English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 351-367 DOI: 10.7536/PC180704 前一篇   后一篇

• •

糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能

周中高**(), 元洋洋, 徐国海, 陈正旺, 李梅   

  1. 1. 赣南师范大学化学化工学院 赣州 341000
  • 收稿日期:2018-07-05 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 周中高
  • 基金资助:
    国家自然科学基金项目(21562002); 江西省高等学校功能材料化学重点实验室开发课题(FMC16201)

The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes

Zhonggao Zhou**(), Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li   

  1. 1. College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
  • Received:2018-07-05 Online:2019-02-15 Published:2018-12-20
  • Contact: Zhonggao Zhou
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21562002); Key Laboratory of Jiangxi University for Functional Materials Chemistry(FMC16201)

N-杂环卡宾(NHCs)及其金属配合物是有机金属化学学科的研究热点,在催化领域获得广泛应用。向NHCs杂环添加新颖官能团,构建复杂NHCs及其金属配合物可实现不同催化性能。糖类化合物具有生物相容性、水溶性、手性、无毒副作用且广泛存在于自然界,将糖取代基引入NHCs不仅可以改善水溶性,还可以引入手性元素。糖基-NHCs及其金属配合物在催化和药化领域显现出巨大潜力。本文就国内外含单糖D-吡喃葡萄糖、D-吡喃半乳糖、β-氨基葡萄糖、氨基半乳糖和氨基甘露糖等糖基衍生NHCs前体及NHCs金属配合物的重要研究成果进行了综述。根据糖基稠环碳原子与NHCs杂环的连接方式,将NHCs及其金属配合物分为5种类型,包括C-1、C-2、C-3、C-6及其他。从糖基-NHCs及其过渡金属配合物的合成、结构和催化性能方面进行了深入讨论,着重介绍了糖基和NHCs及其金属配合物在催化性能之间的关联性,并进行了简短的评述。最后,对糖基-NHCs及其过渡金属配合物的催化性能特别是在不对称反应中的应用前景及其影响因素进行了展望。

N-Heterocyclic carbenes(NHCs) and their stable transition metal complexes rank among the most popular subjects for research in organometallic chemistry that have been widely used in the field of catalysis. Researchers are investigating NHCs metal complexes with increasingly complex NHCs components, adding new functional substituents to the NHCs heterocyclic ring. Sugar compounds are extremely abundant molecules and well known for their biocompatibility, water solubility, chirality and nontoxicity. It is not surprising that sugar substituents have been introduced into NHCs(sugar-based NHCs) to increase water solubility and chirality. Sugar-based NHCs and their metal complexes show great potential in the fields of catalysis and pharmacology. To understand the success of sugar-based NHCs, this review first presents the important research progress in sugar-based NHCs precursors and NHCs metal complexes containing monosaccharides such as D-glucopyranose, D-galactopyranose, β-glucosamine, galactosamine, and aminomannose are discussed. Overview, sugar-based NHCs and their metal complexes are divided into five categories according to the carbon-linked of sugar with fused ring(including C-1, C-2, C-3, C-6, and others). Then the main synthetic methods, handling, structure, and catalytic activity of sugar-based NHCs and their metal complexes are discussed in detail, roles of the sugar moiety, NHCs ligand and transition metal complexes related to these properties are highlighted. Finally, the catalytic activity, especially in asymmetric catalytic reaction, and the development trend of sugar-based NHCs precursors and NHCs transition metal complexes are prospected.

