English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 300-310 DOI: 10.7536/PC180621 前一篇   后一篇

• •

多功能基因递送系统促进内皮细胞增殖

白凌闯1, 赵静1, 冯亚凯1,2,**()   

  1. 1. 天津大学化工学院 天津 300072
    2. 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2018-06-19 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 冯亚凯
  • 基金资助:
    国家重点研发项目(2016YFC1100300); 国家自然科学基金项目(31370969); 国家自然科学基金项目(51673145); 国家自然科学基金项目(51873149)

Multifunctional Gene Delivery Systems to Promote the Proliferation of Endothelial Cells

Lingchuang Bai1, Jing Zhao1, Yakai Feng1,2,**()   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
    2. Collaborative Innovation Center of Chemical Science and Chemical Engineering(Tianjin), Tianjin University, Tianjin 300072, China
  • Received:2018-06-19 Online:2019-02-15 Published:2018-12-20
  • Contact: Yakai Feng
  • About author:
  • Supported by:
    National Key R&D Program of China(2016YFC1100300); National Natural Science Foundation of China(31370969); National Natural Science Foundation of China(51673145); National Natural Science Foundation of China(51873149)

由于自体血管供应不足,人工血管在心血管疾病的临床治疗中发挥着非常重要的作用。人工血管由于表面缺乏活性内皮层,经常面临术后再狭窄等问题,严重限制了其在临床中的应用。人工血管内皮化能够提高其血液相容性并维持其长期通畅率。大量研究表明,多功能基因递送系统可以促进血管内皮细胞增殖,从而实现人工血管快速内皮化。近年来,功能多肽和阳离子聚合物为开发低毒且高效的多功能基因递送系统提供了有效途径。本文详细介绍了目前用于血管内皮细胞基因转染的功能多肽和聚阳离子基因载体,重点阐述了促进内皮细胞增殖的多功能逐级靶向基因递送系统的研究进展,对采用基因转染方式促进人工血管快速内皮化进行了分析和展望。

Artificial vascular grafts play an important role in the clinical treatment of cardiovascular diseases due to the lack of autografts. Artificial vascular grafts, especially for small-diameter artificial vascular grafts, usually encounter the problems such as in-stent restenosis, thus limiting their application in clinical treatment. Endothelialization of artificial vascular grafts can improve their hemocompatibility and maintain their long-term patency. It has been confirmed that multifunctional gene delivery systems can promote the proliferation of vascular endothelial cells(ECs) and help achieve the rapid endothelialization of artificial vascular grafts. Recently, functional peptides and cationic polymers have provided an effective approach for the development of low-toxic and highly efficient multifunctional gene delivery systems. In this review, functional peptides, target genes and polycationic gene carriers used in the transfection of vascular ECs are detailedly introduced. Based on polycationic gene carriers, the current development of multifunctional step-by-step targeting gene delivery systems for promoting the proliferation of ECs and endothelialization are highlighted. Finally, some perspectives on achieving rapid endothelialization via gene transfection are also presented.

