English
新闻公告
More
化学进展 2019, Vol. 31 Issue (5): 773-782 DOI: 10.7536/PC180910 前一篇   

• •

球形生物活性玻璃作为运输载体的研究

英启炜, 廖建国**(), 吴民行, 翟智皓, 刘欣茹   

  1. 河南理工大学材料科学与工程学院 焦作 454000
  • 收稿日期:2018-09-10 出版日期:2019-05-15 发布日期:2019-03-21
  • 通讯作者: 廖建国
  • 基金资助:
    国家自然科学基金项目(U1304820); 河南省教育厅基础研究计划(19A430015); 河南省教育厅基础研究计划(19B430004); 河南省高校基本科研业务费专项资金(NSFRF180311); 河南省高校科技创新团队项目(19IRTSTHN027)

Research on Bioactive Glass Nanospheres as Delivery

Qiwei Ying, Jianguo Liao**(), Minhang Wu, Zhihao Zhai, Xinru Liu   

  1. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
  • Received:2018-09-10 Online:2019-05-15 Published:2019-03-21
  • Contact: Jianguo Liao
  • About author:
  • Supported by:
    National Natural Science Foundation of China(U1304820); Education Department of Henan Province Basic Research Program(19A430015); Education Department of Henan Province Basic Research Program(19B430004); Fundamental Research Funds for the Universities of Henan Province(NSFRF180311); Henan Province University Science and Technology Innovation Team(19IRTSTHN027)

球形纳米生物活性玻璃(BGN)含有硅、钙和磷等元素,具有可控的形貌和粒径、有序的介孔结构、较高比表面积和孔隙率、良好的生物相容性与成骨活性,已被广泛用于骨修复和牙科诊疗。BGN还可掺杂不同金属离子以增强成骨性、成血管性等,或使其具备抗菌性或生物成像能力。同时,球形、有序介孔结构、纳米级的尺寸和高比表面积有利于装载药物或生物因子并进入细胞,使其具有潜在的高负载能力和靶向治疗能力。但由于难以制备粒径较小的单分散BGN,且纳米级颗粒普遍存在团聚问题,对生物体的影响也不完全明确,所以,BGN尚不能作为临床药物载体被利用,相关的研究仍需深入。本文综述了近年来BGN的制备技术、负载能力、生物相容性和生物活性等方面研究及应用现状,并对其发展方向进行了展望。

Bioactive glass nanosphere(BGN) contains elements such as silicon, calcium and phosphorus. It has controlled morphology and particle size, ordered mesoporous structure, high specific surface area and porosity, and due to the good biocompatibility and osteogenic activity, BGN has been widely used in bone repair and dental treatment. BGN can also be doped with different metal ions to enhance osteogenic, vascular, etc., or to provide antibacterial or bioimaging capabilities. At the same time, spherical shape, ordered mesoporous structures, nanoscale size and high specific surface facilitate the entry of drugs/biological-factors into cells, which gives BGN potential for high loading capacity and targeted therapeutic capabilities. However, since it is difficult to prepare monodisperse BGN with nanoscale particle size, and the agglomeration problem is common in nanoscale particles, the impact on the body is not completely clear. Therefore, BGN cannot be used as a drug carrier in clinical, and related research still needs to be further studied. In this paper, the research and application status of BGN preparation, loading capacity, biocompatibility and biological activity in recent years are reviewed, and its development directions are prospected.