()
图1 糖基-NHCs及其配合物的常见四大类连接模式
Fig. 1 Four types of linking modes of sugar based NHCs and their complexes
图2 糖基C-1连接NHCs-Ir配合物3的合成[32]
Fig. 2 Synthetic scheme of sugar C-1 type NHCs-Ir complex 3[32]
图3 糖基C-1连接NHCs-Pd配合物7和咪唑-2硫酮8[33]
Fig. 3 Synthetic scheme of sugar C-1 type NHCs-Pd 7 and imidazole-2 thione 8[33]
图4 咪唑盐催化Umpolung反应合成γ-丁内酯
Fig. 4 Synthesis of γ-butyrolactone by imidazolium salts catalyzed Umpolung reaction
图5 糖基C-1连接NHCs-Ru配合物12的合成[34]
Fig. 5 Synthetic scheme of sugar C-1 NHCs-Ru complexes 12[34]
图6 ROMP、RCM、CM和AROCM反应[34]
Fig. 6 ROMP, RCM, CM and AROCM reactions[34]
图7 糖基C-1连接NHCs-Pt配合物19的合成[35]
Fig. 7 Synthetic scheme of sugar C-1 NHCs-Pt complex 19[35]
图8 糖基C-1连接NHCs-Ni配合物21的合成[37]
Fig. 8 Synthetic scheme of sugar C-1 NHCs-Ni complex 21[37]
图9 糖基C-1连接NHCs-Rh、Ir配合物22和23的合成[38]
Fig. 9 Synthetic scheme of sugar C-1 type NHCs-Ru, Ir complexes 22 and 23[38]
图10 糖基C-1连接Ims 27~29的合成及其催化性能[39]
Fig. 10 Synthesis and catalytic activity of sugar C-1 Ims 27~29[39]
图11 糖基C-1连接咪唑盐 30的合成及其催化性能[41]
Fig. 11 Synthesis and catalytic activity of sugar C-1 type Ims 30[41]
图12 糖基C-1连接C-C-N型钯配合物33的合成及催化[42]
Fig. 12 Synthesis and catalytic activity of sugar C-1 C-C-N type Pd complexes 33[42]
图13 糖基C-1连接C—C—N型钯配合物36的合成及催化[43]
Fig. 13 Synthesis and catalytic activity of sugar C-1 C—C—N type Pd complexes 36[43]
图14 糖基C-1连接咪唑盐37的合成及催化[44]
Fig. 14 Synthesis and catalytic activity of sugar C-1 type imidazolium salt 37[44]
图15 糖基C-1连接咪唑盐39的合成[45]
Fig. 15 Synthesis of sugar C-1 type imidazolium salt 39[45]
图16 糖基C-1连接咪唑盐39的催化性能
Fig. 16 Catalytic activity of sugar C-1 type imidazolium salt 39
图17 NHCs-Ru、Ir配合物42~44的合成及催化[46]
Fig. 17 Synthesis and catalytic activity of NHCs-Ru, Ir complexes 42~44[46]
图18 糖基C-1连接钯配合物47、50~52的合成及催化[47]
Fig. 18 Synthesis and catalytic activity of sugar C-1 type Pd complexes 47, 50~52[47]
图19 糖基C-1连接双NHCs钯配合物54的合成及催化[48]
Fig. 19 Synthesis and catalytic activity of sugar C-1 type bis-NHCs Pd complexes 54[48]
图20 糖基C-1连接双NHCs前体55的合成及催化[49]
Fig. 20 Synthesis and catalytic activity of sugar C-1 type bis-NHCs precursors 55[49]
图21 糖基C-2连接NHCs-Rh配合物57和58的合成及催化[50]
Fig. 21 Synthesis and catalytic activity of sugar C-2 type NHCs-Rh 57 and 58[50]
图22 糖基C-3连接NHCs-Rh配合物63的合成[51]
Fig. 22 Synthesis of sugar C-3 type NHCs-Rh 63[51]
图23 糖基C-3连接NHCs-Pd配合物67的合成及催化[53]
Fig. 23 Synthesis and catalytic activity of sugar C-3 type NHCs-Pd 67[53]
图24 糖基C-3连接双咪唑啉盐70及NHCs-Pd、Au配合物71和72的合成[56,57]
Fig. 24 Synthesis of sugar C-3 type bis-Ims 70, NHCs-Pd, Au complexes 71 and 72[56,57]
图25 糖基C-6连接NHCs前体73的合成[58]
Fig. 25 Synthesis of sugar C-6 NHCs precursor 73[58]
图26 糖基C-6连接NHCs-Pd配合物76和77的合成[59]
Fig. 26 Synthesis of sugar C-6 NHCs-Pd complexes 76 and 77[59]
图27 糖基C-6连接NHCs-Pd配合物76和77的催化性能[59]
Fig. 27 Catalytic activity of sugar C-6 type NHCs-Pd complexes 76 and 77[59]
图28 其他方式连接糖基咪唑盐78~81的合成[61]
Fig. 28 Synthesis of other type sugar based Ims 78~81[61]
图29 其他方式连接糖基咪唑盐84和85的合成[62]
Fig. 29 Synthesis of other type sugar based Ims 84 and 85[62]
[1]
Velazquez H D, Verpoort F . Chem. Soc. Rev., 2012,41:7032. https://www.ncbi.nlm.nih.gov/pubmed/22842861

