English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 442-454 DOI: 10.7536/PC180714 前一篇   后一篇

• •

富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2正极材料

冯泽, 孙旦, 唐有根**(), 王海燕**()   

  1. 中南大学化学化工学院 化学电源湖南省重点实验室 锰资源高效清洁利用湖南省重点实验室 长沙 410083
  • 收稿日期:2018-07-11 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 唐有根, 王海燕
  • 基金资助:
    国家科技重点研发项目(2018YFB0104000); 湖南省科技计划重大专项(2017GK1040); 湖南省科技计划重大专项(2017GK5040); 湖南省科技计划项目(2016TP1007); 湖南省科技计划项目(2017TP1001); 中南大学创新驱动计划(2016CXS009)

Rich-Nickel Ternary Layered Oxide LiNi0.8Co0.1Mn0.1O2 Cathode Material

Ze Feng, Dan Sun, Yougen Tang**(), Haiyan Wang**()   

  1. Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083,China
  • Received:2018-07-11 Online:2019-02-15 Published:2018-12-20
  • Contact: Yougen Tang, Haiyan Wang
  • About author:
    ** E-mail: (Yougen Tang);
    (Haiyan Wang)
  • Supported by:
    National Key R&D Program of China(2018YFB0104000); Science and Technology Major Project of Hunan Province(2017GK1040); Science and Technology Major Project of Hunan Province(2017GK5040); Science and Technology Plan Project of Hunan Province(2016TP1007); Science and Technology Plan Project of Hunan Province(2017TP1001); Innovation-Driven Project of Central South University(2016CXS009)

富镍三元层状氧化物LiNi0.8Co0.1Mn0.1O2(NCM811)由于其可逆容量高、环境友好、价格低廉等优势,被认为是下一代锂离子电池最具潜力的正极材料之一。然而,NCM811存在着热稳定性差、充放电过程中结构易发生相变、安全性低等缺点,阻碍了其大规模生产。随着材料制备技术的不断进步,NCM811的电化学性能有了极大的提高。本文综述了近几年来富镍层状氧化物NCM811正极材料的最新研究进展,重点对该材料存在的问题与失效机制、合成方法、改进措施和理论计算模拟研究进行了深入阐述,并对NCM811未来发展作了展望。

Nickel-rich ternary layered oxide LiNi0.8Co0.1Mn0.1O2 (NCM811) is considered to be one of the most potential cathode materials in the next generation lithium-ion batteries due to its high reversible capacity, environmentally friendly feature and low cost. However, this kind of cathode material is suffering from the poor thermal stability, phase transition during the charge-discharge process and safety issue, which hinders its further practical application. With the deepening of researches and development of fabrication methods, the electrochemical properties of NCM811 have been significantly improved. In this paper, the recent research progress of nickel-rich layered oxide NCM811 cathode material has been reviewed. We mainly focus on the problems and declined mechanisms, synthesis methods, improvement measures and theoretical calculation simulation studies of NCM811, and also make a brief outlook for the future development of nickel-rich ternary layered oxide NCM811.

()
表1 商业化正极材料主要性能参数[7,8,9]
Table 1 Main performance parameters of commercial cathode materials[7,8,9]
图1 高镍三元正极材料中不同区域的阳离子混排[14]
Fig. 1 Cation mixing of different regions in nickel-rich ternary cathode material[14]
图2 原位XRD和质谱联用分析三元材料结构相变示意图[19]
Fig. 2 Schematic diagram of phase transitions in ternary material structures results from in situ TR-XRD with MS analysis[19]
表2 经过3000次循环后电池负极指标的表征与计算结果[57]
Table 2 The results of characterization and calculation in anode after 3000 cycles[57]
图3 LixAlO2和LixTi2O4双包覆层修饰NCM811材料的合成过程[71]
Fig. 3 Synthesis process of LixAlO2 and LixTi2O4 coating layers on NCM811 cathode[71]
图4 球形梯度富镍材料[17]
Fig. 4 Spherical gradient nickel-rich material[17]
图5 多晶和单晶正极材料SEI膜形成模型[78]
Fig. 5 Formation model of SEI layer in polycrystalline and single crystal cathode materials[78]
图6 不同熔剂、温度下合成单晶NCM811材料[43]
Fig. 6 Synthesis of single crystal NCM811 material under different fluxes and temperatures[43]
图7 (a)、(b)分别为不同添加剂的结构和其线性伏安扫描[90]
Fig. 7 The structures of the different additives(a) and their linear volt-ampere scanning curves(b)[90]
图8 不同过渡金属间的键价强度[16]
Fig. 8 The bond strength between different transition metals[16]
图9 未掺杂、Al掺杂和Mg掺杂材料结构缺陷的生成焓,(a)氧空位,(b)镍占锂位,(c)锂镍交换[96]
Fig. 9 The formation energy of defective sites for structures of un-doped, Al-and Mg-doped in the case of(a) the oxygen vacancy(VO),(b) excess Ni(Ni Li), and(c) Li/Ni exchange(LiNi-NiLi)[96]
[1]
Etacheri V, Marom R, Ran E, Salitra G, Aurbach D . Energy Environ. Sci., 2011,4:3243. https://www.ncbi.nlm.nih.gov/pubmed/30560537

