English
新闻公告
More
化学进展 2018, Vol. 30 Issue (11): 1615-1623 DOI: 10.7536/PC180438 前一篇   后一篇

• 综述 •

基于N,S-缩烯酮的杂环合成的研究

丁奇峰, 杨雅琼, 缪文俊, 黄和, 于杨*, 黄菲*   

  1. 南京工业大学药学院 南京 211800
  • 收稿日期:2018-04-21 修回日期:2018-05-25 出版日期:2018-11-15 发布日期:2018-08-17
  • 通讯作者: 于杨,e-mail:yuyang19880421@yeah.net;黄菲,e-mail:huangfei0208@yeah.net E-mail:yuyang19880421@yeah.net;huangfei0208@yeah.net
  • 基金资助:
    江苏省先进生物制造创新中心(No.XTE1850,XTC1810)和江苏高校优秀科技创新团队计划(2015)资助

Synthesis of Heterocycles Based on Ketene N,S-Acetals

Qifeng Ding, Yaqiong Yang, Wenjun Miao, He Huang, Yang Yu*, Fei Huang*   

  1. School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211800, China
  • Received:2018-04-21 Revised:2018-05-25 Online:2018-11-15 Published:2018-08-17
  • Supported by:
    The work was supported by the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (No. XTE1850, XTC1810) and the Program for Innovative Research Team in Universities of Jiangsu Province (2015).
N,S-缩烯酮是一类重要的有机合成中间体,其官能团的多样性决定了反应的多样性。N,S-缩烯酮的主要反应有与亲核体的共轭加成、与金属有机试剂的选择性加成、环合(五元环或六元环)、还原和缩合等反应,其在杂环合成中具有非常重要的意义。本文主要综述了N,S-缩烯酮的制备及其在参与合成含氮杂环(吡咯、吲哚、吡啶、嘧啶等)、含氧杂环(呋喃、吡喃等)及在多组分反应中的应用,重点介绍了各类反应的普适性、反应机理或衍生化的研究结果,以更好地认识N,S-缩烯酮分子,并期望通过N,S-缩烯酮实现选择性的合成各类所需的杂环化合物,以促进N,S-缩烯酮在杂环合成中的应用。此外,N,S-缩烯酮合成的杂环化合物大部分具有潜在的生物活性,这将促进其在药物化学及药物合成领域的应用和发展。
Ketene N,S-acetals are an important class of organic synthesis intermediates, and the diversity of their functional groups determines the diversity of their reactivities. The main reactions with ketene N,S-acetals are the nucleophilic conjugate addition, the selective addition with the organometallic reagents, cyclization (forming a five-membered ring or a six-membered ring), reduction, condensation and other reactions, so it is of great significance in the research of heterocycle synthesis. This review summarizes the general methods for synthesis of ketene N,S-acetals and the research on synthesis of heterocycles from ketene N,S-acetals in the recent years, including the synthesis of N-heterocyclic compounds (pyrrole, indole, pyridine, pyrimidine), O-heterocyclic compounds (furan, pyran) and multi-component reactions. The reaction generality, reaction mechanisms or derivatization results of various types of reactions are also introduced to better understand ketene N,S-acetals molecules and to expect for the selective synthesis of object heterocyclic compounds by ketene N,S-acetals. This will promote the development and applications of ketene N,S-acetals in heterocycle synthesis. In addition, most of the heterocyclic compounds synthesized by ketene N,S-acetals have potential biological activities, and the purpose of this paper is also to promote the development of ketene N,S-acetals in the field of medicinal chemistry and pharmaceutical synthesis.
Contents
1 Introduction
2 General methods for synthesis of ketene N,S-acetals
3 Application of ketene N,S-acetals in organic synthesis
3.1 The synthesis of N-heterocycles
3.2 The synthesis of O-heterocycles
3.3 Multi-component reactions
4 Conclusion

中图分类号: 

