English
新闻公告
More
化学进展 2019, Vol. 31 Issue (6): 811-830 DOI: 10.7536/PC181042 前一篇   后一篇

• •

锰铈二元氧化物的制备与应用

刘德培, 田敬, 李静莎, 唐正, 王海燕**(), 唐有根**()   

  1. 中南大学化学化工学院 化学电源湖南省重点实验室 锰资源高效清洁利用湖南省重点实验室 长沙 410083
  • 收稿日期:2018-11-01 出版日期:2019-06-15 发布日期:2019-04-26
  • 通讯作者: 王海燕, 唐有根
  • 基金资助:
    国家自然科学基金项目(21571189); 国家自然科学基金项目(21671200); 湖南省科技计划项目(2017TP1001); 湖南省科技计划项目(2016TP1007); 中南大学创新驱动项目(2016CXS009)

Preparation and Applications of Mn-Ce Binary Oxides

Depei Liu, Jing Tian, Jingsha Li, Zheng Tang, Haiyan Wang**(), Yougen Tang**()   

  1. Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources,College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received:2018-11-01 Online:2019-06-15 Published:2019-04-26
  • Contact: Haiyan Wang, Yougen Tang
  • About author:
    ** E-mail: (Haiyan Wang);
    (Yougen Tang)
  • Supported by:
    National Natural Science Foundation of China(21571189); National Natural Science Foundation of China(21671200); Hunan Provincial Science and Technology Plan Project, China(2017TP1001); Hunan Provincial Science and Technology Plan Project, China(2016TP1007); Innovation-Driven Project of Central South University(2016CXS009)

Mn-Ce二元氧化物具有资源丰富、成本低廉、催化活性优异等优点,引起了科研人员的广泛关注,在诸多领域具有潜在的应用价值。本文详细阐述了Mn-Ce二元氧化物的合成方法和应用领域。合成方法包括沉淀法、溶胶-凝胶法、水热法、浸渍法等,并比较了各方法的优缺点。在应用方面,主要综述了Mn-Ce二元氧化物在空气污染物消除(消除NOx、VOCs、CO、碳烟、Hg0、甲醛)和能源储存(金属-空气电池、超级电容器)两个方面的应用及其作用机制。另外,本文还介绍了Mn-Ce二元氧化物在水污染治理(氟离子吸附、三价砷吸附和甲基橙吸附等)和有机催化合成方面的应用。最后,讨论了Mn-Ce二元氧化物在制备中存在的问题,并对之后的研究方向进行了展望。

Mn-Ce binary oxide has been considered as a kind of outstanding materials and widely applied to many fields by the reasons of abundance, low cost, excellent oxygen storage and release capability and high catalytic performance. In this review, the preparation and applications of Mn-Ce binary oxides have been reviewed in detail. Preparation methods including precipitation method, sol-gel method, hydrothermal method, impregnation method, and so on, are summarized. Meanwhile, their merits and demerits are compared. As for applications, air pollution removal(NOx, VOCs, CO, soot, Hg0and formaldehyde) and energy storage systems(supercapacitors and metal-air batteries) are overviewed particularly. In addition, the applications of water pollution disposal(fluoride adsorbed, As(Ⅲ) removal, methyl orange degradation) and organic catalytic synthesis are introduced briefly. Finally, the main problems of preparation methods of Mn-Ce binary oxides are discussed and the research directions are forecast.