()
图1 常见阳离子聚合物的化学结构
Fig. 1 Chemical structures of representative cationic polymers
图2 基于3(S)-甲基-吗啉-2,5-二酮共聚物修饰PEI基因载体的合成过程[71]
Fig. 2 Synthesis route of modified PEI gene carriers based on 3(S)-methyl-morpholine-2,5-dione copolymers[71]. Reproduced with permission from copyright(2014) Elsevier.
图3 mPEG-b-PLGA-g-PEI-CREDVW合成过程[79]
Fig. 3 Synthesis route of mPEG-b-PLGA-g-PEI-CREDVW[79]. Reproduced with permission from copyright(2015) American Chemical Society.
图4 CAG肽修饰的靶向性基因复合物的体外血管形成实验。(A) PEI-PLGA/pZNF580,(B) PEG-PEI-PLGA/pZNF580,(C) CAGW-PPP1/pZNF580,(D) CAGW-PPP2/pZNF580,(E) PEI(25 kDa)/pZNF580,(F)未处理HUVECs,(G) pZNF580[84]
Fig. 4 In vitro vessel formation assay of CAG modified targeting gene complexes.(A) PEI-PLGA/pZNF580,(B) PEG-PEI-PLGA/pZNF580,(C) CAGW-PPP1/pZNF580,(D) CAGW-PPP2/pZNF580,(E) PEI(25 kDa)/pZNF580,(F) non-treated HUVECs,(G) pZNF580[84]. Reproduced with permission from copyright(2017) American Chemical Society.
图5 CAG肽修饰的靶向性基因复合物的体内血管形成实验。(1)苏木精-伊红染色结果,(2)抗CD31组织免疫荧光染色结果。(A) PEI-PLGA/pZNF580,(B) PEG-PEI-PLGA/pZNF580,(C) CAGW-PPP1/pZNF580,(D) CAGW-PPP2/pZNF580,(E) PEI(25 kDa)/pZNF580,(F) pZNF580[84]
Fig. 5 In vivo neovascularization assay of CAG modified targeting gene complexes. The results of H&E(1) and immunohistochemical staining with anti-CD31(2).(A) PEI-PLGA/pZNF580,(B) PEG-PEI-PLGA/pZNF580,(C) CAGW-PPP1/pZNF580,(D) CAGW-PPP2/pZNF580,(E) PEI(25 kDa)/pZNF580,(F) pZNF580[84]. Reproduced with permission from copyright(2017) American Chemical Society.
图6 CAG肽修饰的星型基因复合物的体外转染。(A)未处理内皮细胞,(B)PLGA-g-PEI/pDNA,(C) PLGA-g-PEI-CAGW/pDNA,(D) PEI 10 kDa/pDNA,(E) PLGA-g-PEI-CAGW/pDNA处理的平滑肌细胞[85]
Fig. 6 In vitro transfection of CAG modified star-shaped targeting gene complexes. (A)Nontreated ECs,(B)PLGA-g-PEI/pDNA,(C) PLGA-g-PEI-CAGW/pDNA,(D) PEI 10 kDa/pDNA,(E) PLGA-g-PEI-CAGW/pDNA treated SMCs[85]. Reproduced from an open access journal from MDPI publication.
图7 多功能基因复合物形成及对内皮细胞转染过程[91]
Fig. 7 The formation of multifunctional gene complexes and the illustration of gene delivery to ECs[91]. Reproduced from an open access journal from BMC publication.
图8 三元基因复合物在细胞内运输行为的CLSM荧光图片[93]
Fig. 8 CLSM fluorescence images of the intracellular transport of ternary gene complexes[93]. Reproduced with permission from copyright(2016) John Wiley and Sons.
图9 八臂星型两亲性嵌段聚合物POSS-DP-CAG-TAT-NLS的合成过程[94]
Fig. 9 Synthesis route of eight-arm and star-shaped amphiphilic copolymer POSS-DP-CAG-TAT-NLS[94]. Reproduced with permission from copyright(2018) American Chemical Society.
[1]
Benjamin E J, Blaha M J, Chiuve S E, Cushman M, Das S R, Deo R, Ferranti S, Floyd J, Fornage M, Gillespie C, Lsasi C R, Jiménez M C, Jordan L C, Judd S E, Lackland D, Lichtman J H, Lisabeth L, Liu S, Longenecker C T, Mackey R H, Matsushita K, Mozaffarian D, Mussolino M E, Nasir K, Neumar R W, Palaniappan L, Pandey D K, Thiagarajan R R, Reeves M J, Ritchey M, Rodriguez C J, Roth G A, Rosamond W D, Sasson C, Towfighi A, Tsao C W, Turner M B, Virani S S, Jenifer H, Voeks J HS, Willey J Z, Wilkins J T, Wu J, Alger H M, Wong S S, Muntner P . Circulation, 2017,135:e146. https://www.ncbi.nlm.nih.gov/pubmed/28122885

doi: 10.1161/CIR.0000000000000485     URL     pmid: 28122885
[2]
Seifu D G, Purnama A, Mequanint K, Mantovani D . Nat. Rev. Cardiol., 2013,10:410. https://www.ncbi.nlm.nih.gov/pubmed/23689702

doi: 10.1038/nrcardio.2013.77     URL     pmid: 23689702
[3]
Ward M R, Stewart D J, Kutryk M J B . Catheter Cardiovasc. Intervention, 2007,70:983.
[4]
Shin Y M, Lee Y B, Kim S J, Kang J K, Park J C, Jang W, Shin H . Biomacromolecules, 2012,13:2020. https://www.ncbi.nlm.nih.gov/pubmed/22617001