()
图1 HMBGs形成过程示意图[13]
Fig. 1 Schematic illustration of the formation process of HMBGs[13]
图2 HMBGs的TEM图。CTAB浓度分别为(a)4 mM;(b)2 mM和(c)6 mM[12]
Fig. 2 TEM images of HMBGs[12].(a)4 mM CTAB;(b)2 mM CTAB and (c)6 mM CTAB
图3 具有介孔BGN的SEM图(a)和TEM图(b)[11]
Fig. 3 SEM micrograph(a) and TEM image(b) of mesoporous bioactive glass nanospheres with large pore[11]
图4 树突状BGN制备过程和机理图[11]
Fig. 4 Schematic illustration of the synthesis process and mechanism of BGN[11]
图5 通过改变复合溶剂(乙醚或乙氧基乙醇)控制具有不同孔径的介孔生物活性玻璃纳米颗粒(BGN)结构的形成[10]
Fig. 5 Schematic illustration of the structure-controlled formation of mesoporous bioactive glass nanoparticle(BGN) with different pore sizes by changing the co-solvent(ethyl ether or ethoxyethanol)[10]
图6 常见BGN与药物的连接形式
Fig. 6 Typical bonds between the BGN and drug
图7 玻璃介孔中药物的分布[52]
Fig. 7 Distribution of drug molecules for the mesoporous channels in glass[52]
图8 LSC定量测量45Ca-BGN纳米球在组织中分布[94]
Fig. 8 LSC quantitative measurement of tissue distribution of 45Ca-BGN nanospheres[94]
[1]
Larry H, Juli P . Science, 2002,295:1014. https://www.ncbi.nlm.nih.gov/pubmed/11834817

doi: 10.1126/science.1067404     URL     pmid: 11834817
[2]
Larry H . Biomaterials, 1998,19:1419. https://www.ncbi.nlm.nih.gov/pubmed/9794512

doi: 10.1016/s0142-9612(98)00133-1     URL     pmid: 9794512
[3]
Larry H, Donna W, David G . J. Sol-Gel Sci. Technol., 1998,13:245.
[4]
Zheng K, Lu M, Rutkowski B, Dai X Y, Yang Y Y, Taccardi N, Stachewicz U, Czyrska-Filemonowicz A, Hüser N, Boccaccini A . J. Mate. Chem. B, 2016,4:7936.
[5]
Wang X, Zhang Y, Ma Y Y, Chen D Y, Yang H L, Li M Z . Ceram. Int., 2016,42:3609.
[6]
Shih S, J Lin Y C, Panjaitan L, Sari D . Materials(Basel), 2016,9:58.
[7]
Francesco B, Giorgia N, Valentina M, Aldo B, Chiara V . J. Non-Cryst. Solids, 2016,432:15.
[8]
Li X, Liang Q, Zhang W, Ye J D, Zhao F J, Chen X F, Wang S R . J. Mater. Chem. B, 2017,5:6376. https://www.ncbi.nlm.nih.gov/pubmed/32264454

doi: 10.1039/c7tb01021d     URL     pmid: 32264454
[9]
Vichery C, Nedelec J M . Materials(Basel), 2016,9:288. https://www.ncbi.nlm.nih.gov/pubmed/19664277

doi: 10.1186/1471-2458-9-288     URL     pmid: 19664277
[10]
Kim T H, Singh R K, Kang M S, Kim J H, Kim H W . Nanoscale, 2016,8:8300. https://www.ncbi.nlm.nih.gov/pubmed/27035682

doi: 10.1039/c5nr07933k     URL     pmid: 27035682
[11]
Tang J Y, Chen X F, Dong Y M, Fu X L, Hu Q . Mater. Lett., 2017,209:626.
[12]
Wang Y D, Chen X F . Mater. Lett., 2017,189:325.
[13]
Li Y Q, Bastakoti B P, Yamauchi Y . Chem. Eur. J., 2015,21:8038. https://www.ncbi.nlm.nih.gov/pubmed/25900326

doi: 10.1002/chem.201406570     URL     pmid: 25900326
[14]
Wu C T, Fan W, Chang J . J. Mater. Chem. B, 2013,1:2710. https://www.ncbi.nlm.nih.gov/pubmed/32260976

doi: 10.1039/c3tb20275e     URL     pmid: 32260976
[15]
Zhao S, Li Y B, Li D X . Micropor. Mesopor. Mat., 2010,135:67.
[16]
Liu T, Li Z H, Ding X B, Zhang L X, Zi Y X . Mater. Lett., 2017,190:99. https://www.ncbi.nlm.nih.gov/pubmed/2163838