doi: 10.1007/s11356-018-3915-9     URL     pmid: 30560537
[2]
孙艳霞(Sun Y X), 周园(Zhou Y), 申月(Shen Y), 张丽娟(Zhang L J) . 化学通报 (Chemistry Bulletin), 2017,80:34.
[3]
夏青(Xia Q), 赵俊豪(Zhao J H), 王凯(Wang K), 李昇(Li S), 郭冰(Guo B), 田院(Tian Y), 杨则恒(Yang Z H), 张卫新(Zhang W X) . 化工学报 (J. Chem. Ind. Eng., 2017,68:1239.
[4]
Luo J, Xia Y . Adv. Funct. Mater., 2010,17:3877.
[5]
Watanabe S, Kinoshita M, Nakura K . J. Power Sources, 2014,247:412.
[6]
严武渭(Yan W W), 柳永宁(Liu Y N), 崇少坤(Chong S K), 周亚萍(Zhou Y P), 刘建国(Liu J G), 邹志刚(Zou Z G) . 化学进展 (Process in Chemistry), 2017,29(2/3):198.
[7]
Wilson J R, Cronin J S, Barnett S A, Harris S J . J. Power Sources, 2011,196:3443.
[8]
刘全兵(Liu Q B) . 华南理工大学博士论文(Doctoral Dissertation of South China University of Technology), 2012.
[9]
赵陈浩(Zhao C H) . 山东大学博士论文(Doctoral Dissertation of Shandong University), 2014.
[10]
李想(Li X), 谢正伟(Xie Z W), 吴锐(Wu R), 瞿美臻(Qu M Z) . 电池 (Battery Bimonthly), 2015,45(1):54.
[11]
王竞鹏(Wang J P) . 哈尔滨工业大学博士论文(Doctoral Dissertation of Harbin Institute of Technology), 2016.
[12]
李欢(Li H), 江奇(Jiang Q), 邱家欣(Qiu J X), 刘青青(Liu Q Q), 高艺珂(Gao Y K), 卢晓英(Lu X Y), 胡爱琳(Hu A L) . 高等学校化学学报 (Chem. J. Chin. Univ.), 2018,39:1267.
[13]
李想(Li X), 葛武杰(Ge W J), 王昊(Wang H), 瞿美臻(Qu M Z) . 无机材料学报 (Chin. J. Inorg. Chem.), 2017,32(2):113.
[14]
Kim H, Kim M G, Jeong H Y, Nam H, Cho J . Nano Lett., 2015,15:2111. https://www.ncbi.nlm.nih.gov/pubmed/25668708

doi: 10.1021/acs.nanolett.5b00045     URL     pmid: 25668708
[15]
Yan P, Zheng J, Lv D, Wei Y, Zheng J, Wang Z, Kuppan S, Yu J, Luo L, Edwards D . Chem. Mater., 2015,27:5393.
[16]
Liang C, Kong F, Longo R C, Santosh K C, Kim J S, Jeon S H, Choi S A, Cho K . J. Phys. Chem. C, 2016,120:6383.
[17]
Sun Y K, Chen Z, Noh H J, Lee D J, Jung H G, Ren Y, Wang S, Yoon C S, Myung S T, Amine K . Nat.Mater., 2012,11:942. https://www.ncbi.nlm.nih.gov/pubmed/23042415