doi: 10.1021/bm300194b     URL     pmid: 22617001
[5]
Lu S, Zhang P, Sun X, Gong F, Yang S, Shen L, Huang Z, Wang C . ACS Appl. Mater. Interfaces, 2013,5:7360. https://www.ncbi.nlm.nih.gov/pubmed/23859593

doi: 10.1021/am401706w     URL     pmid: 23859593
[6]
Bedair T M, ElNaggar M A, Joung Y K, Han D K . J. Tissue Eng., 2017,8:1.
[7]
Ren X, Feng Y, Guo J, Wang H, Li Q, Yang J, Hao X, Lv J, Ma N, Li W . Chem. Soc. Rev., 2015,44:5680. https://www.ncbi.nlm.nih.gov/pubmed/26023741

doi: 10.1039/c4cs00483c     URL     pmid: 26023741
[8]
Palmaz J C, Benson A, Sprague E A . J. Vasc. Interv. Radiol., 1999,10:439. https://www.ncbi.nlm.nih.gov/pubmed/10229473

doi: 10.1016/s1051-0443(99)70063-1     URL     pmid: 10229473
[9]
Mel A, Jell G, Stevens M M, Seifalian A M . Biomacromolecules, 2008,9:2969. https://www.ncbi.nlm.nih.gov/pubmed/18831592

doi: 10.1021/bm800681k     URL     pmid: 18831592
[10]
Meng S, Liu Z, Shen L, Guo Z, Chou L, Zhong W, Du Q, Ge J . Biomaterials, 2009,30:2276. https://www.ncbi.nlm.nih.gov/pubmed/19168214

doi: 10.1016/j.biomaterials.2008.12.075     URL     pmid: 19168214
[11]
Taite L J, Yang P, Jun H W, West J L . J. Biomed. Mater. Res. Part B, 2008,84:108. https://www.ncbi.nlm.nih.gov/pubmed/17497680

doi: 10.1002/jbm.b.30850     URL     pmid: 17497680
[12]
Liu T, Liu S, Zhang K, Chen J Y, Huang N . J. Biomed. Mater. Res. Part A, 2014,102:3754. https://www.ncbi.nlm.nih.gov/pubmed/24243819

doi: 10.1002/jbm.a.35025     URL     pmid: 24243819
[13]
Lin Q, Ding X, Qiu F, Song X X, Fu G S, Ji J . Biomaterials, 2010,31:4017. https://www.ncbi.nlm.nih.gov/pubmed/20149438

doi: 10.1016/j.biomaterials.2010.01.092     URL     pmid: 20149438
[14]
Avci-Adali M, Paul A, Ziemer G, Wendel H P . Biomaterials, 2008,29:3936. https://www.ncbi.nlm.nih.gov/pubmed/18640715

doi: 10.1016/j.biomaterials.2008.07.002     URL     pmid: 18640715
[15]
Zhang M, Wang Z, Wang Z, Feng S, Xu H, Zhao Q, Wang S, Fang J, Qiao M, Kong D . Colloids Surf. B, 2011,85:32. https://www.ncbi.nlm.nih.gov/pubmed/21123036

doi: 10.1016/j.colsurfb.2010.10.042     URL     pmid: 21123036
[16]
Chuang T W, Masters K S . Biomaterials, 2009,30:5341. https://www.ncbi.nlm.nih.gov/pubmed/19577800

doi: 10.1016/j.biomaterials.2009.06.029     URL     pmid: 19577800
[17]
Carmeliet P . Nat. Med., 2003,9:653. https://www.ncbi.nlm.nih.gov/pubmed/12778163

doi: 10.1038/nm0603-653     URL     pmid: 12778163
[18]
Sinn P L, Sauter S L, McCray P B . Gene Ther., 2005,12:1089. https://www.ncbi.nlm.nih.gov/pubmed/16003340

doi: 10.1038/sj.gt.3302570     URL     pmid: 16003340
[19]
Grigsby C L, Leong K W . J. R. Soc. Interface, 2010,7:S67. https://www.ncbi.nlm.nih.gov/pubmed/19734186

doi: 10.1098/rsif.2009.0260     URL     pmid: 19734186
[20]
Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoitet J . Biomaterials, 2008,29:3477. https://www.ncbi.nlm.nih.gov/pubmed/18499247