doi: 10.1111/j.1432-1033.1990.tb15551.x     URL     pmid: 2163838
[17]
Li Y L, Hu Q, Miao G H, Zhang Q, Yuan B, Zhu Y, Fu X L, Chen X F, Mao C B . J. Biomed. Nanotechnol., 2016,12:863. https://www.ncbi.nlm.nih.gov/pubmed/27305811

doi: 10.1166/jbn.2016.2235     URL     pmid: 27305811
[18]
Jones J R . Acta Biomater., 2013,9:4457. https://www.ncbi.nlm.nih.gov/pubmed/22922331

doi: 10.1016/j.actbio.2012.08.023     URL     pmid: 22922331
[19]
Li B, Luo W Q, Wang Y Y, Wu H Y, Zhang C C . J. Non-Cryst. Solids, 2016,447:98.
[20]
El-Rashidy A, Waly G, Gad A, Hashem A, Balasubramanian P, Seray K, Aldo R B, Inas S . J. Non-Cryst. Solids, 2018,483:26.
[21]
Zagrajczuk B, Dziadek M, Olejniczak Z, Cholewa-Kowalska K, Laczka M . Ceram. Int., 2017,43:12742.
[22]
Greasley S L, Page S J, Sirovica S, Chen S, Martin R, Riveiro A, Hanna J V, Porter A, Jones J R . J. Colloid Interface Sci., 2016,469:213. https://www.ncbi.nlm.nih.gov/pubmed/26890387

doi: 10.1016/j.jcis.2016.01.065     URL     pmid: 26890387
[23]
Fernando D, Attik N, Cresswell M, Mokbel I, Pradelle-Plasse N, Jackson P, Grosgogeat B, Colon P . Micropor. Mesopor. Mat., 2018,257:99.
[24]
Ting H K, Page S J, Poologasundarampillai G, Chen S, Yu B B, Hanna J, Jones J R . Int. J. Appl. Glass Sci., 2017,8:372.
[25]
Li L Y, Wang H, Zhang Z H, Chen X, Li Q Y . J. Disper. Sci. Technol., 2017,38:1711.
[26]
Ajita J, Saravanan S, Selvamurugan N . Mat. Sci. Eng. C, 2015,53:142.
[27]
Zheng K, Boccaccini A . Adv. Colloid Interface Sci., 2017,249:363. https://www.ncbi.nlm.nih.gov/pubmed/28364954

doi: 10.1016/j.cis.2017.03.008     URL     pmid: 28364954
[28]
Zheng K, Taccardi N, Beltrán A, Sui B Y, Zhou T, Marthala V R R, Hartmann M, Boccaccini A R . RSC Adv., 2016,6:95101.
[29]
Bari A, Bloise N, Fiorilli S, Novajra G, Vallet-Regi M, Bruni G, Torres-Pardo A, Gonzalez-Calbet J M, Visai L, Vitale-Brovarone C . Acta Biomater., 2017,55:493. https://www.ncbi.nlm.nih.gov/pubmed/28412552

doi: 10.1016/j.actbio.2017.04.012     URL     pmid: 28412552
[30]
Li Y L, Chen X F, Ning C Y, Yuan B, Hu Q . Mater. Lett., 2015,161:605.
[31]
Wang X J, Li W . Nanotechnology, 2016,27:225102. https://www.ncbi.nlm.nih.gov/pubmed/27102805

doi: 10.1088/0957-4484/27/22/225102     URL     pmid: 27102805
[32]
Liang Q M, Hu Q, Miao G H, Yuan B, Chen X F . Mater. Lett., 2015,148:45. https://linkinghub.elsevier.com/retrieve/pii/S0167577X15001354

doi: 10.1016/j.matlet.2015.01.122     URL    
[33]
Wang Y D, Liao T S, Shi M, Liu C, Chen X F . Mater. Lett., 2017,206:205. https://linkinghub.elsevier.com/retrieve/pii/S0167577X17310571