()
表1 锰氧化物的晶体结构
Table 1 Crystal structure of manganese oxides
图1 CeO2晶体结构
Fig. 1 Crystal structure of CeO2
图2 花状Mn掺杂CeO2的合成和SEM图[16]
Fig. 2 Schematic illustration of synthesis process and SEM image of flower like Mn-doped CeO2[16]
图3 (A)Mn-CeOx/CNTs的合成;(B,C)酸处理碳纳米管和Mn-CeOx/CNTs的TEM图[19]
Fig. 3 (A) Chematic illustration of synthesis process of Mn-CeOx/CNTs;(B, C) TEM images of acid-treated CNTs and Mn-CeOx/CNTs[19]
图4 溶胶-凝胶法制备Mn-Ce二元氧化物示意图
Fig. 4 Schematic illustration of synthesis process of Mn-Ce binary oxide by sol-gel method
图5 (A)CeO2纳米棒负载MnO2纳米片异质结构的合成示意图;(B, C)SEM和HRTEM图[27]
Fig. 5 (A) Schematic illustration of synthesis process and(B, C) SEM and high resolution TEM images of CeO2 nanowire/MnO2 nanosheet heterogeneous structure[27]
图6 (A)Mn3O4/CeO2纳米管的合成示意图; (B, C)Mn3O4/CeO2纳米管的FESEM和TEM图[33]
Fig. 6 (A) Schematic illustration of synthesis process and(B, C) FESEM and TEM images of Mn3O4/CeO2 nanotubes[33]
图7 (A, B)MnxCe1-xO2的SEM图[40]
Fig. 7 (A, B) SEM images of MnxCe1-xO2[40]
图8 (A)SAS的工艺流程图;(B,C)空心和实心MnOx-CeO2纳米球的HRTEM图[41]
Fig. 8 (A) Schematic diagram of SAS apparatus;(B,C) High resolution TEM images of hollow and solid MnOx-CeO2 nanospheres[41]
表2 不同方法制备产物的催化性能和物化性质[51]
Table 2 Catalytic performance and physicochemical properties of different products[51]
图9 (A, B)中空MnOx-CeO2纳米管催化剂的SEM和TEM图;催化剂的(C)NOx的转化率和(D)N2的选择性[54]
Fig. 9 (A, B)SEM and TEM images of hollow MnOx-CeO2 nanotubes;(C) NOx conversion and(D) N2 selectivity of catalysts[54]
图10 (A)不同Ce/Ti比材料的示意图;复合催化剂的(B)NOx的转化率和(C)耐受性[57]
Fig. 10 (A) Schematic diagram;(B) NOx conversion and (C) tolerance of catalysts with different Ce/Ti ratios[57]
图11 (A)不同Ce/Mn比催化剂的苯转化率;(B)Ce0.3Mn0.7O2的TEM图;(C)CexMn1-xO2上苯催化氧化的机理图[25]
Fig. 11 (A) Benzene conversion of catalysts with different Ce/Mn ratios;(B) TEM image of Ce0.3Mn0.7O2;(C) The mechanism of benzene catalytic oxidation over CexMn1-xO2[25]
图12 Mn0.8Ce0.2O2/HZSM-5的(A)氯苯转化率;(B)反应模型图;(C)反应机理图[87,88]
Fig. 12 (A) Chlorobenzene conversion;(B) Schematic diagram of reaction models and (C) Reaction mechanism of Mn0.8Ce0.2O2/HZSM-5[87,88]
图13 碳烟氧化过程中的氧空位的形成示意图[104]
Fig. 13 Schematic diagram of evolution of oxygen vacancies in soot catalytic oxidation[104]
图14 6%Ce-6%MnOx/Ti-PILC共同催化NH3-SCR脱硝和Hg0氧化的机理图[152]
Fig. 14 Reaction mechanism for NH3-SCR and Hg0 oxidation of 6%Ce-6%MnOx/Ti-PILC[152]
表3 Mn-Ce二元氧化物对大气污染物的消除
Table 3 Abatement of atmospheric pollutants by Mn-Ce binary oxides
图15 Mn0.3Ce0.7O2的(A)极化曲线;(B)200 mA·cm-2恒流放电曲线[156]
Fig. 15 (A)The linear polarization curves and (B)galvanostatic discharge curves at 200 mA·cm-2 of Mn0.3Ce0.7O2 catalyst[156]
[1]
Byon H R, Suntivich J, Shao-Horn Y . Chem. Mater., 2011,23(15):3421.
[2]
Mao L Q, Sotomura T, Nakatsu K, Koshiba N, Zhang D, Ohsaka T . J. Electrochem. Soc., 2002,149(4):A504.
[3]
Liu Y S, Sun Q, Li W Z, Adair K R, Li J, Sun X L . Green Energy Environ., 2017,2(3):246.
[4]
朱瑾(Zhu J), 楼子墨(Lou Z M), 王卓行(Wang Z X), 徐新(Xu X) . 化学进展 (Prog. Chem.), 2014,26(9):1551.
[5]
张林静(Zhang L J), 张琼(Zhang Q), 郑袁明(Zheng Y M), 郑明兰(Zheng M L) . 环境科学学报 (Acta Sci. Circum.), 2013,33(6):1519.
[6]
Li L, Liu F, Wu F, Chen R J . J. Inorg. Mater., 2013,27(10):1009.
[7]
耿九光(Geng J G), 臧文杰(Zang W J), 李毅(Li Y), 陶建强(Tao J Q) . 化工进展 (Chem. Ind. Eng. Prog.), 2014,33(3):720.
[8]
郭金玲(Guo J L), 李常燕(Li C Y), 胡长峰(Hu C F), 沈岳年(Shen Y N) . 化学通报 (Chem. Bull.), 2014,77(2):146.
[9]
魏齐龙(Wei Q L), 孟玉堂(Meng Y T), 何建国(He J G), 黄文(Huang W) . 稀有金属 (Chin. J. Rare Met.), 2010,( s1):113.
[10]
Ginting E, Hu S, Thorne J E, Zhou Y H, Zhu J F, Zhou J . Appl. Surf. Sci., 2013,283:1.
[11]
Ginting E, Peterson E W, Zhou J . Appl. Catal. B, 2016,197:337.
[12]
Zhang M H, Jiang D Y, Jiang H X . Mater. Res. Bull., 2012,47(12):4006.
[13]
García P D, Juan A, Irigoyen B . J. Phys. Chem. C, 2013,117(35):18063.
[14]
Djadoun A, Benadda A, Guessis H, Barama A. Proceeding of the International Conference Nanomaterials: Applications and Properties. Sumy State University Publishing, 2013,01PCSI05.
[15]
Shen B X, Wang F M, Liu T . Powder Technol., 2014,253:152.
[16]
Liu L, Shi J J, Zhang X J, Liu J Z . J. Chem., 2015,2015:1.
[17]
Arena F, Trunfio G, Negro J, Spadaro L . Mater. Res. Bull., 2008,43(3):539.
[18]
Dinh M T N, Giraudon J M, Vandenbroucke A M, Morent R, de Geyter N, Lamonier J F . Appl. Catal. B, 2015,172/173:65.
[19]
Wang X, Zheng Y Y, Xu Z, Liu Y, Wang X L . Catal. Sci. Technol., 2014,4(6):1738.
[20]
Rao T, Shen M Q, Jia L W, Hao J J, Wang J . Catal. Commun., 2007,8(11):1743. https://www.ncbi.nlm.nih.gov/pubmed/18986244