doi: 10.1038/nmat3435     URL     pmid: 23042415
[18]
Zhao J, Zhang W, Huq A, Misture S T, Zhang B, Guo S, Wu L, Zhu Y, Chen Z, Amine K . Adv. Energy. Mater., 2017,7:1601266.
[19]
Bak S M, Nam K W, Chang W, Yu X, Hu E, Hwang S, Stach E A, Kim K B, Chung K Y, Yang X Q . Chem. Mater., 2013,25:337.
[20]
Li J, Downie L E, Ma L, Qiu W, Dahn J R . J. Electrochem. Soc., 2015,162:1401.
[21]
Yang C, Shao R, Mi Y, Shen L, Zhao B, Wang Q, Wu K, Lui W, Gao P, Zhou H . J. Power Sources, 2018,376:200.
[22]
Robert R, Bünzli C, Berg E J, Novák P . Chem. Mater., 2015,27:526.
[23]
Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y . J. Alloys Compd., 2017,690:589.
[24]
Wang L, Mu D, Wu B, Yang G, Gai L, Liu Q, Fan Y, Peng Y, Wu F . Electrochim. Acta, 2016,222:806.
[25]
Xu S, Du C, Xu X, Han G, Zuo P, Cheng X, Ma Y, Yin G . Electrochim. Acta, 2017,248:534.
[26]
Berkes B B, Schiele A, Sommer H, Brezesinski T, Janek J . J. Solid State Electrochem., 2016,20:1.
[27]
Wang Y, Jiang J, Dahn J R . Electrochem. Commun., 2007,9:2534.
[28]
Kim Y . Phys. Chem. Chem. Phys., 2013,15:6400. https://www.ncbi.nlm.nih.gov/pubmed/23525240

doi: 10.1039/c3cp50567g     URL     pmid: 23525240
[29]
Yan P, Zheng J, Chen T, Luo L, Jiang Y, Wang K, Sui M, Zhang J G, Zhang S, Wang C . Nature Communications, 2018,9:2437. https://www.ncbi.nlm.nih.gov/pubmed/29934582

doi: 10.1038/s41467-018-04862-w     URL     pmid: 29934582
[30]
Lee E J, Chen Z, Noh H J, Nam S C, Kang S, Kim D H, Amine K, Sun Y K . Nano Lett., 2014,14:4873. https://www.ncbi.nlm.nih.gov/pubmed/24960550

doi: 10.1021/nl5022859     URL     pmid: 24960550
[31]
Yan P, Zheng J, Liu J, Wang B, Cheng X, Zhang Y, Sun X, Wang C, Zhang J G . Nature Energy, 2018,3:600.
[32]
Kim J H, Park K J, Kim S J, Yoon C S, Sun Y K . J. Mater. Chem. A, 2019.
[33]
Taheri P, Yazdanpour M, Bahrami M . J. Power Sources, 2013,243:280.
[34]
Kim N Y, Yim T, Song J H, Yu J S, Lee Z . J. Power Sources, 2016,307:641.
[35]
Peng P, Jiang F . International Journal of Heat & Mass Transfer, 2016,103:1008.
[36]
Macneil D D, Lu Z, Chen Z, Dahn J R . J. Power Sources, 2002,108:8.
[37]
王连邦(Wang L B), 姚金翰(Yao J H), 王剑波(Wang J B) . CN 102983329 A, 2013.
[38]
Kim J H, Yi J H, Ko Y N, Kang Y C . Mater. Chem. Phys., 2012,134:254.
[39]
Kimijima T, Zettsu N, Teshima K . Cryst. Growth Des., 2016,16:2618.
[40]
Shi Y, Zhang M, Fang C, Meng Y S . J. Power Sources, 2018,394:114.
[41]
侯倩(Hou Q), 李春雷(Li C L), 崔孝玲(Cui X L), 李翔飞(Li X F), 张宇(Zhang Y) . 化工新型材料 (New Chem. Mater.), 2017: 23.
[42]
邵奕嘉(Shao Y J), 黄斌(Huang B), 刘全兵(Liu Q B), 廖世军(Liao S J) . 化学进展 (Process in Chemistry), 2018,30(4):410.
[43]
Kim Y . ACS Appl. Mater. Interfaces., 2012,4:2329. https://www.ncbi.nlm.nih.gov/pubmed/22497580

