English
新闻公告
More
化学进展 2018, Vol. 30 Issue (12): 1874-1886 DOI: 10.7536/PC180315 前一篇   后一篇

• 综述 •

智能响应型超浸润材料

屈孟男*, 袁明娟, 何姣, 薛萌辉, 何金梅*   

  1. 西安科技大学化学与化工学院 西安 710054
  • 收稿日期:2018-03-15 修回日期:2018-07-23 出版日期:2018-12-15 发布日期:2018-09-26
  • 通讯作者: 屈孟男, 何金梅 E-mail:mnanqu@gmail.com;jinmhe@gmail.com
  • 基金资助:
    国家自然科学基金项目(No.21473132)资助

Smart Responsive Superwetting Materials

Mengnan Qu*, Mingjuan Yuan, Jiao He, Menghui Xue, Jinmei He*   

  1. College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received:2018-03-15 Revised:2018-07-23 Online:2018-12-15 Published:2018-09-26
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21473132).
近年来,超浸润材料由于自身所具备的各种新颖及优异的性能受到越来越多的关注,在实际生活和工业生产领域中都发挥着举足轻重的作用。但是随着制备技术的不断进步和研究的逐渐深入,现有的单一型的超浸润材料已经不能满足现实生活的各项需求。在此基础上,可响应于外部刺激的超浸润材料,即智能响应型超浸润材料应运而生。本文首先介绍了固体表面润湿性的基础理论,然后根据外部刺激的不同,综述了温度响应型、光响应型、pH响应型和电势响应型等智能响应型超浸润材料的研究与进展,以及从微纳米尺度上揭示表面粗糙度对于达到超浸润转换的重要性,并且对各自的润湿性转换机理与性能进行了总结归纳。最后指出了智能响应型材料存在的问题,并对未来的主要研究方向进行展望。
In recent years, superwetting materials have received increasing attention because of their novelty and excellent performances, including self-cleaning, anti-fouling, anti-corrosion and oil-water separation, and played an important role in the real life and industry production field. However, with the continuous progress of preparation technology and the gradual deepening of research and exploration, the existing single superwetting materials can no longer meet the needs of real life, such as increasing oil spills, controlled release of drugs and microfluidic devices. On this basis, the superwetting materials that are able to respond to external stimuli, that is, the smart responsive superwetting materials come into being. In this review, basic theories and influence factors of solid surface wettability are introduced firstly. Secondly, according to the difference of external stimuli, the research and progress of the smart responsive superwetting materials, including thermoresponsive, photo-responsive, pH-responsive and electricity-responsive are reviewed. Furthermore, the wettability conversion mechanisms and properties of these smart responsive superwetting materials mentioned in the review are introduced. In order to reveal the importance of roughness to the realization of superwetting conversion, we explain it in micro-and nano-scale. Finally, some existing problems are discussed and the future research directions in this field are proposed.
Contents
1 Introduction
2 Wettability of solid surface
3 Single stimuli-responsive materials
3.1 Thermoresponsive materials
3.2 Photo-responsive materials
3.3 pH-responsive materials
3.4 Electricity-responsive materials
3.5 Solvent-responsive materials
3.6 Other responsive materials
4 Dual-and multiresponsive switchable materials
5 Existing problems
6 Conclusion

中图分类号: 