doi: 10.1586/14737175.8.11.1743     URL     pmid: 18986244
[21]
Zhang H, Yang W L, Li D, Wang X Y . React. Kinet. Catal. Lett., 2009,97(2):263.
[22]
Cao F, Xiang J, Su S, Wang P Y, Hu S, Sun L S . Fuel Process. Technol., 2015,135:66.
[23]
Liu P, Ren Y R, Huang X B, Dai Y X, Liu X Y, Sun D, He H N, Tang Y G, Wang H Y . Electrochim. Acta, 2018,278:42.
[24]
Zhang Q, He H N, Huang X B, Yan J, Tang Y G, Wang H Y . Chem. Eng. J., 2018,332:57.
[25]
Wang Z, Shen G L, Li J Q, Liu H D, Wang Q, Chen Y F . Appl. Catal. B, 2013,138/139:253.
[26]
You X C, Sheng Z Y, Yu D Q, Yang L, Xiao X, Wang S . Appl. Surf. Sci., 2017,423:845.
[27]
Du H W, Wang Y, Arandiyan H, Younis A, Scott J, Qu B, Wan T, Lin X, Chen J C, Chu D W . Mater. Today Commun., 2017,11:103.
[28]
Guo R T, Chen Q L, Ding H L, Wang Q S, Pan W G, Yang N Z, Lu C Z . Catal. Commun., 2015,69:165.
[29]
Schmit F, Bois L, Chiriac R, Toche F, Chassagneux F, Descorme C, Besson M, Khrouz L . J. Phys. Chem. Solids, 2017,103:22.
[30]
Zhang D S, Zhang L, Fang C, Gao R H, Qian Y L, Shi L Y, Zhang J P . RSC Adv., 2013,3(23):8811.
[31]
Sun Z H, Wang J, Zhu J X, Wang C, Wang J Q, Shen M Q . New J. Chem., 2017,41(8):3106. http://xlink.rsc.org/?DOI=C6NJ03838G

doi: 10.1039/C6NJ03838G     URL    
[32]
Yao X J, Kong T T, Chen L, Ding S M, Yang F M, Dong L . Appl. Surf. Sci., 2017,420:407. https://linkinghub.elsevier.com/retrieve/pii/S0169433217315118

doi: 10.1016/j.apsusc.2017.05.156     URL    
[33]
Guo S, Sun W Z, Yang W Y, Xu Z C, Li Q, Shang J K . ACS Appl. Mater. Inter., 2015,7(47):26291. https://www.ncbi.nlm.nih.gov/pubmed/26554576

doi: 10.1021/acsami.5b08862     URL     pmid: 26554576
[34]
Li H L, Wu C Y, Li Y, Li L Q, Zhao Y C, Zhang J Y . J. Hazard. Mater., 2012,243:117. https://www.ncbi.nlm.nih.gov/pubmed/23131500

doi: 10.1016/j.jhazmat.2012.10.007     URL     pmid: 23131500
[35]
Wang P Y, Su S, Xiang J, You H W, Cao F, Sun L S, Hu S, Zhang Y . Chemosphere, 2014,101:49. https://www.ncbi.nlm.nih.gov/pubmed/24332734

doi: 10.1016/j.chemosphere.2013.11.034     URL     pmid: 24332734
[36]
Xie Y E, Li C T, Zhao L K, Zhang J, Zeng G M, Zhang X N, Zhang W, Tao S S . Appl. Surf. Sci., 2015,333:59.
[37]
He C, Shen B X, Chen J H, Cai J . Environ. Sci. Technol., 2014,48(14):7891. https://www.ncbi.nlm.nih.gov/pubmed/24956201

doi: 10.1021/es5007719     URL     pmid: 24956201
[38]
Ma K L, Zou W X, Zhang L, Li L L, Yu S H, Tang C J, Gao F, Dong L . RSC Adv., 2017,7(10):5989.
[39]
Wei Y J, Liu J, Su W, Sun Y, Zhao Y L . Catal. Sci. Technol., 2017,7(7):1565.
[40]
Tang Q, Du J, Xie B, Yang Y, Yu W C, Tao C Y . J. Rare Earth, 2018,36:64. https://linkinghub.elsevier.com/retrieve/pii/S1002072117300662

doi: 10.1016/j.jre.2017.06.010     URL    
[41]
Jiang D Y, Zhang M H, Li G M, Jiang H X . Catal. Commun., 2012,17:59. https://www.ncbi.nlm.nih.gov/pubmed/27658860

doi: 10.2174/1871526516666161005155847     URL     pmid: 27658860
[42]
Li L, Jing F, Yan J, Jing J, Chu W . Catal. Today, 2017,297:167. https://linkinghub.elsevier.com/retrieve/pii/S0920586117302857

doi: 10.1016/j.cattod.2017.04.053     URL    
[43]
Wang H Q, Jiang H X, Kuang L, Zhang M H . J. Supercrit. Fluid., 2014,92:84.
[44]
Jiang H X, Zhao J, Jiang D Y, Zhang M H . Catal. Lett., 2013,144(2):325.
[45]
Andreoli S, Deorsola F A, Pirone R . Catal. Today, 2015,253:199.
[46]
Zhou L L, Li C T, Zhao L K, Zeng G M, Gao L, Wang Y, Yu M E . Appl. Surf. Sci., 2016,389:532.
[47]
Qi G S, Yang R T . J. Catal., 2003,217(2):434. https://www.ncbi.nlm.nih.gov/pubmed/19289119