doi: 10.1016/j.matlet.2017.07.021     URL    
[34]
Pontiroli L, Dadkhah M, Novajra G, Tcacencu I, Fiorilli S, Vitale-Brovarone C . Mater. Lett., 2017,190:111.
[35]
Kaya S, Cresswell M, Boccaccini A R . Mater. Sci. Eng. C, 2018,83:99. https://www.ncbi.nlm.nih.gov/pubmed/29208293

doi: 10.1016/j.msec.2017.11.003     URL     pmid: 29208293
[36]
Prasad S S, Ratha I, Adarsh T, Anand A, Sinha P K, Diwan P, Annapurna K, Biswas K . J. Mater. Res., 2018,33:178.
[37]
Meyer N, Rivera L, Ellis T, Qi J H, Ryan M, Boccaccini A . Coatings, 2018,8:27.
[38]
Douglas T E L, Dziadek M, Gorodzha S, Liskova J, Brackman G, Vanhoorne V Vervaet C, Balcaen L, Del R F G M, Boccaccini R, Weinhardt V, Baumbach T, Vanhaecke F, Coenye T, Bacakova L, Surmeneva M, Surmenev R, Cholewa-Kowalska, K, Skirtach, Andre G S . J. Tissue Eng. Regen. M., 2018,12:1313. https://www.ncbi.nlm.nih.gov/pubmed/29489058

doi: 10.1002/term.2654     URL     pmid: 29489058
[39]
Lee J H, El-Fiqi A, Mandakhbayar N, Lee H H, Kim H W . Biomaterials, 2017,142:62. https://www.ncbi.nlm.nih.gov/pubmed/28727999

doi: 10.1016/j.biomaterials.2017.07.014     URL     pmid: 28727999
[40]
Emanuene G P, Roberta F B, Italo M R, Ingrid M F G, Joelma R D S, Laura H V G, Jose V J S J, Danyel E D C P, Paula C B T, Sydnei M D S, Renata P A, Luiz R G, Eliton S D M, Lucio R C, Paulo R F B . Int. J. Appl. Glass Sci., 2018,9:52.
[41]
Rajendran V, Prabhu M, Suriyaprabha R . J. Mater. Sci., 2015,50:5145.
[42]
Moghanian A, Firoozi S, Tahriri M . Ceram. Int., 2017,43:14880.
[43]
Phetnin R, Rattanachan S T . J. Sol-Gel Sci. Technol., 2015,75:279.
[44]
Haas L M, Smith C M, Placek L M, Hall M M, Gong Y, Mellott N P, Wren A W . J. Biomater. Appl., 2015,30:450. https://www.ncbi.nlm.nih.gov/pubmed/26088293

doi: 10.1177/0885328215591902     URL     pmid: 26088293
[45]
Lee J H, Mandakhbayar N, El-Fiqi A, Kim H . Acta Biomater., 2017,60:93. https://www.ncbi.nlm.nih.gov/pubmed/28713017

doi: 10.1016/j.actbio.2017.07.021     URL     pmid: 28713017
[46]
Naruphontjirakul P, Porter A, Jones J . Acta Biomater., 2018,66:67. https://www.ncbi.nlm.nih.gov/pubmed/29129790

doi: 10.1016/j.actbio.2017.11.008     URL     pmid: 29129790
[47]
Weng L, Boda S K, Teusink M, Shuler F D, Li X R, Xie J W . ACS Appl. Mater. Inter., 2017,9:24484. https://www.ncbi.nlm.nih.gov/pubmed/28675029

doi: 10.1021/acsami.7b06521     URL     pmid: 28675029
[48]
Littmann E, Autefage H, Solanki A K, Kallepitis C, Jones J R, Alini M, Peroglio M, Stevens M M . J. Eur. Ceram. Soc., 2018,38:877. https://www.ncbi.nlm.nih.gov/pubmed/29456294