doi: 10.1021/am300386j     URL     pmid: 22497580
[44]
Li T, Li X, Wang Z, Guo H . J. Power Sources, 2017,342:495.
[45]
Zhang C, Qi J, Zhao H, Hou H, Deng B, Tao S, Su X, Wang Z, Qian B, Chu W . Mater. Lett., 2017,201:1.
[46]
Zheng X, Li X, Zhang B, Wang Z, Guo H, Huang Z, Yan G, Wang D, Xu Y . Ceram. Int., 2016,42:644.
[47]
Meng K, Wang Z, Guo H, Li X . Electrochim. Acta, 2017,234:99.
[48]
曾跃武(Zeng Y W), 黄连友(Huang L Y) . CN 102544474 A, 2012.
[49]
Li X Q, Xiong X H, Wang Z X, Chen Q Y . T. Nonferr. Metal. Soc., 2014,24:4023.
[50]
Lu H, Zhou H, Svensson A M, Fossdal A, Sheridan E, Lu S, Vullum-Bruer F . Solid State Ionics, 2013,249/250:105.
[51]
Tang Z, Bao J, Du Q, Shao Y, Gao M, Zou B, Chen C . ACS Appl. Mater. Interfaces, 2016,8:34879. https://www.ncbi.nlm.nih.gov/pubmed/27936544

doi: 10.1021/acsami.6b11431     URL     pmid: 27936544
[52]
Chen T, Li X, Wang H, Yan X, Wang L, Deng B, Ge W, Qu M . J. Power Sources, 2018,374:1.
[53]
Luo W, Zhou F, Zhao X, Lu Z, Li X, Dahn J R . Chem. Mater., 2016,22:1164.
[54]
施少君(Shi S J) . 浙江大学博士论文(Doctoral Dissertation of Zhejiang University), 2014.
[55]
朱伟雄(Zhu W X), 李新海(Li X H), 王志兴(Wang Z X), 郭华军(Guo H J) . 中国有色金属学报 (Transactions of Nonferrous Metals Society of China), 2013,23(4):1047.
[56]
Zhang B, Li L, Zheng J . Journal of Alloys & Compounds, 2012,520:190.
[57]
Kimura N, Seki E, Konishi H, Hirano T, Takahashi S, Ueda A, Horiba T . J. Power Sources, 2016,332:187.
[58]
Park K J, Jung H G, Kuo L Y, Kaghazchi P, Yoon C S, Sun Y K . Adv. Energy. Mater., 2018,0:1801202.
[59]
Peng Y, Wang Z, Wang J, Guo H, Xiong X, Li X . Powder Technol., 2013,237:623.
[60]
Wang D, Li X, Wang Z, Guo H, Xu Y, Fan Y, Ru J . Electrochim. Acta, 2016,188:48. https://linkinghub.elsevier.com/retrieve/pii/S0013468615308653

doi: 10.1016/j.electacta.2015.11.093     URL    
[61]
Zeng Y, Qiu K, Yang Z, Zhou F, Xia L, Bu Y . Ceram. Int., 2016,42:10433.
[62]
谭潮溥(Tan C F), 黄殿华(Huang D H), 骆宏钧(Luo H J), 杜柯(Du K), 曹雁冰(Cao Y B), 胡国荣(Hu G R) . 无机化学学报 (Chin. J. Inorg. Chem.), 2018,23(4):647.
[63]
Lai Y Q, Xu M, Zhang Z A, Gao C H, Wang P, Yu Z Y . J. Power Sources, 2016,309:20.
[64]
Lee M J, Noh M, Park M H, Jo M, Kim H, Nam H, Cho J . J. Mater. Chem. A, 2015,3:421.
[65]
Li S, Fu X, Zhou J, Han Y, Qi P, Gao X, Feng X, Wang B . J. Mater. Chem. A, 2016,4:5823.
[66]
Xiao Z, Hu C, Song L, Li L, Cao Z, Zhu H, Liu J, Li X, Tang F . Ionics, 2018,24:91. http://link.springer.com/10.1007/s11581-017-2178-7