()
[1] Das S, Kumar S, Samal S K, Mohanty S, Nayak S K. Ind. Eng. Chem. Res., 2018, 57:2727.
[2] Dong S L, Wang Z L, Wang Y K, Bai X L, Fu Y Q, Guo B, Tan C L, Zhang J, Hu P A. ACS Appl. Mater. Interfaces, 2018, 10:2174.
[3] Stayton P S, Shimoboji T, Long C, Chilkoti A, Chen G, Harris J M, Hoffman A S. Nature, 1995, 378:472.
[4] Lendlein A, Shastri V P. Adv. Mater., 2010, 22:3344.
[5] Liu J C, Wang N, Yu L J, Karton A, Li W, Zhang W X, Guo F Y, Hou L L, Cheng Q F, Jiang L, Weitz D A, Zhao Y. Nat. Commun., 2017, 8:2011.
[6] Lei Z W, Zhang G Z, Deng Y H, Wan C Y. ACS Appl. Mater. Interfaces, 2017, 9:8967.
[7] Cheng B W, Li Z J, Li Q X, Ju J G, Kang W M, Naebe M. J. Membr. Sci., 2017, 534:1.
[8] Chen T, Ferris R, Zhang J M, Ducker R, Zauscher S. Prog. Poly. Sci., 2010, 35:94.
[9] Jeong B, Gutowska A. Trends Biotechnol., 2002, 20:305.
[10] Cohen Stuart M A, Huck W T. S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9:101.
[11] Bajpai A K, Shukla S K, Bhanu S, Kankane S. Prog. Poly. Sci., 2008, 33:1088.
[12] Caputo G, Nobile C, Kipp T, Blasi L, Grillo V, Carlino E, Manna L, Cingolani R, Cozzoli P D, Athanassiou A. J. Phys. Chem. C, 2008, 112:701.
[13] Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, Shimohigoshi M, Watanabe T. Nature, 1997, 388:431.
[14] Feng X J, Zhai J, Jiang L. Angew. Chem. Int. Ed., 2005, 44:5115.
[15] Caputo G, Cingolani R, Cozzoli P D, Athanassiou A. Phys. Chem. Chem. Phys., 2009, 11:3692.
[16] Sun W T, Zhou S Y, Chen P, Peng L M. Chem. Commun., 2008, 5:603.
[17] Chen G H, Hoffman A S. Nature, 1995, 373:49.
[18] Okada Y, Tanaka F. Macromolecules, 2005, 38:4465.
[19] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem. Int. Ed., 2004, 43:357.
[20] Motornov M, Sheparovych R, Katz E, Minko S. ACS Nano, 2008, 2:41.
[21] Wang L M, Peng B, Su Z H. Langmuir, 2010, 26:12203.
[22] Jiang C, Wang Q H, Wang T M. New J. Chem., 2012, 36:1641.
[23] Young T. Philos. T. R. Soc., 1805, 95:65.
[24] Guo Z G, Liu W M. Plant Sci., 2007, 172:1103.
[25] Gao X F, Jiang L. Nature, 2004, 432:36.
[26] Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J H, Yang B, Jiang L. Adv. Mater., 2007, 19:2213.
[27] Zheng Y J, Liu X, Xu J J, Zhao H X, Xiong X H, Hou X, Cui J X. ACS Appl. Mater. Interfaces, 2017, 9:35483.
[28] Wang L L, Heng L P, Jiang L. ACS Appl. Mater. Interfaces, 2018, 10:7442.
[29] Yim H, Kent M S, Mendez S, Balamurugan S S, Balamurugan S, López G P, Satija S. Macromolecules, 2004, 37:1994.
[30] Ou R W, Wei J, Jiang L, Simon G P, Wang H T. Environ. Sci. Technol., 2016, 50:906.
[31] Zhao T Y, Nie F Q, Jiang L. J. Mater. Chem., 2010, 20:2176.
[32] Sun T L, Wang G J, Feng L, Liu B Q, Ma Y M, Jiang L, Zhu D B. Angew. Chem., 2004, 116:361.
[33] Zhou Y N, Li J J, Luo Z H. Ind. Eng. Chem. Res., 2015, 54:10714.
[34] Xue B L, Gao L C, Hou Y P, Liu Z W, Jiang L. Adv. Mater., 2013, 25:273.
[35] Fu Q, Rama Rao G V, Basame S B, Keller D J, Artyushkova K, Fulghum J E, López G P. J. Am. Chem. Soc., 2004, 126:8904.
[36] Zareie H M, Boyer C, Bulmus V, Nateghi E, Davis T P. ACS Nano, 2008, 2:757.
[37] Wang N, Zhao Y, Jiang L. Macromol. Rapid Comm., 2008, 29:485.