doi: 10.1016/j.expneurol.2009.03.003     URL     pmid: 19289119
[48]
Eigenmann F, Maciejewski M, Baiker A . Appl. Catal. B, 2006,62(3/4):311.
[49]
Lu Y H, Chen H T . J. Phys. Chem. C, 2014,118(19):10043.
[50]
Maitarad P, Han J, Namuangruk S, Shi L Y, Chitpakdee C, Meeprasert J, Junkaew A, Kungwan N, Zhang D S . Mol. Simulat., 2017,43(13/16):1.
[51]
姚小江(Yao X J), 马凯莉(Ma K L), 邹伟欣(Zou W X), 何圣贵(He S G), 安继斌(An J B), 杨复沫(Yang F M), 董林(Dong L) . 催化学报 (Chin. J. Catal.), 2016,38(1):146.
[52]
Gao G, Shi J W, Liu C, Gao C, Fan Z Y, Niu C M . Appl. Surf. Sci., 2017,411:338. https://linkinghub.elsevier.com/retrieve/pii/S0169433217308449

doi: 10.1016/j.apsusc.2017.03.164     URL    
[53]
Li L, Sun B W, Sun J F, Yu S H, Ge C Y, Tang C J, Dong L . Catal. Commun., 2017,100:98. https://linkinghub.elsevier.com/retrieve/pii/S1566736717302509

doi: 10.1016/j.catcom.2017.06.019     URL    
[54]
Li C L, Tang X L, Yi H H, Wang L F, Cui X X, Chu C, Li J Y, Zhang R C, Yu Q J . Appl. Surf. Sci., 2018,428:924. https://linkinghub.elsevier.com/retrieve/pii/S0169433217327794

doi: 10.1016/j.apsusc.2017.09.131     URL    
[55]
Liu C, Gao G, Shi J W, He C, Li G D, Bai N, Niu C M . Catal. Commun., 2016,86:36.
[56]
Li S H, Huang B C, Yu C L . Catal. Commun., 2017,98:47.
[57]
Lee S M, Park K H, Hong S C . Chem. Eng. J., 2012,195/196:323.
[58]
Jin R B, Liu Y, Wu Z B, Wang H Q, Gu T T . Chemosphere, 2010,78(9):1160. https://www.ncbi.nlm.nih.gov/pubmed/20042220

doi: 10.1016/j.chemosphere.2009.11.049     URL     pmid: 20042220
[59]
Yang Q W, Li P F, Ren B N, Zhu Y, Xu D Y . Adv. Mater. Res., 2013,773:645.
[60]
Carja G, Kameshima Y, Okada K, Madhusoodana C D . Appl. Catal. B, 2007,73(1/2):60.
[61]
Boningari T, Ettireddy P R, Somogyvari A, Liu Y, Vorontsov A, McDonald C A, Smirniotis P G .J. Catal., 2015,325:145.
[62]
Liu B T, Huang C J, Ke Y X, Wang W H, Kuo H L, Lin D, Lin V, Lin S H . Appl. Catal. A, 2017,538:74.
[63]
Zhang L, Zhang D S, Zhang J P, Cai S X, Fang C, Huang L, Li H R, Gao R H, Shi L Y . Nanoscale, 2013,5(20):9821. https://www.ncbi.nlm.nih.gov/pubmed/23970126

doi: 10.1039/c3nr03150k     URL     pmid: 23970126
[64]
Chen X B, Wang P L, Fang P, Ren T Y, Liu Y, Cen C P, Wang H Q, Wu Z B . Fuel Process. Technol., 2017,167:221.
[65]
Zhang Y B, Zheng Y Y, Wang X, Lu X L . RSC Adv., 2015,5:28385. http://xlink.rsc.org/?DOI=C5RA01129A

doi: 10.1039/C5RA01129A     URL    
[66]
Qu L, Li C T, Zeng G M, Zhang M Y, Fu M F, Ma J F, Zhan F M, Luo D Q . Chem. Eng. J., 2014,242:76. https://linkinghub.elsevier.com/retrieve/pii/S1385894713016574

doi: 10.1016/j.cej.2013.12.076     URL    
[67]
Liu Q L, Fu Z C, Ma L, Niu H J Y, Liu C X, Li J H, Zhang Z Y . Appl. Catal. A, 2017,547:146. https://linkinghub.elsevier.com/retrieve/pii/S0926860X17304040

doi: 10.1016/j.apcata.2017.08.024     URL    
[68]
Liu Z M, Zhu J Z, Li J H, Ma L L, Woo S L . ACS Appl. Mater. Inter., 2014,6(16):14500. https://www.ncbi.nlm.nih.gov/pubmed/25046245