doi: 10.1016/j.biomaterials.2008.04.036     URL     pmid: 18499247
[21]
Zhou Z, Liu X, Zhu D, Wang Y, Zhang Z, Zhou X, Qiu N, Chen X, Shen Y . Adv. Drug Delivery Rev., 2017,115:115. https://www.ncbi.nlm.nih.gov/pubmed/28778715

doi: 10.1016/j.addr.2017.07.021     URL     pmid: 28778715
[22]
Liu X, Xiang J, Zhu D, Jiang M, Zhou Z, Tang J, Liu X, Huang Y, Shen Y . Adv. Mater., 2016,28:1743. https://www.ncbi.nlm.nih.gov/pubmed/26663349

doi: 10.1002/adma.201504288     URL     pmid: 26663349
[23]
Yang B, Dong X, Lei Q, Zhuo R, Feng J, Zhang X . ACS Appl. Mater. Interfaces, 2015,7:22084. https://www.ncbi.nlm.nih.gov/pubmed/26398113

doi: 10.1021/acsami.5b07549     URL     pmid: 26398113
[24]
Wang J, Wu W, Jiang X . Nanomedicine, 2015,10:1149. https://www.ncbi.nlm.nih.gov/pubmed/25929571

doi: 10.2217/nnm.14.213     URL     pmid: 25929571
[25]
Zhu Y, Zheng X, Yu B, Yang W, Zhao N, Xu F . Macromol. Biosci., 2014,14:1135. https://www.ncbi.nlm.nih.gov/pubmed/24789347

doi: 10.1002/mabi.201400062     URL     pmid: 24789347
[26]
Ping Y, Liu C, Tang G, Li J, Li J, Yang W, Xu F . Adv. Funct. Mater., 2010,20:3106.
[27]
Gao Y, Yang C, Liu X, Ma R, Kong D, Shi L . Macromol. Biosci., 2012,12:251. https://www.ncbi.nlm.nih.gov/pubmed/22076739

doi: 10.1002/mabi.201100208     URL     pmid: 22076739
[28]
Gao H, Cheng T, Liu J, Liu J, Yang C, Chu L, Zhang Y, Ma R, Shi L . Biomacromolecules, 2014,15:3634. https://www.ncbi.nlm.nih.gov/pubmed/25308336

doi: 10.1021/bm5009348     URL     pmid: 25308336
[29]
Yang J, Zeng Y, Zhang C, Chen Y, Yang Z, Li Y, Leng X, Kong D, Wei X, Sun H, Song C . Biomaterials, 2013,34:1635. https://www.ncbi.nlm.nih.gov/pubmed/23199742

doi: 10.1016/j.biomaterials.2012.11.006     URL     pmid: 23199742
[30]
Yin T, He S, Su C, Chen X, Zhang D, Wan Y, Ye T, Shen G, Wang Y, Shi H, Yang L, Wei Y . Mol. Med. Rep., 2015,12:5093. https://www.ncbi.nlm.nih.gov/pubmed/26239842

doi: 10.3892/mmr.2015.4089     URL     pmid: 26239842
[31]
Sun H Y, Wei S P, Xu R C, Xu P X, Zhang W C . Biochem. Biophys. Res. Commun., 2010,395:366.
[32]
Luo Y, Hu W, Xu R X, Hou B, Zhang L, Zhang W C . Cell Biol. Int., 2011,35:1153. https://www.ncbi.nlm.nih.gov/pubmed/21599657

doi: 10.1042/CBI20110050     URL     pmid: 21599657
[33]
Wei S P, Huang J, Li Y, Zhao J, Luo Y, Meng X, Sun H Y, Zhou X, Zhang M, Zhang W C . J. Mol. Cell. Cardiol., 2015,87:17. https://www.ncbi.nlm.nih.gov/pubmed/26268592

doi: 10.1016/j.yjmcc.2015.08.004     URL     pmid: 26268592
[34]
Liddington R C, Ginsberg M H . J. Cell Biol., 2002,158:833. https://www.ncbi.nlm.nih.gov/pubmed/12213832

doi: 10.1083/jcb.200206011     URL     pmid: 12213832
[35]
Pierschbacher M, Ruoslahti E . Nature, 1984,309:30. https://www.ncbi.nlm.nih.gov/pubmed/6325925