doi: 10.1039/c2cs35102a     URL     pmid: 22842861
[2]
Wang W, Cui L, Sun P, Shi L, Yue C, Li F . Chem. Rev., 2018,118:9843. https://www.ncbi.nlm.nih.gov/pubmed/29847935

doi: 10.1021/acs.chemrev.8b00057     URL     pmid: 29847935
[3]
Engel S, Fritz E C, Ravoo B J . Chem. Soc. Rev., 2017,46:2057. https://www.ncbi.nlm.nih.gov/pubmed/28272608

doi: 10.1039/c7cs00023e     URL     pmid: 28272608
[4]
Zhukhovitskiy A V, MacLeod M J, Johnson J A . Chem. Rev., 2015,115:11503. https://www.ncbi.nlm.nih.gov/pubmed/26391930

doi: 10.1021/acs.chemrev.5b00220     URL     pmid: 26391930
[5]
Wang G, Ruhling A, Amirjalayer S, Knor M, Ernst J B, Richter C, Gao H J, Timmer A, Gao H Y, Doltsinis N L, Glorius F, Fuchs H . Nat. Chem., 2017,9:152. https://www.ncbi.nlm.nih.gov/pubmed/28282049

doi: 10.1038/nchem.2622     URL     pmid: 28282049
[6]
Crudden C M, Horton J H, Narouz M R, Li Z, Smith C A, Munro K, Baddeley C J, Larrea C R, Drevniok B, Thanabalasingam B, McLean A B, Zenkina O V, Ebralidze I I, She Z, Kraatz H B, Mosey N J, Saunders L N, Yagi A . Nat. Commun., 2016,7:12654. https://www.ncbi.nlm.nih.gov/pubmed/27585494

doi: 10.1038/ncomms12654     URL     pmid: 27585494
[7]
Fung S K, Zou T, Cao B, Chen T, To W P, Yang C, Lok C N, Che C M . Nat. Commun., 2016,7:10655. https://www.ncbi.nlm.nih.gov/pubmed/26883164

doi: 10.1038/ncomms10655     URL     pmid: 26883164
[8]
Crudden C M, Horton J H, Ebralidze I I, Zenkina O V, Mclean A B, Drevniok B, She Z, Kraatz H B, Mosey N J, Seki T . Nat. Chem., 2014,6:409. https://www.ncbi.nlm.nih.gov/pubmed/24755592

doi: 10.1038/nchem.1891     URL     pmid: 24755592
[9]
Zhong R, Lindhorst A C, Groche F J, Kühn F E . Chem. Rev., 2017,117:1970. https://www.ncbi.nlm.nih.gov/pubmed/28085269

doi: 10.1021/acs.chemrev.6b00631     URL     pmid: 28085269
[10]
Benhamou L, Chardon E, Lavigne G, Bellemin-Laponnaz S, César V . Chem. Rev., 2011,111:2705. https://www.ncbi.nlm.nih.gov/pubmed/21235210

doi: 10.1021/cr100328e     URL     pmid: 21235210
[11]
Grabulosa A, Granell J, Muller G . Coord. Chem. Rev., 2007,251:25. https://linkinghub.elsevier.com/retrieve/pii/S001085450600169X

doi: 10.1016/j.ccr.2006.05.009     URL    
[12]
Hopkinson M N, Richter C, Schedler M, Glorius F . Nature, 2014,510:485. https://www.ncbi.nlm.nih.gov/pubmed/24965649