doi: 10.1021/am5038164     URL     pmid: 25046245
[69]
Xiong Y, Tang C J, Yao X J, Zhang L, Li L L, Wang X B, Deng Y, Gao F, Dong L . Appl. Catal. A, 2015,495:206.
[70]
Gao F Y, Tang X L, Yi H H, Li J Y, Zhao S Z, Wang J G, Chu C, Li C L . Chem. Eng. J., 2017,317:20.
[71]
Jin R B, Liu Y, Wu Z B, Wang H Q, Gu T T . Catal. Today, 2010,153(3/4):84.
[72]
Lin F W, He Y, Wang Z H, Ma Q, Whiddon R, Zhu Y Q, Liu J Z . RSC Adv., 2016,6(37):31422.
[73]
Jin R B, Liu Y, Wang Y, Cen W L, Wu Z B, Wang H Q, Weng X L . Appl. Catal. B, 2014,148/149:582.
[74]
Wang Y L, Li X X, Zhan L, Li C, Qiao W M, Ling L C . Ind. Eng. Chem. Res., 2015,54(8):2274.
[75]
Liu Y, Cen W L, Wu Z B, Weng X L, Wang H Q . J. Phys. Chem. C, 2012,116(43):22930.
[76]
Li W B, Wang J X, Gong H . Catal. Today, 2009,148(1/2):81.
[77]
Norsic C, Tatibouët J M, Batiot-Dupeyrat C, Fourré E . Chem. Eng. J., 2016,304:563.
[78]
Ordóñez S, Bello L, Sastre H, Rosal R, Dıez F V . Appl. Catal. B, 2002,38(2):139.
[79]
Okumura K, Kobayashi T, Tanaka H, Niwa M . Appl. Catal. B, 2003,44(4):325. https://linkinghub.elsevier.com/retrieve/pii/S0926337303001012

doi: 10.1016/S0926-3373(03)00101-2     URL    
[80]
Lu H F, Zhou Y, Huang H F, Zhang B, Chen Y F . J. Rare Earth, 2011,29(9):855.
[81]
Li W M, Liu H D, Ma X, Mo S P, Li S D, Chen Y F . J. Porous Mater., 2018,25:107.
[82]
Hu F Y, Chen J J, Zhao S, Li K Z, Si W Z, Song H, Li J H . Appl. Catal. A, 2017,540:57.
[83]
Du J P, Qu Z P, Dong C, Song L X, Qin Y, Huang N . Appl. Surf. Sci., 2018,433:1025.
[84]
Wang Z, Yang M, Shen G L, Liu H D, Chen Y F, Wang Q . J. Nanopart. Res., 2014,16(5):2367. http://link.springer.com/10.1007/s11051-014-2367-5

doi: 10.1007/s11051-014-2367-5     URL    
[85]
Liao Y N, Fu M L, Chen L M, Wu J L, Huang B C, Ye D Q . Catal. Today, 2013,216:220.
[86]
Wu Y S, Zhang Y X, Liu M, Ma Z C . Catal. Today, 2010,153(3/4):170.
[87]
Sun P F, Wang W L, Dai X X, Weng X L, Wu Z B . Appl. Catal. B, 2016,198:389.
[88]
Weng X L, Sun P F, Long Y, Meng Q J, Wu Z B . Environ. Sci. Technol., 2017,51(14):8057. https://www.ncbi.nlm.nih.gov/pubmed/28614947

doi: 10.1021/acs.est.6b06585     URL     pmid: 28614947
[89]
He C, Yu Y K, Shi J W, Shen Q, Chen J S, Liu H X . Mater. Chem. Phys., 2015,157:87.
[90]
Wu L Y, He F, Luo J Q, Liu S T . RSC Adv., 2017,7(43):26952.
[91]
Yi W X, Qian K, Dao L . Appl. Catal. B, 2009,86(3/4):166.
[92]
Kan J E, Deng L, Li B, Huang Q, Zhu S M, Shen S B, Chen Y W . Appl. Catal. A, 2017,530:21.
[93]
Chojnacka A, Molenda M, Chmielarz L, Piwowarska Z, Gajewska M, Dudek B, Dziembaj R . Catal. Today, 2015,257:104. https://linkinghub.elsevier.com/retrieve/pii/S0920586115001212

doi: 10.1016/j.cattod.2015.02.019     URL    
[94]
Delimaris D, Ioannides T . Catalysts, 2017,7(11):339.
[95]
Ivanova R, Tsoncheva T . Bulg. Chem. Commun., 2017,49:176.
[96]
Tang W X, Wu X F, Liu G, Li S D, Li D Y, Li W H, Chen Y F . J. Rare Earth, 2015,33(1):62.
[97]
Colman-Lerner E, Peluso M A, Sambeth J, Thomas H . J. Rare Earth, 2016,34(7):675.
[98]
Zhu X B, Liu S Y, Cai Y X, Gao X, Zhou J S, Zheng C H, Tu X . Appl. Catal. B, 2016,183:124.
[99]
Wang B W, Chi C M, Xu M, Wang C, Meng D J . Chem. Eng. J., 2017,322:679.
[100]
Zhang H, Gu F N, Liu Q, Gao J J, Jia L H, Zhu T Y, Chen Y F, Zhong Z Y, Su F B . RSC Adv., 2014,4(29):14879.
[101]
Gao Y X, Wu X D, Liu S, Weng D . RSC Adv., 2016,6(62):57033.
[102]
He H, Lin X T, Li S J, Wu Z, Gao J H, Wu J L, Wen W, Ye D Q, Fu M L . Appl. Catal. B, 2018,223:134.
[103]
Liang Q, Wu X D, Weng D, Xu H B . Catal. Today, 2008,139(1/2):113. https://linkinghub.elsevier.com/retrieve/pii/S092058610800388X