doi: 10.1038/309030a0     URL     pmid: 6325925
[36]
Chollet C, Chanseau C, Remy M, Guignandon A, Bareille R, Labrugère C, Bordenave L, Durrieu M . Biomaterials, 2009,30:711. https://www.ncbi.nlm.nih.gov/pubmed/19010529

doi: 10.1016/j.biomaterials.2008.10.033     URL     pmid: 19010529
[37]
Humphries M J, Akiyama S K, Komoriya A, Olden K, Yamada K M . J. Cell Biol., 1986,103:2637. https://www.ncbi.nlm.nih.gov/pubmed/3025221

doi: 10.1083/jcb.103.6.2637     URL     pmid: 3025221
[38]
Yang J, Khan M, Zhang L, Ren X, Guo J, Feng Y, Wei S, Zhang W . J. Mater. Chem. B, 2015,3:7682. https://www.ncbi.nlm.nih.gov/pubmed/32264578

doi: 10.1039/c5tb01155h     URL     pmid: 32264578
[39]
Wei Y, Ji Y, Xiao L L, Lin Q K, Xu J P, Ren K F, Ji J . Biomaterials, 2013,34:2588. https://www.ncbi.nlm.nih.gov/pubmed/23352039

doi: 10.1016/j.biomaterials.2012.12.036     URL     pmid: 23352039
[40]
Wei Y, Ji Y, Xiao L L, Lin Q K, Ji J . Colloids Surf. B, 2011,84:369. https://www.ncbi.nlm.nih.gov/pubmed/21333506

doi: 10.1016/j.colsurfb.2011.01.028     URL     pmid: 21333506
[41]
Ji Y, Wei Y, Liu X, Wang J L, Ren K F, Ji J . J. Biomed. Mater. Res. Part A, 2012,100:1387.
[42]
Yu S, Gao Y, Mei X, Ren T, Liang S, Mao Z, Gao C . ACS Appl. Mater. Interfaces, 2016,8:29280. https://www.ncbi.nlm.nih.gov/pubmed/27723284

doi: 10.1021/acsami.6b09375     URL     pmid: 27723284
[43]
Kanie K, Narita Y, Zhao Y, Kuwabara F, Satake M, Honda S, Kaneko H, Yoshioka T, Okochi M, Honda H, Kato R . Biotech. Bioeng., 2012,109:1808.
[44]
Kato R, Kaga C, Kanie K, Kunimatsu M, Okochi M, Honda H . Mini-Rev. Org. Chem., 2011,8:171.
[45]
Khan M, Yang J, Shi C, Lv J, Feng Y, Zhang W . Acta Biomater., 2015,20:69. https://www.ncbi.nlm.nih.gov/pubmed/25839123

doi: 10.1016/j.actbio.2015.03.032     URL     pmid: 25839123
[46]
Kuwabara F, Narita Y, Yamawaki-Ogata A, Kanie K, Kato R, Satake M, Kaneko H, Oshima H, Usui A, Ueda Y . Ann. Thorac. Surg., 2012,93:156. 119e7bd1-8bde-4a08-9dab-6397e0430666http://dx.doi.org/10.1016/j.athoracsur.2011.07.055

doi: 10.1016/j.athoracsur.2011.07.055     URL    
[47]
Zhao J, Li Q, Hao X, Ren X, Guo J, Feng Y, Shi C . J. Mater. Chem. B, 2017,5:8035. https://www.ncbi.nlm.nih.gov/pubmed/32264643

doi: 10.1039/c7tb02012k     URL     pmid: 32264643
[48]
Yang B S, Mallick S, Kwon Y E, Kim Y J, Kim G H, Choi J S . Bull. Korean Chem. Soc., 2015,36:2477.
[49]
Hu Q, Wang J, Shen J, Liu M, Jin X, Tang G, Chu P K . Biomaterials, 2012,33:1135. https://www.ncbi.nlm.nih.gov/pubmed/22071097

doi: 10.1016/j.biomaterials.2011.10.023     URL     pmid: 22071097
[50]
Pack D W, Hoffman A S, Pun S, Stayton P S . Nat. Rev. Drug Discovery, 2005,4:581. https://www.ncbi.nlm.nih.gov/pubmed/16052241