doi: 10.1038/nature13384     URL     pmid: 24965649
[13]
Khramov D M, Lynch V M, Bielawski C W . Organometallics, 2007,26:6042.
[14]
Marion N, Díez-González S, Nolan S P . Angew. Chem. Int. Ed., 2007,46:2988. https://www.ncbi.nlm.nih.gov/pubmed/17348057

doi: 10.1002/anie.200603380     URL     pmid: 17348057
[15]
Fevre M, Pinaud J, Gnanou Y, Vignolle J, Taton D . Chem. Soc. Rev., 2013,42:2142. https://www.ncbi.nlm.nih.gov/pubmed/23288304

doi: 10.1039/c2cs35383k     URL     pmid: 23288304
[16]
Díez-González S, Marion N, Nolan S P . Chem. Rev., 2009,109:3612. https://www.ncbi.nlm.nih.gov/pubmed/19588961

doi: 10.1021/cr900074m     URL     pmid: 19588961
[17]
Fortman G C, Nolan S P . Chem. Soc. Rev., 2011,40:5151. https://www.ncbi.nlm.nih.gov/pubmed/21731956

doi: 10.1039/c1cs15088j     URL     pmid: 21731956
[18]
Moore J L, Rovis T . Top. Curr. Chem., 2009,291:77. https://www.ncbi.nlm.nih.gov/pubmed/21494949

doi: 10.1007/978-3-642-02815-1_18     URL     pmid: 21494949
[19]
Zhao W, Ferro V, Baker M V . Coord. Chem. Rev., 2017,339:1.
[20]
Monney A, Albrecht M . Coord. Chem. Rev., 2013,257:2420.
[21]
Delbianco M, Bharate P, Varelaaramburu S, Seeberger P H . Chem. Rev., 2016,116:1693. https://www.ncbi.nlm.nih.gov/pubmed/26702928

doi: 10.1021/acs.chemrev.5b00516     URL     pmid: 26702928
[22]
Stick R V, Williams S J . Carbohydrates: The Essential Molecules of Life. Elsevier Science, Amsterdam: 2014.
[23]
Mika L T, Cséfalvay E, Németh Á . Chem. Rev., 2018,118:505. https://www.ncbi.nlm.nih.gov/pubmed/29155579

doi: 10.1021/acs.chemrev.7b00395     URL     pmid: 29155579
[24]
Schaper L A, Hock S J, Herrmann W A, Kuhn F E . Angew. Chem. Int. Ed., 2013,52:270. https://www.ncbi.nlm.nih.gov/pubmed/23143709

doi: 10.1002/anie.201205119     URL     pmid: 23143709
[25]
Cazin C S J . N-Heterocyclic Carbenes in Transition Metal Catalysis and Organocatalysis. Springer: New York, 2011.
[26]
Hahn F E, Jahnke M C . Angew. Chem. Int. Ed., 2008,47:3122. https://www.ncbi.nlm.nih.gov/pubmed/18398856

doi: 10.1002/anie.200703883     URL     pmid: 18398856
[27]
Herrmann W A, Gooβen L J, Spiegler M . J. Organomet. Chem., 1997,547:357. https://linkinghub.elsevier.com/retrieve/pii/S0022328X97004348

doi: 10.1016/S0022-328X(97)00434-8     URL    
[28]
Herrmann W A, Reisinger C P, Spiegler M . J. Organomet. Chem., 1998,557:93.
[29]
Wanzlick H W, Schönherr H J . Angew. Chem. Int. Ed., 1968,7:141.
[30]
Wang H M J, Lin I J B . Organometallics, 1998,17:972.
[31]
Barczai-Martos M . Nature, 1950,165:369.
[32]
Nishioka T, Shibata T, Kinoshita I . Organometallics, 2007,26:1126.
[33]
Tewes F, Schlecker A, Harms K, Glorius F . J. Organomet. Chem., 2007,692:4593. https://linkinghub.elsevier.com/retrieve/pii/S0022328X0700349X

doi: 10.1016/j.jorganchem.2007.05.007     URL    
[34]
Keitz B K, Grubbs R H . Organometallics, 2010,29:403. https://www.ncbi.nlm.nih.gov/pubmed/21603126

