English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 475-490 DOI: 10.7536/PC180732 前一篇   

• •

火药用叠氮含能增塑剂

赵宝东, 高福磊, 汪营磊**(), 刘亚静, 陈斌, 潘永飞   

  1. 西安近代化学研究所 西安 710065
  • 收稿日期:2018-07-23 出版日期:2019-02-15 发布日期:2018-10-15
  • 通讯作者: 汪营磊
  • 基金资助:
    国家自然科学基金项目(21173163); 国家自然科学基金项目(21875185)

Azido Energetic Plasticizers for Gun and Rocket Propellants

Baodong Zhao, Fulei Gao, Yinglei Wang**(), Yajing Liu, Bin Chen, Yongfei Pan   

  1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
  • Received:2018-07-23 Online:2019-02-15 Published:2018-10-15
  • Contact: Yinglei Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21173163); National Natural Science Foundation of China(21875185)

叠氮增塑剂具有较好热稳定性、较低玻璃化转变温度、钝感及与黏合剂物理化学相容性好等特点,在低易损性、低特征信号推进剂和发射药中有着广阔的应用前景。本文从叠氮增塑剂的合成、表征、性能及应用等方面对近年来取得的研究进展进行了综述,梳理了叠氮增塑剂研究中存在的问题,指出了今后叠氮增塑剂在结构设计、合成、制备工艺、表征及应用等方面的几个潜在发展方向,以期为含能材料合成、配方应用及性能表征等相关的研究者提供参考。

With the characteristics of superior thermal stability, lower glass transition temperature, insensitivity and better compatibility with binders, azido plasticizers have vast application prospect in the gun and rocket propellants requiring low vulnerability and low characteristic signal. From the aspects of synthesis, characterization, property and application, recent research progress on azido plasticizers is reviewed in this paper. Then, the existing problems in the research of azido plasticizers are sorted, and some potential development directions on the structure design, synthesis, preparation process, characterization and application are pointed out. This review is expected to benefit the researchers on the synthesis, composition application and property characterization of energetic materials.