doi: 10.1038/nrd1775     URL     pmid: 16052241
[51]
Zhao B, Zhou Z, Shen Y . Chin. J. Polym. Sci., 2016,34:94.
[52]
Liu, Q, Hong C, Pan C . Acta Polym. Sin., 2015,1:15.
[53]
Cheng Y . Acta Polym. Sin., 2017,8:1234.
[54]
Zhang W, Xu N, Yao Z, Li K, Yu Z, Chen L, Ye W, Deng W . Chin. J. Org. Chem., 2016,36:2039.
[55]
Lu Y . Biotechnol. Bull., 2013,2:61.
[56]
Zhang Y, Zhou Z . Appl. Chem. Ind., 2018,47:145.
[57]
He Y, Cheng G, Xie L, Nie Y, He B, Gu Z . Biomaterials, 2013,34:1235. https://www.ncbi.nlm.nih.gov/pubmed/23127334

doi: 10.1016/j.biomaterials.2012.09.049     URL     pmid: 23127334
[58]
Xie L, Jiang Q, He Y, Nie Y, Yue D, Gu Z . Biomater. Sci., 2015,3:446. https://www.ncbi.nlm.nih.gov/pubmed/26222288

doi: 10.1039/c4bm00317a     URL     pmid: 26222288
[59]
Gu Z, Luo K, She W, Wu Y, He B . Sci. China Chem., 2010,53:458.
[60]
Luo K, Li C, Li L, She W, Wang G, Gu Z . Biomaterials, 2012,33:4917. https://www.ncbi.nlm.nih.gov/pubmed/22484048

doi: 10.1016/j.biomaterials.2012.03.030     URL     pmid: 22484048
[61]
Wei H, Zhang X, Cheng C, Cheng S, Zhuo R . Biomaterials, 2007,28:99. https://www.ncbi.nlm.nih.gov/pubmed/16959312

doi: 10.1016/j.biomaterials.2006.08.030     URL     pmid: 16959312
[62]
Godbey W T, Wu K K, Mikos A G . J. Control. Release, 1999,60:149. https://www.ncbi.nlm.nih.gov/pubmed/10425321

doi: 10.1016/s0168-3659(99)00090-5     URL     pmid: 10425321
[63]
Neu M, Fischer D, Kissel T . J. Gene Med., 2005,7:992. https://www.ncbi.nlm.nih.gov/pubmed/15920783

doi: 10.1002/jgm.773     URL     pmid: 15920783
[64]
Yang J, Feng Y, Zhang L . Polym. Adv. Technol., 2015,26:1370.
[65]
Sim T, Park G, Min H, Kang S, Lim C, Bae S, Lee E S, Youn Y S, Oh K T . J. Bioact. Compat. Polym., 2017,32:280.
[66]
Abebe D G, Kandil R, Kraus T, Elsayed M, Merkel O M, Fujiwara T . Macromol. Biosci., 2015,15:698. https://www.ncbi.nlm.nih.gov/pubmed/25644720

doi: 10.1002/mabi.201400488     URL     pmid: 25644720
[67]
Li J, Yang G, Feng M, Liang H, Zhang J, Huang D, Deng S, Shen Y . Biotechnol. Bioprocess Eng., 2012,17:1182.
[68]
Li Q, Shi C, Zhang W, Behl M, Lendlein A, Feng Y . Adv. Healthcare Mater., 2015,4:1225.
[69]
Shi C, Yao F, Huang J, Han J, Li Q, Khan M, Feng Y, Zhang W . J. Mater. Chem. B, 2014,2:1825. https://www.ncbi.nlm.nih.gov/pubmed/32261519

doi: 10.1039/c3tb21601b     URL     pmid: 32261519
[70]
Duo X, Li Q, Wang J, Lv J, Hao X, Feng Y, Ren X, Shi C, Zhang W . Langmuir, 2017,33:13315. https://www.ncbi.nlm.nih.gov/pubmed/29100464

doi: 10.1021/acs.langmuir.7b02934     URL     pmid: 29100464
[71]
Shi C, Yao F, Li Q, Khan M, Ren X, Feng Y, Huang J, Zhang W . Biomaterials, 2014,35:7133. dd5d0dee-a88d-423a-91b9-5255c9b48858http://dx.doi.org/10.1016/j.biomaterials.2014.04.110