doi: 10.1021/om900864r     URL     pmid: 21603126
[35]
Skander M, Retailleau P, Bourrie B, Schio L, Mailliet P, Marinetti A . J. Med. Chem., 2010,53:2146. https://www.ncbi.nlm.nih.gov/pubmed/20148592

doi: 10.1021/jm901693m     URL     pmid: 20148592
[36]
Kalinowska-Lis U, Ochocki J, Matlawska-Wasowska K . Coord. Chem. Rev., 2008,252:1328. https://linkinghub.elsevier.com/retrieve/pii/S0010854507001506

doi: 10.1016/j.ccr.2007.07.015     URL    
[37]
Shibata T, Ito S, Doe M, Tanaka R, Hashimoto H, Kinoshita I, Yano S, Nishioka T . Dalton Trans., 2011,40:6778. https://www.ncbi.nlm.nih.gov/pubmed/21611652

doi: 10.1039/c0dt01833c     URL     pmid: 21611652
[38]
Shibata T, Hashimoto H, Kinoshita I, Yano S, Nishioka T . Dalton Trans., 2011,40:4826. https://www.ncbi.nlm.nih.gov/pubmed/21437326

doi: 10.1039/c0dt01634a     URL     pmid: 21437326
[39]
Jha A K, Jain N . Tetrahedron Lett., 2013,54:4738.
[40]
Kolb H C, Finn M G, Sharpless K B . Angew. Chem. Int. Ed., 2001,40:2004.
[41]
Zhou Z G, Qiu J B, Xie L F, Du F, Xu G H, Xie Y R, Ling Q D . Catal. Lett., 2014,144:1911.
[42]
Imanaka Y, Hashimoto H, Kinoshita I, Nishioka T . Chem. Lett., 2014,43:687.
[43]
Imanaka Y, Hashimoto H, Nishioka T . Bull. Chem. Soc. Jpn., 2015,88:1135.
[44]
Zhou Q J, Wan Y, Zhang X X, Zhang L Z, Zou H, Cui H, Zhou S L, Wang H Y, Wu H . Tetrahedron, 2015,71:7070.
[45]
Zhou Z G, Zhao Y, Zhen H Y, Lin Z H, Ling Q D . Appl. Organomet. Chem., 2016,30:924.
[46]
Pretorius R, Olguín J, Albrecht M . Inorg. Chem., 2017,56:12410. https://www.ncbi.nlm.nih.gov/pubmed/28972367

doi: 10.1021/acs.inorgchem.7b01899     URL     pmid: 28972367
[47]
Imanaka Y, Shiomoto N, Tamaki M, Maeda Y, Nakajima H, Nishioka T . Bull. Chem. Soc. Jpn., 2017,90:59.
[48]
Imanaka Y, Nakao K, Maeda Y, Nishioka T . Bull. Chem. Soc. Jpn., 2017,90:1050.
[49]
Zhou Z G, Yuan Y Y, Xie Y R, Li M . Catal. Lett., 2018,148:2696.
[50]
Henderson A S, Bower J F, Galan M C . Org. Biomol. Chem., 2014,12:9180. https://www.ncbi.nlm.nih.gov/pubmed/25296562

doi: 10.1039/c4ob02056a     URL     pmid: 25296562
[51]
Shi J C, Lei N, Tong Q S, Peng Y R, Wei J F, Jia L . Eur. J. Inorg. Chem., 2007,2007:2221.
[52]
周中高(Zhou Z G) . 福建师范大学硕士论文(Master’s Dissetation of Fujian Normal University), 2009.
[53]
张德志(Zhang D Z) . 福建师范大学硕士论文(Master’s Dissetation of Fujian Normal University), 2009.
[54]
Yao H, Zhang Y, Sun H, Shen Q . Eur. J. Inorg. Chem., 2009,2009:1920.
[55]
Zhang J, Lu X, Li T, Wang S, Zhong G . J. Org. Chem., 2017,82:5222. https://www.ncbi.nlm.nih.gov/pubmed/28429945