doi: 10.1016/j.jeurceramsoc.2017.08.001     URL     pmid: 29456294
[49]
Xue Y M, Du Y Z, Yan J, Liu Z Q, Ma P X, Chen X F, Lei B . J. Mater. Sci. B, 2015,3:3831.
[50]
Wu C T, Xia L G, Han P P, Mao L X, Wang J C, Zhai D, Fang B, Chang J, Xiao Y . ACS Appl. Mater. Inter., 2016,8:11342. https://www.ncbi.nlm.nih.gov/pubmed/27096527

doi: 10.1021/acsami.6b03100     URL     pmid: 27096527
[51]
Lins C E C, Oliveira A, Gonzalez I, Macedo W, Pereira M M . J. Biomed. Mater. Res. B, 2018,106:360. https://www.ncbi.nlm.nih.gov/pubmed/28152262

doi: 10.1002/jbm.b.33846     URL     pmid: 28152262
[52]
Gurbinder K, Pandey O P, Singh K, Chudasama B, Kumar V . RSC Adv., 2016,6:51046.
[53]
Zheng K, Bortuzzo J A, Liu Y F, Li W, Pischetsrieder M, Roether J, Lu M, Boccaccini A R . Collid.Surface. B, 2015,135:825.
[54]
Doane T, Burda C . Adv. Drug Deliver. Rev., 2013,65:607. https://www.ncbi.nlm.nih.gov/pubmed/22664231

doi: 10.1016/j.addr.2012.05.012     URL     pmid: 22664231
[55]
Zhu M, Wang H X, Zhang Y J, Ji L X, Huang H, Zhu Y F . Mater. Lett., 2016,171:259.
[56]
Duan H B, Diao J J, Zhao N, Ma Y J . Mater. Lett., 2016,167:201.
[57]
Wang X, Zhang Y, Lin C, Zhong W X . Collid.Surface. B, 2017,160:406.
[58]
El-Kady A, Farag M M, El-Rashedi A M . Eur. J. Pharm. Sci., 2016,91:243. https://www.ncbi.nlm.nih.gov/pubmed/27155253

doi: 10.1016/j.ejps.2016.05.004     URL     pmid: 27155253
[59]
El-Kady M, Farag M M . J. Nanomater., 2015,16:339.
[60]
Ayala C, Liu J G, Knight M W, Wang Y, Day J, Nordlander P, Halas N J . Nano Lett., 2014,14:2926. https://www.ncbi.nlm.nih.gov/pubmed/24738706

doi: 10.1021/nl501027j     URL     pmid: 24738706
[61]
Xiao K, Li Y P, Luo J T, Lee J S, Xiao W X, Gonik M, Agarwal R G, Lam K S . Biomaterials, 2011,32:3435. https://www.ncbi.nlm.nih.gov/pubmed/21295849

doi: 10.1016/j.biomaterials.2011.01.021     URL     pmid: 21295849
[62]
Kim T H, Singh R K, Kang M S, Kim J H, Kim H . Acta Biomater., 2016,29:352. https://www.ncbi.nlm.nih.gov/pubmed/26432439

doi: 10.1016/j.actbio.2015.09.035     URL     pmid: 26432439
[63]
Dashnyam K, Jin G Z, Kim J H, Perez R, Jang J H, Kim H W . Biomaterials, 2017,116:145. https://www.ncbi.nlm.nih.gov/pubmed/27918936

doi: 10.1016/j.biomaterials.2016.11.053     URL     pmid: 27918936
[64]
Lin K, Wang X H, Zhang N, Shen Y H . J. Mater. Chem. B, 2016,4:3632. https://www.ncbi.nlm.nih.gov/pubmed/32263301

doi: 10.1039/c6tb00735j     URL     pmid: 32263301
[65]
Naruphontjirakul P, Greasley S L, Chen S, Porter A, Jones J R . Biomed. Glass., 2016,2:72.
[66]
Beavers K R, Nelson C E, Duvall C L . Adv. Drug Deliver. Rev., 2015,88:123. https://www.ncbi.nlm.nih.gov/pubmed/25553957

doi: 10.1016/j.addr.2014.12.006     URL     pmid: 25553957
[67]
Aigner A, Fischer D . Pharmazie, 2016,71:27. https://www.ncbi.nlm.nih.gov/pubmed/26867350