doi: 10.1016/j.cattod.2008.08.013     URL    
[104]
Lin X T, Li S J, He H, Wu Z, Wu J L, Chen L M, Ye D Q, Fu M L . Appl. Catal. B, 2018,223:91.
[105]
Wu X D, Lin F, Xu H B, Weng D . Appl. Catal. B, 2010,96(1/2):101.
[106]
Haruta M, Kobayashi T, Sano H, Yamada N . Cheminform, 1987,18(42):405.
[107]
Kabbabi A, Faure R, Durand R, Beden B, Hahn F, Leger J M, Lamy C . J. Electroanal. Chem., 1998,444(1):41.
[108]
Bond G C, Thompson D T . Gold Bull., 2000,33(2):41.
[109]
Wang C, Wen C, Lauterbach J, Sasmaz E . Appl. Catal. B, 2017,206:1.
[110]
Sayle T X T, Parker S C, Catlow C R A . J. Chem. Soc. Chem. Commun., 1992,14(14):977.
[111]
Liu W, Flytzanistephanopoulos M . J. Catal., 1995,153(2):304.
[112]
Kang M, Song M W, Kim K L . React. Kinet. Catal. Lett., 2003,79(1):3.
[113]
Zhao F Z, Gong M, Zhang G Y, Li J L . J. Rare Earth, 2015,33(6):604.
[114]
Du P P, Wang W W, Jia C J, Song Q S, Huang Y Y, Si R . Appl. Catal. A, 2016,518:87.
[115]
Venkataswamy P, Jampaiah D, Mukherjee D, Aniz C U, Reddy B M . Catal. Lett., 2016,146(10):2105.
[116]
Zhang X Y, Wei J J, Yang H X, Liu X F, Liu W, Zhang C, Yang Y Z . Eur. J. Inorg. Chem., 2013,2013(25):4443.
[117]
Zhan W C, Zhang X Y, Guo Y L, Wang L, Guo Y, Lu G Z . J. Rare Earth, 2014,32(2):146.
[118]
Zhang J, Cao Y D, Wang C A, Ran R . ACS Appl. Mater. Inter., 2016,8(13):8670. https://www.ncbi.nlm.nih.gov/pubmed/26998672

doi: 10.1021/acsami.6b00002     URL     pmid: 26998672
[119]
Xing X X, Cai Y, Chen N, Li Y X, Deng D Y, Wang Y D . Ceram. Int., 2015,41(3):4675.
[120]
Zhang X M, Deng Y Q, Tian P F, Shang H H, Xu J, Han Y F . Appl. Catal. B, 2016,191:179.
[121]
Arena F, di Chio R, Fazio B, Espro C, Spiccia L, Palella A, Spadaro L . Appl. Catal. B, 2017,210:14. https://linkinghub.elsevier.com/retrieve/pii/S0926337317302618

doi: 10.1016/j.apcatb.2017.03.049     URL    
[122]
Arena F, di Chio R, Filiciotto L, Trunfio G, Espro C, Palella A, Patti A, Spadaro L . Appl. Catal. B, 2017,218:803. https://linkinghub.elsevier.com/retrieve/pii/S0926337317306586

doi: 10.1016/j.apcatb.2017.07.018     URL    
[123]
Nishimura K, Machida K I, Enyo M . J. Electroanal. Chem. Interfacial Electrochem., 1988,251(1):117. https://linkinghub.elsevier.com/retrieve/pii/0022072888803899

doi: 10.1016/0022-0728(88)80389-9     URL    
[124]
Mao C F, Vannice M A . J. Catal., 1995,154(2):230.
[125]
Idriss H, Kim K S, Barteau M A . Surf. Sci., 1992,262(1/2):113.
[126]
Huang H B, Leung D Y C . ACS Catal. 2011,1(4):348. https://pubs.acs.org/doi/10.1021/cs200023p

doi: 10.1021/cs200023p     URL    
[127]
Zhang J H, Li Y B, Wang L, Zhang C B, He H . Catal. Sci. Technol., 2015,5(4):2305. http://xlink.rsc.org/?DOI=C4CY01461H

doi: 10.1039/C4CY01461H     URL    
[128]
Shen Y N, Yang X Z, Wang Y Z, Zhang Y B, Zhu H Y, Gao L, Jia M L . Appl. Catal. B, 2008,79(2):142.
[129]
Zhang J, Jin Y, Li C Y, Shen Y N, Han L, Hu Z X, Di X W, Liu Z L . Appl. Catal. B, 2009,91(1/2):11.
[130]
Tang X F, Li Y G, Huang X M, Xu Y D, Zhu H Q, Wang J G, Shen W J . Appl. Catal., B, 2006,62(3/4):265.
[131]
Tang X F, Chen J L, Li Y G, Li Y, Xu Y D, Shen W J . Chem. Eng. J., 2006,118(1/2):119.
[132]
Tang X F, Chen J L, Huang X M, Xu Y D, Shen W J . Appl. Catal. B, 2008,81(1/2):115.
[133]
Li J W, Pan K L, Yu S J, Yan S Y, Chang M B . J. Environ. Sci.(China), 2014,26(12):2546. https://www.ncbi.nlm.nih.gov/pubmed/25499503

doi: 10.1016/j.jes.2014.05.030     URL     pmid: 25499503
[134]
Quiroz J, Giraudon J M, Gervasini A, Dujardin C, Lancelot C, Trentesaux M, Lamonier J F . ACS Catal., 2015,5(4):2260.
[135]
Wang C, Liu H B, Chen T H, Qing C S, Zou X H, Xie J J, Zhang X R . Applied Clay Science, 2017,50.
[136]
Pavlish J H, Holmes M J, Benson S A, Crocker C R, Galbreath K C . Fuel Process. Technol., 2004,85(6):563.
[137]
Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C . Environ. Sci. Technol., 2004,38(2):555. https://www.ncbi.nlm.nih.gov/pubmed/14750733

