English
新闻公告
More
化学进展 2018, Vol. 30 Issue (9): 1434-1444 DOI: 10.7536/PC171238 前一篇   后一篇

• 综述 •

固体聚合物电解池析氧催化剂

刘亚迪1, 刘锋2, 王诚1*, 赵波2, 王建龙1*   

  1. 1. 清华大学核能与新能源研究院 北京 100084;
    2. 全球能源互联网研究院有限公司 北京 102209
  • 收稿日期:2017-12-26 修回日期:2018-03-26 出版日期:2018-09-15 发布日期:2018-06-28
  • 通讯作者: 王诚, 王建龙 E-mail:wangcheng@tsinghua.edu.cn;wangjl@tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21573122,21773136)、国家重点科研计划(No.2016YFB0101208)和北京市科委项目(No.Z171100002017024)资助

Oxygen Evolution Catalyst of Solid Polymer Electrolysis

Yadi Liu1, Feng Liu2, Cheng Wang1*, Bo Zhao2, Jianlong Wang1*   

  1. 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. Global Energy Interconnection Research Institute Co., Ltd., Beijing 102209, China
  • Received:2017-12-26 Revised:2018-03-26 Online:2018-09-15 Published:2018-06-28
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21573122, 21773136),the National Key Research and Development Program of China (No.2016YFB0101208), and the Beijing Science and Technology Commission Project (No.Z171100002017024).
在固体聚合物电解池电解水制氢过程中,阳极析氧反应是整个电化学反应的速率控制步骤。本文从固体聚合物电解池析氧催化剂的反应机理、催化剂材料以及制备方法等几个方面进行了详细分析。新的检测手段已经开始应用于原子层级的析氧反应机理研究,对析氧反应活性中间产物有了更深刻的认识;通过优化传统的制备工艺,开发新型的制备方法,进一步提高了析氧催化剂的活性或者稳定性。此外,引入高稳定性、低成本、高活性的催化载体,亦可提高催化剂的性能并相应地降低其成本。希望通过本文的综述总结,为今后阳极析氧催化剂的研究指明方向,推动固体聚合物电解池的商业化进程。
In the process of producing hydrogen by water electrolysis with Solid Polymer Electrolyte(SPE), anodic oxygen evolution reaction(OER) is the rate-determining step of the whole electrochemical reaction. The progress of the state-of-the-art for the SPE technology in terms of oxygen evolution reaction(OER) mechanism, catalyst materials and its synthesis method are recommended. It is pointed out that new detection methods can analyze OER reaction mechanism and study the intermediate activity products at atomic level. Optimization of the traditional synthesis method and the development of the new method can improve the catalysts performance. In addition, introducing high stability, low cost and high activity carrier material can also improve the performance of catalyst and reduce its cost accordingly. It is hoped that our paper will give a clear direction for the future research of anode catalysts and promote the commercialization of the SPE electrolysis.
Contents
1 Introduction
2 SPE catalyst
2.1 OER mechanism
2.2 Catalyst materials
2.3 Preparation methods
3 Conclusion and outlook

中图分类号: 