URL     pmid: 26867350
[68]
Lam J K, Chow M Y, Zhang Y, Leung S W . Mol. Ther. Nucl. Acids, 2015,4:e252. https://linkinghub.elsevier.com/retrieve/pii/S2162253116300373

doi: 10.1038/mtna.2015.23     URL    
[69]
Wang X, Wang G, Zhang Y . Appl. Surf. Sci., 2017,419:531.
[70]
Miao G H, Chen X F, Dong H, Fang L M, Mao C, Li Y L, Li Z M, Hu Q . Mater. Sci. Eng. C, 2013,33:4236. https://www.ncbi.nlm.nih.gov/pubmed/23910338

doi: 10.1016/j.msec.2013.06.022     URL     pmid: 23910338
[71]
Zhang Y, Wang X, Su Y L, Chen D Y, Zhong W X . Mater. Sci. Eng. C, 2016,67:205. https://linkinghub.elsevier.com/retrieve/pii/S0928493116304489

doi: 10.1016/j.msec.2016.05.019     URL    
[72]
Sui B, Liu X, Sun J . ACS Appl. Mater. Inter., 2018,10:23548. https://www.ncbi.nlm.nih.gov/pubmed/29947213

doi: 10.1021/acsami.8b05616     URL     pmid: 29947213
[73]
Li D D . J. Bionic. Eng., 2017,14:672.
[74]
Wang D, Zhang C K, Ren L, Li D D, Yu J H . Inorg. Chem. Front., 2018,5:474.
[75]
Li H Y, He J, Yu H F, Green C R, Chang J . Biomaterials, 2016,84:64. https://www.ncbi.nlm.nih.gov/pubmed/26821121

doi: 10.1016/j.biomaterials.2016.01.033     URL     pmid: 26821121
[76]
Kapoor S, Semitela A, Goel A, Xiang Y, Du J C, Lourenco A H, Sousa D M, Granja P L, Ferreira J M F . Acta Biomater., 2015,15:210. https://www.ncbi.nlm.nih.gov/pubmed/25578990

doi: 10.1016/j.actbio.2015.01.001     URL     pmid: 25578990
[77]
Dziadek M, Zagrajczuk B, Jelen P, Olejniczak Z, Cholewa-Kowalska K . Ceram. Int., 2016,42:14700. https://linkinghub.elsevier.com/retrieve/pii/S0272884216309257

doi: 10.1016/j.ceramint.2016.06.095     URL    
[78]
Shah A, Ain Q, Aqif C, Khan A, Iqbal B, Ahmad S, Siddiqi S, Rehman I . J. Mater. Sci., 2014,50:1794.
[79]
Li Y L, Liang Q M, Lin C, Li X, Chen X F, Hu Q . Mater. Sci. Eng. C, 2017,75:646. https://www.ncbi.nlm.nih.gov/pubmed/28415511

doi: 10.1016/j.msec.2017.02.095     URL     pmid: 28415511
[80]
Hu Q, Jiang W H, Chen X F, Li Y L, Liang Q M . Adv. Powder Technol., 2017,28:2713. https://linkinghub.elsevier.com/retrieve/pii/S0921883117303096

doi: 10.1016/j.apt.2017.07.024     URL    
[81]
Baino F, Fiorilli S, Vitale-Brovarone C . Acta Biomater., 2016,42:18. https://www.ncbi.nlm.nih.gov/pubmed/27370907

doi: 10.1016/j.actbio.2016.06.033     URL     pmid: 27370907
[82]
Kang M S, Lee N H, Singh R K, Mandakhbayar N, Perez R, Lee J H, Kim H W . Biomaterials, 2018,162:183. https://www.ncbi.nlm.nih.gov/pubmed/29448144

doi: 10.1016/j.biomaterials.2018.02.005     URL     pmid: 29448144
[83]
Hu S, Chang J, Liu M Q, Ning C Q . J. Mater. Sci: Mater. Med., 2009,20:281. https://www.ncbi.nlm.nih.gov/pubmed/18763024