()
图1 典型叠氮增塑剂的结构及缩写
Fig. 1 Structures and abbreviations of representative azido plasticizers
图2 TMETA的合成路线 [24]
Fig. 2 Synthetic route for TMETA [24]
图3 增塑剂BDPF和DAEF的合成路线 [26, 27]
Fig. 3 Synthetic routes for plasticizers BDPF and DAEF [26, 27]
图4 增塑剂BDAPs的结构 [28]
Fig. 4 Structures of plasticizers BDAPs [28]
表1 增塑剂BDAPs的性能[28]
Table 1 Properties of plasticizers BDAPs[28]
表2 BDAPs对黏合剂GAP和GAP聚亚胺酯的增塑效果[28]
Table 2 Plasticizing performance of BDAPs on binders GAP and GAP Polyurethane[28]
图5 增塑剂TAA的合成路线 [29]
Fig. 5 Synthetic route for plasticizer TAA [29]
表3 增塑剂AcBAMP、ProBAMP、ButBAMP和DEGBAA的性能 [30]
Table 3 Properties of plasticizers AcBAMP, ProBAMP, ButBAMP and DEGBAA [30]
图6 增塑剂BAMPs的合成路线 [30]
Fig. 6 Synthetic route for plasticizers BAMPs [30]
图7 增塑剂BAAEM和BAAEG的结构 [31, 32]
Fig. 7 Structures of plasticizers BAAEM and BAAEG[31, 32]
图8 增塑剂 [G-1]-(N3)6 和 [G-1]-(N3)8的合成路线 [33]
Fig. 8 Synthetic route for plasticizers [G-1]-(N3)6 and [G-1]-(N3)8 [33]
图9 增塑剂DAEs的结构 [34]
Fig. 9 Structures of plasticizers DAEs [34]
表4 增塑剂DAEs的性能[34]
Table 4 Properties of plasticizers DAEs[34]
图10 增塑剂AEs的结构 [35]
Fig. 10 Structures of plasticizers AEs [35]
表5 增塑剂AEs对GAP和PolyBAMO的增塑效果[35]
Table 5 Plasticizing performance of plasticizers AEs on GAP and PolyBAMO[35]
图11 NMPA的合成路线 [36]
Fig. 11 Synthetic route for NMPA [36]
图12 DAENP的合成路线 [38]
Fig. 12 Synthetic route for DAENP [38]
图13 DAMNP和ENPEA的合成路线 [41, 42]
Fig. 13 Synthetic route for DAMNP and ENPEA [41, 42]
图14 增塑剂DPTB的合成路线 [44]
Fig. 14 Synthetic route for plasticizer DPTB [44]
图15 化合物DABAMDB的合成路线 [46]
Fig. 15 Synthetic route for compound DABAMDB [46]
图16 DADNH和BAADNH的合成路线 [49, 50]
Fig. 16 Synthetic route for DADNH and BAADNH [49, 50]
图17 DIANP和PNAN的合成路线 [51~54, 58, 61]
Fig. 17 Synthetic route for DIANP and PNAN [51~54, 58, 61]
图18 由乌洛托品制备DANP和DATH的合成路线 [64, 69]
Fig. 18 Synthetic route for DANP and DATH from Urotropine [64, 69]
图19 由尿素制备增塑剂DANP的合成路线 [65]
Fig. 19 Synthetic route for plasticizer DANP from urea [65]
图20 AENAs的合成路线 [70]
Fig. 20 Synthetic route for AENAs [70]
图21 增塑剂ADFE的合成路线[71]
Fig. 21 Synthetic route for plasticizer ADFE [71]
图22 增塑剂DADFAH的合成路线 [75]
Fig. 22 Synthetic route for plasticizer DADFAH [75]
图23 GAPA-1和GAPA-2的合成路线 [76]
Fig. 23 Synthetic route for GAPA-1 and GAPA-2 [76]
图24 AATGAP的合成路线 [77]
Fig. 24 Synthetic route for AATGAP [77]
图25 GAPA-n的合成路线 [78]
Fig. 25 Synthetic route for GAPA-n [78]
图26 TNB-GAP的合成路线[79]
Fig. 26 Synthetic route for TNB-GAP[79]
图27 PHPGN、PAPGN和PMPGN的合成路线[80]
Fig. 27 Synthetic route for PHPGN, PAPGN and PMPGN [80]
表6 叠氮增塑剂典型代表的性能对比 [24, 28, 30, 34, 38, 58, 75]
Table 6 Comparison of the properties of representative azido plasticizers [24, 28, 30, 34, 38, 58, 75]
[1]
Schulze M C, Chavez D E .J. Energ. Mater., 2016,34:129.
[2]
Ma M, Shen Y, Kwon Y, Chung C, Kim J S . Propell. Explos. Pyrot., 2016,41:746.
[3]
Yang J, Wang F, Zhang J, Wang G, Gong X . J. Mol. Model., 2013,19:5367. https://www.ncbi.nlm.nih.gov/pubmed/24162066

doi: 10.1007/s00894-013-2014-6     URL     pmid: 24162066
[4]
Kumari D, Balakshe R, Banerjee S, Singh H . Rev. J. Chem., 2012,2:240.
[5]
Straessler N, Lee M . J. Energ. Mater., 2017,35:1. https://www.ncbi.nlm.nih.gov/pubmed/28029487

