcet V, Fabre B, Ababou-Girard S, Joanny L, Gouttefangeas F, Loget G . Energy. Environ. Sci., 2018,11:2590.
[82]
Kenney M J, Gong M, Li Y, Wu J Z, Feng J, Lanza M, Dai H . Science, 2013,342:836.
[83]
Mayer M T, Du C, Wang D . J. Am. Chem. Soc., 2012,134:12406.
[84]
Chandra D, Saito K, Yui T, Yagi M . Angew Chem. Int. Ed., 2013,52:12606.
[85]
Ma M, Zhang K, Li P, Jung M S, Jeong M J, Park J H . Angew Chem. Int. Ed., 2016,55:11819.
[86]
Solarska R, Bienkowski K, Zoladek S, Majcher A, Stefaniuk T, Kulesza P J, Augustynski J . Angew Chem. Int. Ed., 2014,53:14196.
[87]
Li X B, Tung C H, Wu L Z . Nat. Rev. Chem., 2018,2:160.
[88]
Nann T, Ibrahim S K, Woi P M, Xu S, Ziegler J, Pickett C J . Angew. Chem. Int. Ed. Engl., 2010,49:1574.
[89]
Wu H L, Li X B, Tung C H, Wu L Z . Adv. Sci., 2018,5:1700684.
[90]
Liu B, Li X B, Gao Y J, Li Z J, Meng Q Y, Tung C H, Wu L Z . Energy. Environ. Sci., 2015,8:1443.
[91]
Li X B, Liu B, Wen M, Gao Y J, Wu H L, Huang M Y, Li Z J, Chen B, Tung C H, Wu L Z . Adv. Sci., 2016,3:1500282.
[92]
Li J, Gao X, Liu B, Feng Q L, Li X B, Huang M Y, Liu Z F, Zhang J, Tung C H, Wu L Z . J. Am. Chem. Soc., 2016,138:3954.
[93]
Pan L F, Kim J H, Mayer M T, Son M K, Ummadisingu A, Lee J S, Hagfeldt A, Luo J S, Gratzel M . Nature Catalysis, 2018,1:412.
[94]
Meng Q Y, Zhong J J, Liu Q, Gao X W, Zhang H H, Lei T, Li Z J, Feng K, Chen B, Tung C H, Wu L Z . J. Am. Chem. Soc., 2013,135:19052.
[95]
Zhong J J, Meng Q Y, Liu B, Li X B, Gao X W, Lei T, Wu C J, Li Z J, Tung C H, Wu L Z . Org. Lett., 2014,16:1988.
[96]
Chen B, Wu L Z, Tung C H . Acc. Chem. Res., 2018,51:2512.
[97]
Wu C J, Meng Q Y, Lei T, Zhong J J, Liu W Q, Zhao L M, Li Z J, Chen B, Tung C H, Wu L Z . ACS Catal., 2016,6:4635.
[98]
Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J X, Wu L Z, Lei A . J. Am. Chem. Soc., 2015,137:9273.
[99]
Yang Q, Zhang L, Ye C, Luo S, Wu L Z, Tung C H . Angew Chem. Int. Ed., 2017,56:3694.
[100]
Zheng Y W, Chen B, Ye P, Feng K, Wang W, Meng Q Y, Wu L Z, Tung C H . J. Am. Chem. Soc., 2016,138:10080.
[101]
Zheng Y W, Ye P, Chen B, Meng Q Y, Feng K, Wang W, Wu L Z, Tung C H . Org. Lett., 2017,19:2206.
[102]
Li X B, Li Z J, Gao Y J, Meng Q Y, Yu S, Weiss R G, Tung C H, Wu L Z . Angew. Chem. Int.Ed., 2014,53:2085.
[103]
Zhao L M, Meng Q Y, Fan X B, Ye C, Li X B, Chen B, Ramamurthy V, Tung C H, Wu L Z . Angew. Chem. Int. Ed. Engl., 2017,56:3020.
[104]
Chai Z G, Zeng T T, Li Q, Lu L Q, Xiao W J, Xu D S . J. Am. Chem. Soc., 2016,138:10128.
[105]
Liu H, Xu C Y, Li D D, Jiang H L . Angew. Chem. Int. Ed., 2018,57:5379.
[106]
Wang J J, Li Z J, Li X B, Fan X B, Meng Q Y, Yu S, Li C B, Li J X, Tung C H, Wu L Z . ChemSusChem., 2014,7:1468.
[107]
Han G Q, Jin Y H, Burgess R A, Dickenson N E, Cao X M, Sun Y J . J. Am. Chem. Soc., 2017,139:15584.
[108]
Kasap H, Achilleos D S, Huang A, Reisner E . J. Am. Chem. Soc., 2018,140:11604.
[1] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[2] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[3] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[4] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[5] 曾毅, 任永生, 马文会, 陈辉, 詹曙, 曹静. 冶金法生产太阳能级硅的除硼方法、技术及工艺[J]. 化学进展, 2022, 34(4): 926-949.
[6] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[7] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[8] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[9] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[10] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[11] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[12] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[13] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[14] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[15] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
阅读次数
全文


摘要

人工光合成制氢