doi: 10.1016/j.biomaterials.2014.04.110     URL    
[72]
Lv J, Yang J, Hao X, Ren X, Feng Y, Zhang W . J. Mater. Chem. B, 2016,4:997. https://www.ncbi.nlm.nih.gov/pubmed/32263173

doi: 10.1039/c5tb02310f     URL     pmid: 32263173
[73]
Feng Y, Guo M, Liu W, Hao X, Lu W, Ren X, Shi C, Zhang W . Int. J. Nanomed., 2017,12:137. https://www.dovepress.com/international-journal-of-nanomedicine-journal

doi: 10.2147/IJN     URL    
[74]
Suh W, Han S O, Yu L, Kim S W . Mol. Ther., 2002,6:664. https://www.ncbi.nlm.nih.gov/pubmed/12409265

URL     pmid: 12409265
[75]
Tian S, Cao D, Zou H, Bai F, Wang Z, Pan S, Feng M . Int. J. Nanomed., 2015,10:5751.
[76]
Zhou F, Jia X, Yang Q, Yang Y, Zhao Y, Fan Y, Yuan X . Biomater. Sci., 2016,4:849. https://www.ncbi.nlm.nih.gov/pubmed/27055482

doi: 10.1039/c5bm00629e     URL     pmid: 27055482
[77]
Wang H, Feng Y, Yang J, Guo J, Zhang W . J. Mater. Chem. B, 2015,3:3379. https://www.ncbi.nlm.nih.gov/pubmed/32262332

doi: 10.1039/c4tb02019g     URL     pmid: 32262332
[78]
Yang J, Liu W, Lv J, Feng Y, Ren X, Zhang W . J. Mater. Chem. B, 2016,4:3365. https://www.ncbi.nlm.nih.gov/pubmed/32263272

doi: 10.1039/c6tb00686h     URL     pmid: 32263272
[79]
Hao X, Li Q, Lv J, Yu L, Ren X, Zhang L, Feng Y, Zhang W . ACS Appl. Mater. Interfaces, 2015,7:12128. https://www.ncbi.nlm.nih.gov/pubmed/26011845

doi: 10.1021/acsami.5b02399     URL     pmid: 26011845
[80]
Shi C, Li Q, Zhang W, Feng Y, Ren X . ACS Appl. Mater. Interfaces, 2015,7:20389. https://www.ncbi.nlm.nih.gov/pubmed/26373583

doi: 10.1021/acsami.5b06286     URL     pmid: 26373583
[81]
Li Q, Hao X, Lv J, Ren X, Zhang K, Ullah I, Feng Y, Shi C, Zhang W . J. Mater. Chem. B, 2017,5:1673. https://www.ncbi.nlm.nih.gov/pubmed/32263940

doi: 10.1039/c6tb02212j     URL     pmid: 32263940
[82]
Lv J, Hao X, Li Q, Akpanyung M, Nejjari A, Neve A L, Ren X, Feng Y, Shi C, Zhang W . Biomater. Sci., 2017,5:511. https://www.ncbi.nlm.nih.gov/pubmed/28094352

doi: 10.1039/c6bm00856a     URL     pmid: 28094352
[83]
Wang H, Li Q, Yang J, Guo J, Ren X, Feng Y, Zhang W . J. Mater. Chem. B, 2017,5:1408. https://www.ncbi.nlm.nih.gov/pubmed/32264633

doi: 10.1039/c6tb02379g     URL     pmid: 32264633
[84]
Yang J, Hao X, Li Q, Akpanyung M, Nejjari A, Neve A L, Ren X, Guo J, Feng Y, Shi C, Zhang W . ACS Appl. Mater. Interfaces, 2017,9:4485. https://www.ncbi.nlm.nih.gov/pubmed/28117580

doi: 10.1021/acsami.6b14769     URL     pmid: 28117580
[85]
Duo X, Wang J, Li Q, Neve A L, Akpanyung M, Nejjari A, Ali Z S S, Feng Y, Zhang W, Shi C . Polymers, 2017,9:158.
[86]
Jeong C, Yoo J, Lee D Y, Kim Y C . Biomater. Res., 2016,20:28. https://www.ncbi.nlm.nih.gov/pubmed/27606074