doi: 10.1007/s10856-008-3564-5     URL     pmid: 18763024
[84]
Khvostenko D, Hilton T J, Ferracane J L, Mitchell J C, Kruzic J J . Dent. Mater., 2016,32:73. https://www.ncbi.nlm.nih.gov/pubmed/26621028

doi: 10.1016/j.dental.2015.10.007     URL     pmid: 26621028
[85]
Kargozar S, Baino F, Hamzehlou S, Hill R G, Mozafari M . Trends. Biotechnol., 2018,36:430. https://www.ncbi.nlm.nih.gov/pubmed/29397989

doi: 10.1016/j.tibtech.2017.12.003     URL     pmid: 29397989
[86]
Gong W Y, Dong Y M, Wang S N, Gao X J, Chen X F . RSC Adv., 2017,7:13760.
[87]
Kaur K, Singh K J, Anand V, Bhatia G, Singh S, Kaur H, Arora D S . Ceram. Int., 2016,42:12651.
[88]
Moghanian A, Firoozi S, Tahriri M . Ceram. Int., 2017,43:12835.
[89]
Arepalli S K, Tripathi H, Hira S K, Manna P P, Pyare R, Singh S P . Mater. Sci. Eng. C, 2016,69:108. https://www.ncbi.nlm.nih.gov/pubmed/27612694

doi: 10.1016/j.msec.2016.06.070     URL     pmid: 27612694
[90]
El-Fiqi A, Buitrago J O, Yang S H, Kim H W . Acta Biomater., 2017,60:38. https://www.ncbi.nlm.nih.gov/pubmed/28754647

doi: 10.1016/j.actbio.2017.07.036     URL     pmid: 28754647
[91]
Kozon D, Zheng K, Boccardi E, Liu Y F, Liverani L, Boccaccini R . Materials(Basel), 2016,9:225.
[92]
Shi M C, Zhou Y H, Shao J, Chen Z T, Song B T, Chang J, Wu C T, Xiao Y . Acta Biomater., 2015,21:178. https://www.ncbi.nlm.nih.gov/pubmed/25910640

doi: 10.1016/j.actbio.2015.04.019     URL     pmid: 25910640
[93]
Covarrubias C, Cadiz M, Maureira M, Celhay I, Cuadra F, Marttens A . J. Biomater. Appl., 2018,32:1155. https://www.ncbi.nlm.nih.gov/pubmed/29451421

doi: 10.1177/0885328218759042     URL     pmid: 29451421
[94]
Sui B, Zhong G R, Sun J . Sci. Rep., 2016,6:33443. https://www.ncbi.nlm.nih.gov/pubmed/27628013

doi: 10.1038/srep33443     URL     pmid: 27628013
[95]
Mao C, Chen X F, Hu Q, Miao G H, Lin C . Mater. Sci. Eng. C, 2016,58:682. https://www.ncbi.nlm.nih.gov/pubmed/26478360

doi: 10.1016/j.msec.2015.09.002     URL     pmid: 26478360
[96]
Jaganathan H, Godin B . Adv. Drug Del. Rev., 2012,64:1800.
[97]
Xue Y, Chen Q Q, Ding T T, Sun J . Int. J. Nanomed., 2014,9:2891.
[98]
Mendes L S, Saska S, Coelho F, Capote T S, Scarel-Caminaga R M, Marchetto R, Carrodeguas R G, Gaspar A M M, Rodriguez M A . Biomed. Mater., 2018,13:025023. https://www.ncbi.nlm.nih.gov/pubmed/28972203

doi: 10.1088/1748-605X/aa9085     URL     pmid: 28972203
[99]
Kaur G, Pandey O P, Singh K, Homa D, Scott B, Pickrell G . J. Biomed. Mater. Res. A, 2014,102:254. https://www.ncbi.nlm.nih.gov/pubmed/23468256