doi: 10.1016/j.ajem.2016.10.034     URL     pmid: 28029487
[6]
Lotmentsev Y M, Kondakova N N, Bakeshko A V, Kozeev A M, Sheremetev A B . Chem. Heterocycl. Compd., 2017,53:740.
[7]
Gribanov P S, Topchiy M A, Fedyanin I V, Asachenko A F, Nechaev M S, Pleshakov D V . Propell. Explos. Pyrot., 2017,42:1014.
[8]
姬月萍(Ji Y P), 李普瑞(Li P R), 汪伟(Wang W), 兰英(Lan Y), 丁峰(Ding F) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2005,28(4):47.
[9]
Li X, Chen S, Zhang G, Yu Z, Li J, Chen M, Ma X, Xiang K, Jin S, Chen Y . Mater. Express, 2017,7:216.
[10]
王静刚(Wang J G), 李俊贤(Li J X), 张玉清(Zhang Y Q) . 化学推进剂与高分子材料 (Chemical Propellants and Polymeric Materials), 2008,6(3):10.
[11]
曹星星(Cao X X), 李欢(Li H), 潘仁明(Pan R M) . 兵器装备工程学报 (Journal of Sichuan Ordnance), 2017,38(11):182.
[12]
Ma Y, Liu Y, Yu T, Lai W, Ge Z, Jiang Z . Propell. Explos. Pyrot., 2018,43:170.
[13]
Badgujar D M, Talawar M B, Zarko V E, Mahulikar P P . Combust. Explo. Shock, 2017,53:371.
[14]
Maksimowski P, Kasztankiewicz A B, Kopacz W . Propell. Explos. Pyrot., 2017,42:1020.
[15]
Zhang X, Kim J S, Kwon Y . J. Nanosci. Nanotechnol., 2017,17:7344.
[16]
Dong Q, Li Y, Wu F, Li H, Liu X, Huang C . Propell. Explos. Pyrot., 2017,42:1143.
[17]
Sonawane S H, Banerjee S, Sider A K, Talawar M B, Khan M A S . New J. Chem., 2017,41:7886.
[18]
Yang J, Gong X, Wang G . Comput. Mater. Sci., 2015,110:71.
[19]
罗运军(Luo Y J), 葛震(Ge Z . 精细化工 (Fine Chemicals), 2013,30(04):374.
[20]
Landsem E, Jensen T L, Hansen F K, Unneberg E, Kristensen T E . Propell. Explos. Pyrot., 2012,37:581.
[21]
罗运军(Luo Y J), 葛震(Ge Z . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2011,34(2):1.
[22]
Mohan Y M, Raju K M . Int. J. Polym. Anal. Char., 2004,9:289.
[23]
Yang J, Gong X, Wang G . Can. J. Chem., 2015,93:690.
[24]
姬月萍(Ji Y P), 汪营磊(Wang Y L), 刘卫孝(Liu W X), 陈斌(Chen B) . 含能材料 (Chinese Journal of Energetic Materials), 2011,19(4):388.
[25]
Rindone R R, Huang D S . US 5220039, 1993.
[26]
姬月萍(Ji Y P), 汪伟(Wang W), 丁峰(Ding F), 陈斌(Chen B), 尉涛(Yu T), 刘卫孝(Liu W X) . 火炸药学报 (Chinese Journal of Explosives and Propellants), 2008,31(2):86.
[27]
Clement A, Jacon G, Piteau M . GB 2451221, 2009.
[28]
Baghersad M H, Habibi A, Heydari A . J. Mol. Struct., 2017,1130:447. https://linkinghub.elsevier.com/retrieve/pii/S0022286016309553

doi: 10.1016/j.molstruc.2016.09.028     URL    
[29]
刘亚静(Liu Y J), 莫洪昌(Mo H C), 丁峰(Ding F), 张丽洁(Zhang L J), 高福磊(Gao F L), 姬月萍(Ji Y P) . 含能材料 (Chinese Journal of Energetic Materials), 2014,22(6):732.
[30]
Hafner S, Hartdegen V A, Hofmayer M S, Klapötke T M . Propell. Explos. Pyrot., 2016,41:806.
[31]
Kumari D, Yamajala K D B, Singh H, Sanghavi R R, Asthana S N, Raju K, Banerjee S . Propell. Explos. Pyrot., 2013,38:805.
[32]
Kumari D, Singh H, Patil M, Thiel W, Pant C S, Banerjee S . Thermochim. Acta, 2013,562:96.
[33]
Pant C S, Wagh R M, Nair J K, Gore G M, Thekkekara M, Venugopalan S . Propell. Explos. Pyrot., 2007,32:461.
[34]
Kumar S, Kumar A, Yamajala K D B, Pinki Gaur D K, Banerjee S . Cent. Eur. J. Energ. Mater., 2017,14:844.
[35]
Kumari D, Anjitha S G, Pant C S, Patil M, Singh H, Banerjee S . RSC Adv., 2014,4:39924.
[36]
汪营磊(Wang Y L), 姬月萍(Ji Y P), 李普瑞(Li P R), 陈斌(Chen B), 兰英(Lan Y) . 含能材料 (Chinese Journal of Energetic Materials), 2010,18(01):11.
[37]
Yang J, Yan H, Zhang X, Wang G, Gong X . Struct. Chem., 2014,25:931.
[38]
Ghosh K, Athar J, Pawar S, Polke B G, Sikder A K . J. Energ. Mater., 2012,30:107.
[39]
邓蕾(Deng L), 张炜(Zhang W), 鲍桐(Bao T), 周星(Zhou X) . 含能材料 (Chinese Journal of Energetic Materials), 2017,25(01):32.
[40]
Detlef D, Dieter L, Angelika M, Konrad S . Propell. Explos. Pyrot., 1999,24:159.
[41]
刘亚静(Liu Y J), 莫洪昌(Mo H C), 汪营磊(Wang Y L), 卢先明(Lu X M), 姬月萍(Ji Y P) . 含能材料 (Chinese Journal of Energetic Materials), 2015,23(7):712.
[42]
丁峰(Ding F), 刘亚静(Liu Y J), 莫洪昌(Mo H C), 汪营磊(Wang Y L), 卢先明(Lu X M), 姬月萍(Ji Y P) . 爆破器材 (Explosive Materials), 2017,46(1):13.
[43]
Witucki E F, Frankel M B . J. Chem. Eng. Data, 1979,24:247.
[44]
陆婷婷(Lu T T), 张丽洁(Zhang L J), 姬月萍(Ji Y P), 丁峰(Ding F), 刘亚静(Liu Y J), 汪营磊(Wang Y L) . 含能材料 (Chinese Journal of Energetic Materials), 2017,25(6):493.
[45]
Chavez D E, Hiskey M A, Naud D L, Parrish D . Angew. Chem. Int. Ed., 2008,47:8307. https://www.ncbi.nlm.nih.gov/pubmed/18816542