doi: 10.1007/s11581-017-2178-7     URL    
[67]
Lee S H, Chong S Y, Amine K, Sun Y K . J. Power Sources, 2013,234:201. https://linkinghub.elsevier.com/retrieve/pii/S0378775313000827

doi: 10.1016/j.jpowsour.2013.01.045     URL    
[68]
Wang J, Du C, Xu X, He X, Yin G, Ma Y, Zuo P, Cheng X, Gao Y . Electrochim. Acta, 2016,192:340.
[69]
Jan S S, Nurgul S, Shi X, Xia H, Pang H . Electrochim. Acta, 2014,149:86.
[70]
Chen Y, Zhang Y, Chen B, Wang Z, Lu C . J. Power Sources, 2014,256:20.
[71]
Li L, Ming X, Qi Y, Chen Z, Song L, Zhang Z, Gao C, Peng W, Yu Z, Lai Y . ACS Appl. Mater. Interfaces, 2016,8:30879. https://www.ncbi.nlm.nih.gov/pubmed/27805812

doi: 10.1021/acsami.6b09197     URL     pmid: 27805812
[72]
Zhao R, Liang J, Huang J, Zeng R, Zhang J, Chen H, Shi G . Journal of Alloys & Compounds, 2017,724:1109.
[73]
Chen S, He T, Su Y, Lu Y, Bao L, Chen L, Zhang Q, Wang J, Chen R, Wu F . ACS Appl. Mater. Interfaces, 2017,9:29732. https://www.ncbi.nlm.nih.gov/pubmed/28799739

doi: 10.1021/acsami.7b08006     URL     pmid: 28799739
[74]
Li Q, Dang R, Chen M, Lee Y, Hu Z, Xiao X . ACS Appl. Mater. Interfaces, 2018,10:17850. https://www.ncbi.nlm.nih.gov/pubmed/29733197

doi: 10.1021/acsami.8b02000     URL     pmid: 29733197
[75]
Xia Y, Zheng J, Wang C, Gu M . Nano Energy, 2018,49:434.
[76]
Du K, Hua C, Tan C, Peng Z, Cao Y, Hu G . J. Power Sources, 2014,263:203.
[77]
Noh H J, Chen Z, Chong S Y, Lu J, Amine K, Sun Y K . Chem. Mater., 2013,25:2109.
[78]
Kim J, Lee H, Cha H, Yoon M, Park M, Cho J . Adv.Energy. Mater, 2017,8:1702028.
[79]
Kan W H, Chen D, Papp J K, Shukla A K, Huq A, Brown C M, Mccloskey B D, Chen G . Chem. Mater., 2018,30:1655.
[80]
唐盛贺(Tang S H), 周汉章(Zhou H Z), 刘更好(Liu G H), 张莹娇(Zhang Y J), 刘伟健(Liu W J), 陈沃林(Chen W L) . 化工新型材料 (New Chem. Mater.), 2017,45(4):139.
[81]
肖建伟(Xiao J W), 刘良彬(Liu L B), 符泽卫(Fu Z W), 李文斌(Li W B), 何兴(He X), 叶尚云(Ye S Y) . 电池工业 (Chinese Battery Industry), 2017,21(2):51.
[82]
Duan J, Wu C, Cao Y, Huang D, Du K, Peng Z, Hu G . J. Alloys Compd., 2017,695:91.
[83]
Li J, Yao R, Cao C . ACS Appl. Mater. Interfaces, 2014,6:5075. https://www.ncbi.nlm.nih.gov/pubmed/24625317