doi: 10.1002/jbm.a.34690     URL     pmid: 23468256
[100]
Baino F, Hamzehlou S, Kargozar S . J. Funct. Biomater., 2018,9:25.
[101]
Wu C T, Zhou Y H, Xu M C, Han P P, Chen L, Chang J, Xiao Y . Biomaterials, 2013,34:422. https://www.ncbi.nlm.nih.gov/pubmed/23083929

doi: 10.1016/j.biomaterials.2012.09.066     URL     pmid: 23083929
[102]
Zhang Y L, Xia L G, Zhai D, Shi M C, Luo Y X, Feng C, Fang B, Yin J B, Chang J, Wu C T . Nanoscale, 2015,7:19207. https://www.ncbi.nlm.nih.gov/pubmed/26525451

doi: 10.1039/c5nr05421d     URL     pmid: 26525451
[103]
Omar S, Repp F, Desimone P M, Weinkamer R, Wagermaier W, Ceré S, Ballarre J . J. Non-Cryst. Solids, 2015,425:1. https://linkinghub.elsevier.com/retrieve/pii/S0022309315300442

doi: 10.1016/j.jnoncrysol.2015.05.024     URL    
[104]
Li C D, Jiang C, Deng Y, Li T, Li N, Peng M Z, Wang J W . Sci. Rep., 2017,7:41331. https://www.ncbi.nlm.nih.gov/pubmed/28128363

doi: 10.1038/srep41331     URL     pmid: 28128363
[105]
Brauer D S . Angew Chem. Int. Ed., 2015,54:4160. https://www.ncbi.nlm.nih.gov/pubmed/25765017

doi: 10.1002/anie.201405310     URL     pmid: 25765017
[106]
Zheng K, Dai X Y, Lu M, Huser N, Taccardi N, Boccaccini A R . Collid.Surface. B, 2017,150:159. https://www.ncbi.nlm.nih.gov/pubmed/29522035

doi: 10.1364/AO.57.00B150     URL     pmid: 29522035
[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[3] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[4] 梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9): 1263-1282.
[5] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[6] 韩冬琳, 亓洪昭, 赵瑾, 龙丽霞, 任玉, 原续波. 增强纳米药物载体肿瘤内渗透分布的研究进展[J]. 化学进展, 2016, 28(9): 1397-1405.
[7] 付开乔, 张光彦, 蒋序林. 聚天冬酰胺衍生物药物/基因载体的合成和应用[J]. 化学进展, 2016, 28(8): 1196-1206.
[8] 曾峰, 潘真真, 张梦, 黄永焯, 崔彦娜, 徐勤. 有序介孔二氧化硅纳米粒的制备及其肿瘤诊疗应用[J]. 化学进展, 2015, 27(10): 1356-1373.
[9] 廖荣强, 刘满朔, 廖霞俐, 杨波. 基于环糊精的智能刺激响应型药物载体[J]. 化学进展, 2015, 27(1): 79-90.
[10] 杜娟, 卢瑛, 王祎龙, 郭桂萍, 潘迎捷. 非对称纳米材料的性质及其应用[J]. 化学进展, 2014, 26(12): 2019-2026.
[11] 陈杨军, 刘湘圣, 王海波, 王寅, 金桥, 计剑. 生物医用纳米颗粒表面的两性离子化设计[J]. 化学进展, 2014, 26(11): 1849-1858.
[12] 许利娜, 马培培, 陈强, 林思聪, 沈健. 甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用[J]. 化学进展, 2014, 26(0203): 366-374.
[13] 刘鹏, 邵学广, 蔡文生*. 准轮烷/轮烷在药物载体中的应用[J]. 化学进展, 2013, 25(05): 692-697.
[14] 屈阳, 李建波*, 任杰*. 温度敏感性药物载体及其在肿瘤热化疗中的应用[J]. 化学进展, 2013, 25(05): 785-798.
[15] 陈梦君, 杨万泰, 尹梅贞* . 纳米粒子的分类合成及其在生物领域的应用[J]. 化学进展, 2012, 24(12): 2403-2414.