()
[1] Haryanto A, Fernando S, Murali N, Adhikari S. Energy & Fuels, 2005, 19:2098.
[2] 衣宝廉(Yi B L). 化学进展(Progress in Chemistry), 1992, 2:123.
[3] Winter C J. International Journal of Hydrogen Energy, 2009, 34:S1.
[4] Barreto L, Makihira A, Riahi K. International Journal of Hydrogen Energy, 2003, 28:267.
[5] Holladay J D, Hu J, King D L, Wang Y. Catalysis Today, 2009, 139:244.
[6] Ghenciu A F. Current Opinion in Solid State and Materials Science, 2002, 6:389.
[7] Schiller G, Henne R, Mohr P, Peinecke V. International Journal of Hydrogen Energy, 1998, 23:761.
[8] Kreuter W, Hofmannz H. International Journal of Hydrogen Energy, 1998, 23:661.
[9] Takata H, Mizuno N, Nishikawa M, Fukada S, Yoshitake M. International Journal of Hydrogen Energy, 2007, 32:371.
[10] Rasten E, Hagen G, Tunold R. Electrochimica Acta, 2003, 48:3945.
[11] Laguna-Bercero M A. Journal of Power Sources, 2012, 203:4.
[12] Brisse A, Schefold J, Zahid M. International Journal of Hydrogen Energy, 2008, 33:5375.
[13] Ursua A, Gandia L M, Sanchis P. Proceedings of the IEEE, 2012, 100:410.
[14] 张文强(Zhang W Q), 于波(Yu B), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2008, 20:778.
[15] Ni M, Leung M, Leung D. International Journal of Hydrogen Energy, 2008, 33:2337.
[16] Carmo M, Fritz D L, Mergel J, Stolten D. International Journal of Hydrogen Energy, 2013, 38:4901.
[17] Weininger J L, Russell R R. J. Electrochem. Soc.:Electrochemical Science and Technology, 1978, 125:1482.
[18] Mamaca N, Mayousse E, Arrii-Clacens S, Napporn T W, Servat K, Guillet N, Kokoh K B. Applied Catalysis B:Environmental, 2012, 111/112:376.
[19] Kötz R, Stucki S. Electrochimica Acta, 1986, 31:1311.
[20] Rozain C, Mayousse E, Guillet N, Millet P. Applied Catalysis B:Environmental, 2016, 182:123.
[21] Bockris J O M. The Journal of Chemical Physics, 1956, 24:817.
[22] Damjanovic A, Dey A, Bockris J O M. Journal of the Electrochemical Society, 1966, 113:739.
[23] Iwakura C, Hirao K, Tamura H. Electrochim Acta, 1977, 22:329.
[24] Kötz R, H J L, Bruesch P, Stucki S. J. Electroanal. Chem., 1983, 150:209.
[25] Hu J M, Zhang J Q, Cao C N. International Journal of Hydrogen Energy, 2004, 29:791.
[26] Lyons M E, Floquet S. PhysChemChemPhys, 2011, 13:5314.
[27] Ye Z G, Meng H M, Chen D, Yu H Y, Huan Z S, Wang X D, Sun D B. Solid State Sciences, 2008, 10:346.
[28] Salazar-Gastélum M I, Lin S W, Pina-Luis G E, Pérez-Sicairos S, Félix-Navarro R M. Journal of the Electrochemical Society, 2016, 163:G37.
[29] Reier T, Nong H N, Teschner D, Schlögl R, Strasser P. Advanced Energy Materials, 2017, 7:1601275.
[30] Miles M H, Thomason M A. J. Electrochem. Soc.:Electrochemical Science and Technology, 1976, 123:1459.
[31] Forgie R, Bugosh G, Neyerlin K C, Liu Z, Strasser P. Electrochemical and Solid-state Letters, 2010, 13:B36.
[32] Chen G, Delafuente D A, Sarangapani S, Mallouk T E. Catalysis Today, 2001, 67:341.
[33] Beer H B. Brit. GB1147442(A), 1965.
[34] Trasatti S. Electrochimica Acta, 1984, 29:1503.
[35] Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou J J, Wang Z L. Nano Energy, 2017, 37:136.
[36] Siracusano S, Baglio V, Di Blasi A, Briguglio N, Stassi A, Ornelas R, Trifoni E, Antonucci V, Arico A S. International Journal of Hydrogen Energy, 2010, 35:5558.
[37] Cruz J C, Baglio V, Siracusano S, Ornelas R, Ortiz-Frade L, Arriaga L G, Antonucci V, Arico A S. Journal of Nanoparticle Research, 2011, 13:1639.
[38] Lee Y, Suntivich J, May K J, Perry E E, Shao-Horn Y. J. Phys. Chem. Lett., 2012, 3:399.
[39] Takimoto D, Fukuda K, Miyasaka S, Ishida T, Ayato Y, Mochizuki D, Shimizu W, Sugimoto W. Electrocatalysis, 2017, 8:144.
[40] Antolini E. ACS Catalysis, 2014, 4:1426.
[41] Li G F, Yu H M, Song W, Dou M L, Li Y K, Shao Z G, Yi B L. ChemSusChem, 2012, 5:858.
[42] Li G Q, Li S T, Xiao M L, Ge J J, Liu C P, Xing W. Nanoscale, 2017, 9:9291.
[43] Cheng J B, Zhang H M, Chen G B, Zhang Y N. Electrochimica Acta, 2009, 54:6250.
[44] Mattos-Costa F I, Lima-Neto P D, Machado S A S, Avaca L A. Electrochimica Acta, 1998, 44:1515.
[45] De Pauli C P, Trasatti S. Journal of Electroanalytical Chemistry, 1995, 396:161.
[46] Wu X, Tayal J, Basu S, Scott K. International Journal of Hydrogen Energy, 2011, 36:14796.
[47] Li G Q, Yu H M, Yang D L, Chi J, Wang X Y, Sun S C, Shao Z G, Yi B L. Journal of Power Sources, 2016, 325:15.
[48] Morimitsu M, Otogawa R, Matsunaga M. Electrochimica Acta, 2000, 46:401.
[49] Hu J M, Meng H M, Zhang J Q, Cao C N. Corrosion Science, 2002, 44:1655.
[50] Xu L K, Xin Y L, Wang J T. Electrochimica Acta, 2009, 54:1820.