()
[1] Zhang L, Dong J H, Xu X X, Liu Q. Chem. Rev., 2016, 116:287.
[2] Ila H, Junjappa H. Chimia, 2013, 67:17.
[3] Junjappa H, Ila H Asokan C V. Tetrahedron Lett., 1990, 46:5423.
[4] Guo W S, Wen L R, Li M. Org. Biomol. Chem., 2015, 13:1942.
[5] Singh M S, Nandi G C, Chanda T. RSC Adv., 2013, 3:14183.
[6] Wen L R, Yuan W K, Li M. J. Org. Chem., 2015, 80:4942.
[7] Hagimori M, Murakami Y, Mizuyama N, Tominaga Y A. J. Heterocyclic Chem., 2016, 53(1):197.
[8] Fischer W, Bodewei R, Satzinger G. Naunyn-Schmiedeberg's Arch. Pharmacol., 1992, 346:442.
[9] Jain A K, Vaidya A, Ravichandran V, Kashaw S K, Agrawal R K. Bioorg. Med. Chem., 2012, 20:3378.
[10] Aurelio L, Baltos J, Ford L, Nguyen A T N, Jörg M, Devine S M, Valant C, White P J, Christopoulos A, May L T, Scammells P J. J. Med. Chem., 2018, 61:2087.
[11] Kagabu S. J. Agric. Food Chem., 2011, 59:2887.
[12] Tomizawa M, Casida J E. J. Agric.Food Chem., 2011, 59:2883.
[13] Jeschke P, Nauen R, Beck M E. Angew. Chem. Int. Ed., 2013, 52:9464.
[14] Fei X, Gu Y, Ban Y, Liu Z, Zhang B. Bioorg. Med. Chem., 2009, 17:585.
[15] Evenson W E, Boden L M, Muzikar K A, O'Leary D J. J. Org. Chem., 2012, 77:10967.
[16] Agarwala P, Pandey S, Maiti S. Org. Biomol. Chem., 2015, 13:5570.
[17] Aaron G, Till R, Peter M, Henry D. Org. Lett., 2018, 20:232.
[18] Singh M S, Nandi G C, Samai S. Green Chem., 2012, 14:447.
[19] Mathew P, Asokan C V. Tetrahedron, 2006, 2:1708.
[20] Abhijeet S, Gaurav S, Anugula N, Maya S S. Org. Biomol. Chem., 2014, 12:5484.
[21] Huang F, Wu P, Wang L D, Chen J P, Sun C L, Yu Z K. Chem. Commun., 2014, 50:12479.
[22] Huang F, Wu P, Wang L D, Chen J P, Sun C L, Yu Z K. J. Org. Chem., 2014, 79:10553.
[23] Shi L, Pan L, Li Y F, Liu Q. Adv. Synth. Catal., 2017, 359:2457.
[24] Janni M, Arora S, Peruncheralathan S. Org. Biomol. Chem., 2016, 14:8781.
[25] Hsrtwig J F. Acc. Chem. Res., 1998, 31:852.
[26] Hsrtwig J F. Angew. Chem. Int. Ed., 1998, 37:2046.
[27] Wolfe J P, Wagaw S, Marcoux J F, Buchwald S L. Acc. Chem. Res., 1998, 31:805.
[28] Surry D S, Buchwald S L. Angew. Chem. Int. Ed., 2008, 47:6338.
[29] Hartwig J F. Nature, 2008, 455:314.
[30] Magano J, Dunetz J R. Chem. Rev., 2011, 111:2177.
[31] Toberg C, Beller M. Adv. Synth. Catal., 2009, 351:3027.
[32] Butters M, Catterick D, Craig A, Curzons A, Dale D, Gillmore A, Green S P, Marziano I, Sherlock J P, White W. Chem. Rev., 2006, 106:3002.
[33] Szekely G, Amores de Sousa M C, Gil M, Ferreira F C, Heggie W., Chem. Rev., 2015, 115:8182.
[34] Yu H, Zhang Y, Li T, Liao P, Diao Q, Xin G, Meng Q, Hou D. RSC Adv., 2015, 5:11293.
[35] Muhammet Y, Derya C, Naciye E, David W K, Benson M K. Tetrahedron Lett., 2014, 70:5674.
[36] Masayori H, Yuka M, Naoko M, Yoshinori T. J. Heterocyclic Chem., 2016, 53:197.
[37] Yang C W, Bai Y X, Zhang N T, Zeng C C, Hu L M, Tian H Y. Tetrahedron Lett., 2012, 68:10201.
[38] Huang F, Liu Z Q, Wang Q N, Lou J, Yu Z K. Org. Lett., 2017,19(13):3660.