doi: 10.1021/es034109t     URL     pmid: 14750733
[138]
Lamborg C H, Fitzgerald W F, O’Donnell J, Torgersen T . Geochim. Cosmochim. Acta, 2002,66(7):1105.
[139]
Glodek A, Pacyna J M . Atmos. Environ., 2009,43(35):5668.
[140]
Wang S X, Zhang L, Li G H, Wu Y, Hao J M, Pirrone N, Sprovieri F, Ancora M P . Atmos. Chem. Phys. Discuss., 2009,10(3):1183.
[141]
Meij R . Water Air Soil Pollut., 1991,56(1):21.
[142]
Chu P, Porcella D B . Water Air Soil Pollut., 1995,80(1/4):135.
[143]
Li H L, Wu C Y, Li Y, Li L Q, Zhao Y C, Zhang J Y . Chem. Eng. J., 2013,219:319. https://linkinghub.elsevier.com/retrieve/pii/S1385894713000429

doi: 10.1016/j.cej.2012.12.100     URL    
[144]
Zhang J, Duan Y F, Zhao W X, Zhu C, Zhou Q, She M . Plasma Chem. Plasma Process., 2015,36(2):471.
[145]
Ma Y P, Mu B L, Yuan D L, Zhang H Z, Xu H M . J. Hazard. Mater., 2017,333:186. https://www.ncbi.nlm.nih.gov/pubmed/28359035

doi: 10.1016/j.jhazmat.2017.03.032     URL     pmid: 28359035
[146]
Li H L, Wu C Y, Li Y, Zhang J Y . Appl. Catal. B, 2012,111/112:381.
[147]
Reddy G K, He J, Thiel S W, Pinto N G, Smirniotis P G . J. Phys. Chem. C, 2015,119(16):8634.
[148]
Liu K H, Chen M Y, Tsai Y C, Lin H P, Hsi H C . Catal. Today, 2017,297:104.
[149]
Yang W, Liu Y X, Wang Q, Pan J F . Chem. Eng. J., 2017,326:169.
[150]
Zhang X, Shen B X, Shen F, Zhang X Q, Si M, Yuan P . Chem. Eng. J., 2017,326:551.
[151]
Romero A, Dodorado F, Asencio I, García P B, Valverde J L . Clays Clay Miner., 2006,54(6):737.
[152]
Wang Y Y, Shen B X, He C, Yue S J, Wang F M . Environ. Sci. Technol., 2015,49(15):9355. https://www.ncbi.nlm.nih.gov/pubmed/26154299

doi: 10.1021/acs.est.5b01435     URL     pmid: 26154299
[153]
He C, Shen B X, Li F K . J. Hazard. Mater., 2016,304:10. https://www.ncbi.nlm.nih.gov/pubmed/26546699

doi: 10.1016/j.jhazmat.2015.10.044     URL     pmid: 26546699
[154]
Handal H T, Thangadurai V . J. Power Sources, 2013,243:458.
[155]
Cui L H, Cui J W, Zheng H M, Wang Y, Qin Y Q, Shu X, Liu J Q, Zhang Y, Wu Y C . J. Power Sources, 2017,361:310.
[156]
Tang Y G, Qiao H, Wang H Y, Tao P P . J. Mater. Chem. A, 2013,1(40):12512.
[157]
Chen J J, Zhou N, Wang H Y, Peng Z G, Li H Y, Tang Y G, Liu K . Chem. Commun., 2015,51(50):10123. https://www.ncbi.nlm.nih.gov/pubmed/26006057

doi: 10.1039/c5cc02343b     URL     pmid: 26006057
[158]
Sun S S, Xue Y J, Wang Q, Huang H R, Miao H, Liu Z P . Electrochim. Acta, 2018,263:544.
[159]
Zhu Y Q, Liu S H, Jin C, Bie S Y, Yang R Z, Wu J . J. Mater. Chem. A, 2015,3(25):13563. http://xlink.rsc.org/?DOI=C5TA02722E

doi: 10.1039/C5TA02722E     URL    
[160]
Salehi M, Shariatinia Z . Electrochim. Acta, 2016,222:821. https://linkinghub.elsevier.com/retrieve/pii/S001346861632374X

doi: 10.1016/j.electacta.2016.11.043     URL    
[161]
Cao C, Xie J, Zhang S C, Pan B, Cao G S, Zhao X B . J. Mater. Chem. A, 2017,5(14):6747.
[162]
Zhang H H, Gu J N, Tong J, Hu Y F, Guan B, Hu B, Zhao J, Wang C Y . Chem. Eng. J., 2016,286:139.
[163]
Zhang Z Y, Hu Z A, Yang Y Y, Wang H W, Chang Y Q, Chen Y L, Lei Z Q . Acta Phys. -Chim. Sin., 2011,27(7):1673.
[164]
Ojha G P, Pant B, Park S J, Park M, Kim H Y . J. Colloid Interface Sci., 2017,494:338. https://www.ncbi.nlm.nih.gov/pubmed/28167422

doi: 10.1016/j.jcis.2017.01.100     URL     pmid: 28167422
[165]
Deng S B, Liu H, Zhou W, Huang J, Yu G . J. Hazard. Mater., 2011,186(2/3):1360. https://www.ncbi.nlm.nih.gov/pubmed/21208743