doi: 10.1021/acs.joc.7b00480     URL     pmid: 28429945
[56]
李玉杰(Li Y J) . 福建师范大学硕士论文(Master’s Dissetation of Fujian Normal University), 2011.
[57]
柳云玲(Liu Y L) . 福建师范大学硕士论文(Master’s Dissetation of Fujian Normal University), 2012.
[58]
Thomas M, Montenegro D, Castaño A, Friedman L, Leb J, Huang M L, Rothman L, Lee H, Capodiferro C, Ambinder D, Cere E, Galante J, Rizzo J, Melkonian K, Engel R . Carbohydr. Res., 2009,344:1620. https://www.ncbi.nlm.nih.gov/pubmed/19467534

doi: 10.1016/j.carres.2009.04.021     URL     pmid: 19467534
[59]
Yang C C, Lin P S, Liu F C, Lin I J B, Lee G H, Peng S M . Organometallics, 2010,29:5959.
[60]
Li J H, Liu W J, Xie Y . J. Org. Chem., 2005,70:5409. https://www.ncbi.nlm.nih.gov/pubmed/15989320

doi: 10.1021/jo050353m     URL     pmid: 15989320
[61]
Huang J Y, Lei M, Wang Y G . Tetrahedron Lett., 2006,47:3047. https://linkinghub.elsevier.com/retrieve/pii/S0040403906004503

doi: 10.1016/j.tetlet.2006.03.002     URL    
[62]
Salman A A, Tabandeh M, Heidelberg T, Hussen R S D, Ali H M . Carbohydr. Res., 2015,412:28. https://www.ncbi.nlm.nih.gov/pubmed/26000863

doi: 10.1016/j.carres.2015.04.022     URL     pmid: 26000863
[1] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.
[2] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[3] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[4] 张瀚予, 刘萌, 武霞, 刘苗, 熊德彩, 叶新山. 光电驱动的糖化学反应[J]. 化学进展, 2020, 32(11): 1804-1823.
[5] 吴锦钧, 杨震, 焦剑梅, 孙鹏飞, 范曲立, 黄维. 水溶性苝酰亚胺类材料的合成及其生物应用[J]. 化学进展, 2017, 29(2/3): 216-230.
[6] 袁世芳, 王丽静, 张秋月, 孙文华. 三齿配位钛配合物催化烯烃聚合[J]. 化学进展, 2017, 29(12): 1462-1470.
[7] 卢晓梅, 李杰, 胡文博, 邓卫星, 范曲立, 黄维. 水溶性共轭聚合物分子刷的研究进展[J]. 化学进展, 2016, 28(4): 528-540.
[8] 孙鹏飞, 候焕知, 范曲立, 黄维. 水溶性含糖共轭聚合物的制备及应用[J]. 化学进展, 2016, 28(10): 1489-1500.
[9] 陈峰, 白赢, 厉嘉云, 肖文军, 彭家建. 氮配位过渡金属配合物在硅氢加成反应中的应用研究[J]. 化学进展, 2015, 27(7): 806-817.
[10] 焦成鹏, 黄自力, 张海军, 张少伟. 置换反应制备双金属纳米催化剂[J]. 化学进展, 2015, 27(5): 472-481.
[11] 王雪珠, 谭忱, 李永琪, 张恒, 刘晔. 离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用[J]. 化学进展, 2015, 27(1): 27-37.
[12] 吴宇轩, 刘宁, 丁颂东. 用于锕系分离和三价镧系/锕系分离的水溶性配体[J]. 化学进展, 2014, 26(10): 1655-1664.
[13] 赵艳, 郭彩红, 武海顺. 几类过渡金属配合物催化的烯烃硅氢化反应机理[J]. 化学进展, 2014, 26(0203): 345-357.
[14] 尤洪星, 王永勇, 王雪珠, 刘晔. 过渡金属配合物功能化离子液体的合成及其在均相催化中的应用[J]. 化学进展, 2013, 25(10): 1656-1666.
[15] 刘宁, 王旭珍*, 徐文亚, 郭德才, 汤济洲, 张宝禄. 纳/微米二硫化钼的化学制备及其催化加氢脱硫应用[J]. 化学进展, 2013, 25(05): 726-734.