[39] Chuprakov S, Malik J A, Zibinsky M, Fokin V V. J. Am. Chem. Soc., 2011, 133:10352.
[40] Caballero A, Despagnet-Ayoub E, Díaz-Requejo M M, Díaz-Rodríguez A, Pérez P J. Science, 2011, 332:835.
[41] Qin C M, Davies H M L. J. Am. Chem. Soc., 2014, 136:9792.
[42] Key H M, Dydio P, Clark D S, Hartwig J F. Nature, 2016, 534:534.
[43] Yu Z Z, Ma B, Chen M J, Wu H H, Liu L, Zhang J L. J. Am. Chem. Soc., 2014, 136:6904.
[44] Gutiérrez-Bonet Á, Juliá-Hernández F, Luis B D, Martin R. J. Am. Chem. Soc., 2016, 138:6384.
[45] Conde A, Sabenya G, Rodríguez M, Postils V, Luis J M, Díaz-Requejo M M, Costas M, Pérez P J. Angew. Chem. Int. Ed., 2016, 55:6530.
[46] Ye F, Ma X S, Xiao Q, Li H, Zhang Y, Wang J B. J. Am. Chem. Soc., 2012, 134:5742.
[47] Moerdyk J P, Blake G A, Chase D T, Bielawski C W. J. Am. Chem. Soc., 2013, 135:18798.
[48] Ma X C, Jiang J, Lv S Y, Yao W F, Yang Y, Liu S Y, Xia F, Hu W H. Angew. Chem. Int. Ed., 2014, 53:13136.
[49] Zhu C H, Qiu L, Xu G Y, Li J, Sun J T. Chem. Eur.-J., 2015, 21:12871.
[50] Pereira A, Champouret Y, Martín C, Álvarez E, Etienne M, Belderraín T R, Pérez P J. Chem. Eur.-J., 2015, 21:9769.
[51] Aviv I, Gross Z. Chem. Eur.-J., 2008, 14:3995.
[52] Iglesias M J, Nicasio M C, Caballero A, Pérez P J. Dalton Trans., 2013, 42:1191.
[53] Chen D, Zhu D X, Xu M H. J. Am. Chem. Soc., 2016, 138:1498.
[54] Chen D, Zhang X, Qi W Y, Xu B, Xu M H. J. Am. Chem. Soc., 2015, 137:5268.
[55] Hashimoto T, Naganawa Y, Maruoka K. J. Am. Chem. Soc., 2009, 131:6614.
[56] Hashimoto T, Naganawa Y, Maruoka K. J. Am. Chem. Soc., 2011, 133:8834.
[57] Rendina V L, Moebius D C, Kingsbury J S. Org. Lett., 2011, 13:2004.
[58] Li W, Liu X, Hao X, Cai Y, Lin L, Feng X. Angew. Chem. Int. Ed., 2012, 51:8644.
[59] Xia A J, Kang T R, He L, Chen L M, Li W T, Yang J L, Liu Q Z. Angew. Chem. Int. Ed., 2016, 55:1441.
[60] Xia Y, Liu Z, Liu Z, Ge R, Ye F, Hossain M, Zhang Y, Wang J. J. Am. Chem. Soc., 2014, 136:3013.
[61] Büchner E, Curtius T. Ber. Dtsch. Chem. Ges., 1885, 18:2377.
[62] Lebel H, Marcoux J F, Molinaro C, Charette A B. Chem. Rev., 2003, 103:977.
[63] Liu Z, Tan H, Wang L, Fu T, Xia Y, Zhang Y, Wang J. Angew. Chem. Int. Ed., 2015, 54:3056.
[64] Zhang Z, Feng J, Xu Y, Zhang S, Ye Y, Li T, Wang X, Chen J, Zhang Y, Wang J. Synlett, 2015, 26:59.
[65] Wen L R, Man N N, Yuan W K, Li M. J. Org. Chem., 2016, 81:5942.
[66] Maya S S, Ganesh C N, Subhasis S. Green Chem., 2012, 14:447.
[67] Kamalraja J, Thirumalai P P. Tetrahedron Lett., 2014, 55:2010.
[68] Man N N, Wang J Q, Zhang L M, Wen L R, Li M. J. Org. Chem., 2017, 82:5566.
[1] 王玉珏, 胡敏, 李晓, 徐楠. 大气颗粒物中棕色碳的化学组成、来源和生成机制[J]. 化学进展, 2020, 32(5): 627-641.
[2] 盘登芳, 叶钢, 王芳, 陈靖* . 含氮杂环化合物萃取分离三价锕系与镧系元素[J]. 化学进展, 2012, 24(11): 2167-2176.
[3] 朱映光 翟昌伟 胡文浩. 不对称多组分反应[J]. 化学进展, 2010, 22(07): 1380-1396.
[4] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.
[5] 王琦芳,宋肖锴,颜朝国. 丙二腈在多组分反应中的应用* [J]. 化学进展, 2009, 21(05): 997-1007.
阅读次数
全文


摘要

基于N,S-缩烯酮的杂环合成的研究