doi: 10.1016/j.jhazmat.2010.12.024     URL     pmid: 21208743
[166]
Zhang N, Zhang G M, Chong S, Zhao H, Huang T, Zhu J . J. Environ. Manage., 2018,205:134. https://www.ncbi.nlm.nih.gov/pubmed/28982062

doi: 10.1016/j.jenvman.2017.09.073     URL     pmid: 28982062
[167]
Martins R C, Rodrigues V, Costa M R, Castro L M, Quinta-Ferreira R M . Ozone: Sci. Eng., 2016,38(4):261. http://www.tandfonline.com/doi/full/10.1080/01919512.2015.1134307

doi: 10.1080/01919512.2015.1134307     URL    
[168]
Gong Y M, Guo Y, Sheehan J D, Chen Z F, Wang S Z . Chem. Eng. J., 2018,331:578.
[169]
Poggio-Fraccari E, Sambeth J, Baronetti G, Mariño F . Int. J. Hydrogen Energy, 2014,39(16):8675.
[170]
Mat Rosid S J, Wan Abu Bakar W A, Ali R . Adv. Mater. Res., 2015,1107:67.
[171]
Li C B, Li Z H, Oh H Y, Hong G H, Park J S, Kim J M . Catal. Today, 2017: 237.
[172]
Chen H Y, Sayari A, Adnot A, Larachi F . Appl. Catal. B, 2001,32(3):195.
[173]
Abecassis-Wolfovich M, Jothiramalingam R, Landau M V, Herskowitz M, Viswanathan B, Varadarajan T K . Appl. Catal., B, 2005,59(1/2):91.
[174]
Abecassiswolfovich M, Landau M, Brenner A, Herskowitz M . J. Catal., 2007,247(2):201.
[175]
Arena F, Trunfio G, Negro J, Spadaro L . Appl. Catal. B, 2008,85(1/2):40.
[176]
Pérez-Omil J A, Delgado J J, Ouahbi W, Hungría A B, Browning N, Cauqui M A, Rodríguez-Izquierdo J M, Calvino J J . J. Phys. Chem. C, 2010,114(19):8981.
[177]
Ma C J, Wen Y Y, Yue Q Q, Li A Q, Fu J L, Zhang N W, Gai H J, Zheng J B, Chen B H . RSC Adv., 2017,7(43):27079.
[178]
$\acute{D}$Alessandro O, Pintos D G, Juan A, Irigoyen B, Sambeth J . Appl. Surf. Sci., 2015,359:14.
[179]
Martins R C, Quinta-Ferreira R M . Appl. Catal. B, 2009,90(1/2):268.
[180]
Li C S, Sun Y F, Zhang A M . RSC Adv., 2015,5(46):36394. https://www.ncbi.nlm.nih.gov/pubmed/26257891

doi: 10.1039/C5RA04257G     URL     pmid: 26257891
[181]
Zhang P F, Lu H F, Zhou Y, Zhang L, Wu Z L, Yang S Z, Shi H L, Zhu Q L, Chen Y F, Dai S . Nat. Commun., 2015,6:8446. https://www.ncbi.nlm.nih.gov/pubmed/26469151

doi: 10.1038/ncomms9446     URL     pmid: 26469151
[182]
Nasreen S, Liu H, Qureshi L A, Sissou Z, Lukic I, Skala D . Fuel Process. Technol., 2016,148:76.
[183]
Mousavi S M, Meshkani F, Rezaei M . J. Environ. Chem. Eng., 2017,5(6):5493.
[184]
Putla S, Amin M H, Reddy B M, Nafady A, Al Farhan K A, Bhargava S K . ACS Appl. Mater. Inter., 2015,7(30):16525. https://www.ncbi.nlm.nih.gov/pubmed/26214855

doi: 10.1021/acsami.5b03988     URL     pmid: 26214855
[185]
Sudarsanam P, Hillary B, Amin M H, Hamid S B A, Bhargava S K . Appl. Catal. B, 2016,185:213.
[186]
Liu G, Sun L, Liu J H, Wang F, Guild C J . Mol. Catal. 2017,440:148.
[187]
Levi R, Milman M, Landau M, Brenner A, Herskowitz M . Environ. Sci. Technol., 2008,42(14):5165. https://www.ncbi.nlm.nih.gov/pubmed/18754364

doi: 10.1021/es703070h     URL     pmid: 18754364
[188]
Arena F, Gumina B, Lombardo A F, Espro C, Patti A, Spadaro L, Spiccia L . Appl. Catal. B, 2015,162:260.
[189]
Han X W, Li C Q, Liu X H, Xia Q N, Wang Y Q . Green Chem., 2017,19(4):996.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[3] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[4] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[5] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[6] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[7] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[8] 李宁, 胡欣, 方亮, 寇佳慧, 倪亚茹, 陆春华. 有机催化原子转移自由基聚合[J]. 化学进展, 2019, 31(6): 791-799.
[9] 冯泽, 孙旦, 唐有根, 王海燕. 富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料[J]. 化学进展, 2019, 31(2/3): 442-454.
[10] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[11] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[12] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[13] 王国强, 姜敏*, 张强, 王瑞, 曲小玲, 周光远*. 基于可再生资源含呋喃环聚酯[J]. 化学进展, 2018, 30(6): 719-736.
[14] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.
[15] 杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2/3): 225-242.
阅读次数
全文


摘要

锰铈二元氧化物的制备与应用