[38] Hu S X, Cao X Y, Song Y L, Li C, Xie P, Jiang L. Chem. Commun., 2008, 17:2025.
[39] Yang H, Hu X J, Su C P, Liu Y L, Chen R. Phys. Chem. Chem. Phys., 2017, 19:31666.
[40] Zhang X T, Sato O, Taguchi M, Einaga Y, Murakami T, Fujishima A. Chem. Mater., 2005, 17:696.
[41] Cebeci F C, Wu Z Z, Zhai L, Cohen R E, Rubner M F. Langmuir, 2006, 22:2856.
[42] Uyama A, Yamazoe S, Shigematsu S, Morimoto M, Yokojima S, Mayama H, Kojima Y, Nakamura S, Uchida K. Langmuir, 2011, 27:6395.
[43] Kang H J, Liu Y Y, Lai H, Yu X Y, Cheng Z J, Jiang L. ACS Nano, 2018, 12:1074.
[44] Zhu W Q, Feng X J, Feng L, Jiang L. Chem. Commun., 2006, 26:2753.
[45] Wang J W, Mao B D, Gole JL, Burda C. Nanoscale, 2010, 2:2257.
[46] Patra S, Sarkar S, Bera S, Paul G, Ghosh R. J. Appl. Phys., 2010, 108:083507.
[47] Dong P Y, Hou G H, Xi X G, Shao R, Dong F. Environ. Sci. Nano, 2017, 4:539.
[48] Tian D L, Zhang X F, Tian Y, Wu Y, Wang X, Zhai J, Jiang L. J. Mater. Chem., 2012, 22:19652.
[49] Feng X J, Zhai J, Jiang L. Angew. Chem. Int. Ed., 2005, 117:5245.
[50] Lim H S, Kwak D, Lee D Y, Lee S G, Cho K. J. Am. Chem. Soc., 2007, 129:4128.
[51] Gao Q Q, He L, Li Y J, Ran X, Guo L J. RSC Adv., 2017, 7:50403.
[52] Bai D S, Habersberger B M, Jennings G K. J. Am. Chem. Soc., 2005, 127:16486.
[53] Chandan S, Ramakrishna S, Sunitha K, Satheesh Chandran M, Santhosh Kumar K S, Mathew D. J. Mater. Chem. A, 2017, 5:22813.
[54] Zang L L, Ma J, Lv D W, Liu Q L, Jiao W L, Wang P P. J. Mater. Chem. A, 2017, 5:19398.
[55] Wang J X, Hu J P, Wen Y Q, Song Y L, Jiang L. Chem. Mater., 2006, 18:4984.
[56] Xu Z G, Zhao Y, Wang H X, Zhou H, Qin C X, Wang X G, Lin T. ACS Appl. Mater. Interfaces, 2016, 8:5661.
[57] Cheng M J, Liu Q, Ju G N, Zhang Y J, Jiang L. Adv. Mater., 2014, 26:306.
[58] Ju G N, Cheng M J, Shi F. NPG Asia Mater., 2014, 6:111.
[59] Wang B, Guo Z G. Chem. Commun., 2013, 49:9416.
[60] Cheng Z J, Lai H, Du Y, Fu K W, Hou R, Li C, Zhang N Q, Sun K N. ACS Appl. Mater. Interfaces, 2014, 6:636.
[61] Li J J, Zhou Y N, Luo Z H. ACS Appl. Mater. Interfaces, 2015, 7:19643.
[62] Li J J, Zhou Y N, Jiang Z D, Luo Z H. Langmuir, 2016, 32:13358.
[63] Zhu H G, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. Adv. Funct. Mater., 2015, 25:597.
[64] Stratakis E, Mateescu A, Barberoglou M, Vamvakaki M, Fotakis C, Anastasiadis S H. Chem. Commun., 2010, 46:4136.
[65] Sun W, Zhou S X, You B, Wu L M. Macromolecules, 2013, 46:7018.
[66] Fu Y C, Jin B Y, Zhang Q H, Zhan X L, Chen F Q. ACS Appl. Mater. Interfaces, 2017, 9:30161.
[67] Chen X X, Gao J, Song B, Smet M, Zhang X. Langmuir, 2010, 26:104.
[68] Choi I S, Chi Y S. Angew. Chem. Int. Edit., 2006, 45:4894.
[69] Wang X M, Katz E, Willner I. Electrochem. Commun., 2003, 5:814.
[70] Zheng X, Guo Z Y, Tian D L, Zhang X F, Jiang L. Adv. Mater. Interfaces, 2016, 3:1600461.
[71] Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. Science, 2003, 299:371.
[72] Liu Y, Mu L, Liu B H, Zhang S, Yang P Y, Kong J L. Chem. Commun., 2004, 10:1194.
[73] Mecerreyes D, Alvaro V, Cantero I, Bengoetxea M, Calvo P A, Grande H, Rodriguez J, Pomposo J A. Adv. Mater., 2002, 14:749.