doi: 10.1002/anie.200803648     URL     pmid: 18816542
[46]
王娟(Wang J), 刘大斌(Liu D B), 周新利(Zhou X L) . 爆破器材 (Explosive Materials), 2012,41(4):1.
[47]
郝利峰(Hao L F), 张丽(Zhang L), 何宏军(He H J), 唐时敏(Tang S M), 吴祝骏(Wu Z J), 孙庆锋(Sun Q F) . 化学推进剂与高分子材料 (Chemical Propellants and Polymeric Materials), 2014,12(6):43.
[48]
Wingborg N, Eldsäter C . Propell. Explos. Pyrot., 2002,27:314.
[49]
Ek S, Latypov N, Goede P, Yiewwang L, Raymond Y G Y . J. Energ. Mater., 2012,30:324.
[50]
Ek S, Goede P, Latypov N, Wang L Y, Raymond Y G Y . WO 2009072955, 2009.
[51]
Flanagan J E . US 4085123, 1978.
[52]
Flanagan J E . US 4141910, 1979.
[53]
Simmons R L . US 4450110, 1984.
[54]
Flanagan J E, Wilson E R, Frankel M B . US 5013856, 1991.
[55]
Yang J, Zhang X, Gao P, Gong X, Wang G . RSC Adv., 2014,4:41934.
[56]
Yang J, Gong X, Wang G . Comput. Mater. Sci., 2015,102:1.
[57]
齐晓飞(Qi X F), 闫宁(Yan N), 严启龙(Yan Q L), 李宏岩(Li H Y) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2017,40(06):101.
[58]
姬月萍(Ji Y P), 兰英(Lan Y), 李普瑞(Li P R), 汪伟(Wang W), 丁峰(Ding F), 刘亚静(Liu Y J) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2008,31(3):44.
[59]
高福磊(Gao F L), 姬月萍(Ji Y P), 汪伟(Wang W), 刘卫孝(Liu W X), 陈斌(Chen B), 刘亚静(Liu Y J), 丁峰(Ding F) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2011,34(3):12.
[60]
高福磊(Gao F L), 姬月萍(Ji Y P), 刘卫孝(Liu W X), 丁峰(Ding F), 兰英(Lan Y) . 化学推进剂与高分子材料 (Chemical Propellants and Polymeric Materials), 2014,12(06):79.
[61]
刘卫孝(Liu W X), 姬月萍(Ji Y P), 汪伟(Wang W), 高福磊(Gao F L), 汪营磊(Wang Y L), 陈斌(Chen B), 丁峰(Ding F), 刘亚静(Liu Y J) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2016,39(02):72.
[62]
Gao F L, Ji Y P, Liu W X, Wang Y L, Chen B, Liu Y J, Ding F . Chin. J. Energ. Mater., 2015,23(3):302.
[63]
施明达(Shi M D) . 火炸药 (Explosives and Propellans), 1992, (04):24.
[64]
Klapötke T M, Krumm B, Steemann F X . Propell. Explos. Pyrot., 2009,34:13.
[65]
Il’yasov S G, Danilova E O . Propell. Explos. Pyrot., 2012,37:427.
[66]
党智敏(Dang Z M), 赵凤起(Zhao F Q), 李上文(Li S W), 阴翠梅(Yin C M), 屠德民(Tu D M) . 西安交通大学学报 (Journal of Xi’an Jiaotong University), 2000, (01):88.
[67]
Dang Z, Zhao F, Li S . J. Energ. Mater., 2000,18:29.
[68]
Dang Z, Zhao F, Li S, Yin C, Hu R . J. Therm. Anal. Calorim., 2000,61:771.
[69]
张志忠(Zhang Z Z), 王伯周(Wang B Z), 石尊常(Shi Z C), 姬月萍(Ji Y P), 刘愆(Liu Q), 朱春华(Zhu C H) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2003,26(2):3.
[70]
Gao F, Wang Y, Ji Y, Liu W, Chen B, Wang W . IOP Conf. Ser.: Mater. Sci. Eng., 2017,269:012057. https://iopscience.iop.org/article/10.1088/1757-899X/269/1/012057