doi: 10.1021/am500215b     URL     pmid: 24625317
[84]
Zhou H, Yang Z, Xiao D, Xiao K, Li J . J. Mater. Sci.: Mater. Electron., 2018,29:6648.
[85]
周文超(Zhou W C), 朱学全(Zhu X Q), 姜彬(Jiang B), 杨春容(Yang C R) . CN 105355970 A, 2016.
[86]
Pham H Q, Hwang E H, Kwon Y G, Song S W . J. Power Sources, 2016,323:220.
[87]
邓邦为(Deng B W), 孙大明(Sun D M), 万琦(Wan Q), 王昊(Wang H), 陈滔(Chen T), 李璇(Li X), 瞿美臻(Qu M Z), 彭工厂(Peng G C) . 化学学报 (Acta Chimica Sinica), 2018,76(4):259.
[88]
Lee Y M, Nam K M, Hwang E H, Kwon Y G, Kang D H, Kim S S, Song S W . J. Phys. Chem. C, 2014,118:10631.
[89]
Yim T, Jang S H, Han Y K . J. Power Sources, 2017,372:24.
[90]
Kang K S, Choi S, Song J H, Woo S G, Yong N J, Choi J, Yim T, Yu J S, Kim Y J . J. Power Sources, 2014,253:48. https://linkinghub.elsevier.com/retrieve/pii/S0378775313019927

doi: 10.1016/j.jpowsour.2013.12.024     URL    
[91]
Zheng Q, Xing L, Yang X, Li X, Ye C, Wang K, Huang Q, Li W . ACS Appl. Mater. Interfaces, 2018,10:16843. https://www.ncbi.nlm.nih.gov/pubmed/29687987

doi: 10.1021/acsami.8b00913     URL     pmid: 29687987
[92]
夏兰(Xia L), 余林颇(Yu L P), 胡笛(Hu D), 陈政(Chen Z) . 化学学报 (Acta Chimica Sinica), 2017,75(12):1183.
[93]
赵丹妮(Zhao D N), 田芳禺(Tian F Y), 于雅琳(Yu Y L), 张博明(Zhang B M), 蒙邦克(Meng B K), 冯启航(Feng Q H), 杨继萍(Yang J P) . 复合材料学报 (Acta Mater. Compos. Sin.), 2018,35(2):253.
[94]
杨思七(Yang S Q), 张天然(Zhang T R), 陶占良(Tao Z L), 陈军(Chen J) . 化学学报 (Acta Chimica Sinica), 2013,71(7):1029.
[95]
Shi S Q, Gao J, Liu R, Zhao Y, Wu Q, Ju W W, Ouyang C Y, Xiao R J . Chin. Phys. B, 2016,25(1):018212.
[96]
Min K, Seo S W, Song Y Y, Lee H S, Cho E . Physical Chemistry Chemical Physics Pccp, 2017,19:1762. https://www.ncbi.nlm.nih.gov/pubmed/27886291

doi: 10.1039/c6cp06270a     URL     pmid: 27886291
[97]
Clark J M, Nishimura S, Yamada A, Islam M S . Angew. Chem. Int. Ed., 2012,51:13149. https://www.ncbi.nlm.nih.gov/pubmed/23154889

doi: 10.1002/anie.201205997     URL     pmid: 23154889
[98]
Jie S, Haimei L, Xu C, G. E D, Wensheng Y, Xue D . Adv. Mater., 2013,25:1125. https://www.ncbi.nlm.nih.gov/pubmed/23161553

doi: 10.1002/adma.201203108     URL     pmid: 23161553
[99]
Koski K J, Wessells C D, Reed B W, Cha J J, Kong D, Cui Y . J. Am. Chem. Soc., 2012,134:13773. https://www.ncbi.nlm.nih.gov/pubmed/22830589

doi: 10.1021/ja304925t     URL     pmid: 22830589
[100]
Sun J, Zheng G, Lee H W, Liu N, Wang H, Yao H, Yang W, Cui Y . Nano Lett., 2014,14:4573. https://www.ncbi.nlm.nih.gov/pubmed/25019417

doi: 10.1021/nl501617j     URL     pmid: 25019417
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[3] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[4] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[5] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[6] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[7] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[8] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[9] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[10] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[11] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[12] 倪陈, 姜迪, 徐幼林, 唐文来. 黏弹性流体在微粒被动操控技术中的应用[J]. 化学进展, 2020, 32(5): 519-535.
[13] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[14] 王童, 文姣, 李良春, 郑仁林, 孙德群. 脱氢氨基酸的合成及其在药物研发中的应用[J]. 化学进展, 2020, 32(1): 55-71.
[15] 刘景昊, 伍学谦, 吴玉锋, 俞嘉梅. 计算模拟研究金属有机骨架材料吸附分离C2、C3烃类气体[J]. 化学进展, 2020, 32(1): 133-144.