[51] Chen X M, Chen G H. Journal of the Electrochemical Society, 2005, 152:J59.
[52] Santana M H P, De Faria L A, Boodts J F C. Electrochimica Acta, 2004, 49:1925.
[53] Panic V V, Dekanski A B, Mitric M, Milonjic S K, Miskovic-Stankovic V B, Nikolic B Z. PhysChemChemPhys, 2010, 12:7521.
[54] Chen G H, Chen X M, Yue P L. J. Phys. Chem. B, 2002, 106:4364.
[55] Ardizzone S, Bianchi C L, Cappelletti G, Ionita M, Minguzzi A, Rondinini S, Vertova A. Journal of Electroanalytical Chemistry, 2006, 589:160.
[56] Hummelgard C, Karlsson R K B, Backström J, Rahman S M H, Cornell A, Eriksson S, Olin H. Materials Science and Engineering:B, 2013, 178:1515.
[57] Liang Z H, Sun Y F, Fan C M, Hao X G, Sun Y P. Journal of Solution Chemistry, 2009, 38:1119.
[58] Zhang J J, Hu J M, Zhang J Q, Cao C N. International Journal of Hydrogen Energy, 2011, 36:5218.
[59] Cai M, Ruthkosky M S, Merzougui B, Swathirajan S, Balogh M P, Oh S H. Journal of Power Sources, 2006, 160:977.
[60] Kosevi D M, Stopic S, Bulan A, Kintrup J, Weber R, Stevanovi D J, Pani D V, Friedrich B. Advanced Powder Technology, 2017, 28:43.
[61] Lu Z X, Shi Y, Yan C F, Guo C Q, Wang Z D. International Journal of Hydrogen Energy, 2017, 42:3572.
[62] Silva L A D, Alves V A, Castro S C D, Boodts J F C. Colloids and Surfaces, 2000, 170:119.
[63] Rajendran V, Anandan K. Materials Science in Semiconductor Processing, 2012, 15:393.
[64] Liu Q L, Zhang L X, Crozier P A. Applied Catalysis B:Environmental, 2015, 172/173:58.
[65] Hu W, Chen S L, Xia Q H. International Journal of Hydrogen Energy, 2014, 39:6967.
[66] Puthiyapura V K, Mamlouk M, Pasupathi S, Pollet B G, Scott K. Journal of Power Sources, 2014, 269:451.
[67] Vila-Vázquez V, Galván-Valencia M, Ledesma-García J, Arriaga L G, Collins-Martínez V H, Guzmán-Martínez C, Escalante-Garcia I L, Durón-Torres S M. Journal of Applied Electrochemistry, 2015, 45:1175.
[68] Ma L R, Sui S, Zhai Y C. Journal of Power Sources, 2008, 177:470.
[69] Siracusano S, Baglio V, D'urso C, Antonucci V, Aricò A S. Electrochimica Acta, 2009, 54:6292.
[70] Wu X, Scott K. International Journal of Hydrogen Energy, 2011, 36:5806.
[71] Yagi M, Tomita E, Kuwabara T. Journal of Electroanalytical Chemistry, 2005, 579:83.
[72] Adams R, Shriner R L. Platinum Oxide Ⅲ, 1923, 45:2171.
[73] Owe L E, Tsypkin M, Wallwork K S, Haverkamp R G, Sunde S. Electrochimica Acta, 2012, 70:158.
[74] Nguyen T D, Scherer G G, Xu Z J. Electrocatalysis, 2016, 7:420.
[75] Cheng J B, Zhang H M, Ma H P, Zhong H X, Zou Y. International Journal of Hydrogen Energy, 2009, 34:6609.
[76] Kameyama K, Shohji S, Onoue S, Nishimura K, Yahikozawa K, Takasu Y. J. Electrochem. Soc., 1993, 140:1034.
[77] Skulimowska A, Dupont M, Zaton M, Sunde S, Merlo L, Jones D J, Roziere J. International Journal of Hydrogen Energy, 2014, 39:6307.
[78] Kim D H, Park S H, Choi J, Yi M H, Kim H S. Materials Science and Engineering:B, 2015, 201:29.
[79] Ferro S, Rosestolato D, Martínez-Huitle C A, Battisti A D. Electrochimica Acta, 2014, 148:85.
[80] Slavcheva E, Radev I, Bliznakov S, Topalov G, Andreev P, Budevski E. Electrochimica Acta, 2007, 52:3889.
[81] Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J P, Savan A, Shrestha B R, Merzlikin S, Breitbach B, Ludwig A, Mayrhofer K J J. Catalysis Today, 2016, 262:170.
[82] 李静(Li J), 李利军(Li L J), 高艳芳(Gao Y F), 刘进荣(Liu J R). 材料导报(Materis Review), 2011, 25:5.
[83] 李磊(Li L), 刘卫(Liu W), 谢雅典(Xie Y D). 合成化学(Chinese Journal of Synthetic Chemistry), 2017, 25:87.
[84] 陈彰旭(Chen Z X), 郑炳云(Zheng B Y), 李先学(Li X X), 傅明连(Fu M L), 谢署光(Xie S G), 邓超(Deng C), 胡衍华(Hu Y H). 化工进展(Chemical Industry and Engineering Progress), 2010, 29:94.
[85] Satishkumar B C, Govindaraj A, Nath M, Rao C N R. Journal of Materials Chemistry, 2000, 10:2115.
[86] Santala E, Hamalainen J, Lu J, Leskela M, Ritala M. Nanoscience and Nanotechnology Letters, 2009, 1:218.
[87] El Sawy E N, Birss V I. Journal of Materials Chemistry, 2009, 19:8244.
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[4] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[7] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[8] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[9] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[10] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[11] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[12] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[13] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[14] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[15] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
阅读次数
全文


摘要

固体聚合物电解池析氧催化剂