doi: 10.1186/s40824-016-0076-0     URL     pmid: 27606074
[87]
Wu D, Zhang Y, Xu X, Guo T, Xie D, Zhu R, Chen S, Ramakrishna S, He L . Acta Biomater., 2018,72:266. https://www.ncbi.nlm.nih.gov/pubmed/29578088

doi: 10.1016/j.actbio.2018.03.030     URL     pmid: 29578088
[88]
Aronsohn A I, Hughes J A . J. Drug Targeting, 1998,5:163. https://www.ncbi.nlm.nih.gov/pubmed/9606006

doi: 10.3109/10611869808995871     URL     pmid: 9606006
[89]
Doh K O . J. Microbiol. Biotechnol., 2015,25:788. https://www.ncbi.nlm.nih.gov/pubmed/25588561

doi: 10.4014/jmb.1411.11074     URL     pmid: 25588561
[90]
Zhao W, Liu K, Chen S, Zhu M, Lv H, Hu J, Mao Y . Bio-med. Mater. Eng., 2014,24:1933.
[91]
Li Q, Hao X, Zaidi S S A, Guo J T, Ren X K, Shi C C, Zhang W C, Feng Y K . J. Nanobiotechnol., 2018,16:29.
[92]
Hao X, Li Q, Guo J T, Ren X K, Feng Y K, Shi C C, Zhang W C . ACS Appl. Mater. Interfaces, 2017,9:35613. https://www.ncbi.nlm.nih.gov/pubmed/28948764

doi: 10.1021/acsami.7b11615     URL     pmid: 28948764
[93]
Yang J, Li Q, Yang X, Feng Y K, Ren X K, Shi C C, Zhang W C . Macromol. Rapid Commun., 2016,37:1926. https://www.ncbi.nlm.nih.gov/pubmed/27677898

doi: 10.1002/marc.201600345     URL     pmid: 27677898
[94]
Wang J, Zaidi S S A, Hasnain A, Guo J T, Ren X K, Xia S, Zhang W C, Feng Y K . ACS Biomater. Sci. Eng., 2018,4:2155.
[1] 付开乔, 张光彦, 蒋序林. 聚天冬酰胺衍生物药物/基因载体的合成和应用[J]. 化学进展, 2016, 28(8): 1196-1206.
[2] 刘雯, 张立, 杨静, 郝雪芳, 李茜, 冯亚凯. 靶向性载体/基因复合物促进内皮细胞增殖[J]. 化学进展, 2016, 28(6): 954-960.
[3] 李思迪, 侯信, 亓洪昭, 赵瑾, 原续波. 外泌体:为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(2/3): 353-362.
[4] 刘亚杰, 张鹏, 杜建委, 王幽香. 微纳米粒子的形貌调控及其对药物/基因传递体系的影响[J]. 化学进展, 2016, 28(1): 67-74.
[5] 古晓晓, 杜宝吉, 李云辉, 高莹*, 李丹, 汪尔康. 基于纳米材料的基因载体[J]. 化学进展, 2015, 27(8): 1093-1101.
[6] 徐妮为, 刘梦艳, 洪诗斌, 颜蔚, 付继芳, 邓维. 基于环糊精构建的基因载体进展[J]. 化学进展, 2014, 26(0203): 375-384.
[7] 孙盟盟, 何勇, 杨万泰, 尹梅贞. 磷酸乙二酯类聚合物的合成及其生物应用[J]. 化学进展, 2013, 25(12): 2093-2102.
[8] 杨婵丽, 董雄伟, 江南, 章丹, 刘长林*. 细胞研究中的金属配合物-核酸相互作用[J]. 化学进展, 2013, 25(04): 555-562.
[9] 董博, 闫熙博, 牛玉洁, 王欣, 王连永, 王燕铭* . 聚酰胺-胺型树枝状大分子及其衍生物在基因传递中的应用[J]. 化学进展, 2012, 24(12): 2352-2358.
[10] 杨奇志, 刘佳, 蒋序林. 点击化学在生物医用高分子中的应用[J]. 化学进展, 2010, 22(12): 2377-2387.
[11] 孙彦庆,张剑,张高勇,王红霞. DNA与两性表面活性剂相互作用研究*[J]. 化学进展, 2006, 18(11): 1440-1445.