doi: 10.1088/1757-899X/269/1/012057     URL    
[71]
Koppes W M, Chaykovsky M . US 5276171, 1994.
[72]
Prakash G K S, Bae C, Kroll M, Olah G A . J. Fluorine Chem., 2002,117:103.
[73]
Archibald T G, Manser G E, Immoos John E . US 5420311, 1995.
[74]
Archibald T G, Manser G E . US 5789617, 1998.
[75]
张明权(Zhang M Q), 刘红雨(Liu H Y), 韦兴存(Wei X C), 张磊(Zhang L), 康玲(Kang L) . 化学推进剂与高分子材料 (Chemical Propellants and Polymeric Materials), 2017,15(1):45.
[76]
徐若千(Xu R Q), 姬月萍(Ji Y P), 丁峰(Ding F), 汪伟(Wang W), 兰英(Lan Y), 刘亚静(Liu Y J) . 含能材料 (Chinese Journal of Energetic Materials), 2009,17(6):681.
[77]
李娜(Li N), 熊贤锋(Xiong X F), 莫洪昌(Mo H C), 卢先明(Lu X M), 刘亚静(Liu Y J) . 固体火箭技术 (Journal of Solid Rocket Technology), 2013,36(2):234.
[78]
王晓(Wang X), 罗运军(Luo Y J), 柴春鹏(Cai C P) . 火炸药学报 (Chinese Journal of Explosives and Propellans), 2010,33(6):57.
[79]
Huang T, Jin B, Peng R F, Chu S J . Int. J. Polym. Anal. Charact., 2014,19:522.
[80]
Asghar B, Mansour S . Propell. Explos. Pyrot., 2018,43:364.
[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[3] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[4] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[5] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[6] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[7] 梁敬时, 曾佳铭, 李俊杰, 佘珏芹, 谭瑞轩, 刘博. 阳离子抗菌聚合物[J]. 化学进展, 2019, 31(9): 1263-1282.
[8] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[9] 王亚军, 江自生, 冯长根. 亚稳态分子间复合物Al/Bi2O3及其应用[J]. 化学进展, 2016, 28(2/3): 391-400.
[10] 杜娟, 卢瑛, 王祎龙, 郭桂萍, 潘迎捷. 非对称纳米材料的性质及其应用[J]. 化学进展, 2014, 26(12): 2019-2026.
[11] 陈杨军, 刘湘圣, 王海波, 王寅, 金桥, 计剑. 生物医用纳米颗粒表面的两性离子化设计[J]. 化学进展, 2014, 26(11): 1849-1858.
[12] 钟大根, 刘宗华, 左琴华, 薛巍. 高分子纳米材料与血浆蛋白的相互作用[J]. 化学进展, 2014, 26(04): 638-646.
[13] 许利娜, 马培培, 陈强, 林思聪, 沈健. 甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用[J]. 化学进展, 2014, 26(0203): 366-374.
[14] 郭慧慧, 苗娜娜, 李腾飞, 郝君, 高缘, 张建军. 共无定形药物——新型单相无定形二元体系[J]. 化学进展, 2014, 26(0203): 478-486.
[15] 赵娟, 黄鹏程, 陈功, 詹茂盛. 碳十硼烷及其衍生物的反应性及应用[J]. 化学进展, 2012, 24(04): 556-567.
阅读次数
全文


摘要

火药用叠氮含能增塑剂