[74] Xu L B, Chen W, Mulchandani A, Yan Y S. Angew. Chem. Int. Edit., 2005, 44:6009.
[75] Riskin M, Basnar B, Chegel V I, Katz E, Willner I, Shi F, Zhang X. J. Am. Chem. Soc., 2006, 128:1253.
[76] Isaksson J, Tengstedt C, Fahlman M, Robinson N, Berggren. Adv. Mater., 2010, 16:316.
[77] Hayes R A, Feenstra B J. Nature, 2003, 425:383.
[78] Krupenkin T N, Taylor J A, Schneider T M, Yang S. Langmuir, 2004, 20:3824.
[79] Zhu L B, Xu J W, Xiu Y H, Sun Y Y, Hess D W, Wong C P. J. Phys. Chem. B, 2006, 110:15945.
[80] Minko S, Müller M, Motornov M, Nitschke M, Grundke K, Stamm M. J. Am. Chem. Soc., 2003, 125:3896.
[81] Julthongpiput D, Lin Y H, Teng J, Zubarev E R, Tsukruk V V. Langmuir, 2003, 19:7832.
[82] Boyes S G, Brittain W J, Weng X, Cheng S Z D. Macromolecules, 2002, 35:4960.
[83] Jennings G K, Brantley E. L. Adv. Mater., 2004, 16:1983.
[84] Zhou Y F, Yi T, Li T C, Zhou Z G, Li F Y, Huang W, Huang C H. Chem. Mater., 2006, 18:2974.
[85] Heng L P, Dong Y Q, Zhai J, Tang B Z, Jiang L. Langmuir, 2008, 24:2157.
[86] Wang Y, Di J C, Wang L, Li X, Wang N, Wang B X, Tian Y, Jiang L, Yu J H. Nat. Commun., 2017, 8:575.
[87] Kota A K, Kwon G, Choi W, Mabry J M, Tuteja A. Nat. Commun., 2012, 3:1025.
[88] Genzer J, Efimenko K. Science, 2000, 290:2130.
[89] Zhang J L, Lu X Y, Huang W H, Han Y C. Macromol. Rapid Comm., 2005, 26:477.
[90] Zhou C L, Li H J, Lin J, Hou K, Yang Z J, Pi P H, Xu S P, Wen X F, Cheng J. J. Phys. Chem. C, 2017, 121:19716.
[91] Yang J, Zhang Z Z, Men X H, Xu X H, Zhu X T, Zhou X Y, Xue Q J. J. Colloid Interf. Sci., 2012, 366:191.
[92] Xia F, Feng L, Wang S T, Sun T L, Song W L, Jiang W H, Jiang L. Adv. Mater., 2006, 18:432.
[93] Guo Y, Xia F, Xu L, Li J, Yang W S, Jiang L. Langmuir, 2010, 26:1024.
[94] Allen A L, Tan K J, Fu H, Batteas J D, Bergbreiter D E. Langmuir, 2012, 28:5237.
[95] Yuan W F, Jiang G Y, Wang J X, Wang G J, Song Y L, Jiang L. Macromolecules, 2006, 39:1300.
[96] Xia F, Ge H, Hou Y, Sun T L, Chen L, Zhang G Z, Jiang L. Adv. Mater., 2007, 19:2520.
[97] Sun W, Zhou S X, You B, Wu L M. J. Mater. Chem. A, 2013, 1:3146.
[98] Jiang Y G, Wan P B, Smet M, Wang Z Q, Zhang X. Adv. Mater., 2008, 20:1972.
[99] Xie G H, Li P, Zhao Z J, Zhu Z P, Kong X Y, Zhang Z, Xiao K, Wen L P, Jiang L. J. Am. Chem. Soc., 2018, 140:4552.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[3] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[4] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[5] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[6] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[7] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[8] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[9] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[10] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[11] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[12] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[13] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[14] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[15] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
阅读次数
全文


摘要

智能响应型超浸润材料