English
新闻公告
More
化学进展 2018, Vol. 30 Issue (7): 958-975 DOI: 10.7536/PC171117 前一篇   后一篇

• 综述 •

刺激响应性电纺纳米纤维

郑勰1, 周一凡1, 陈思远1, 刘晓云2, 查刘生1*   

  1. 1. 东华大学纤维材料改性国家重点实验室 上海 201620;
    2. 东华大学分析测试中心 上海 201620
  • 收稿日期:2017-11-17 修回日期:2017-12-01 出版日期:2018-07-15 发布日期:2018-04-09
  • 通讯作者: 查刘生 E-mail:lszha@dhu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51373030)和国家自然科学青年基金项目(No.51503033)资助

Stimuli-Responsive Electrospun Nanofibers

Xie Zheng1, Yifan Zhou1, Siyuan Chen1, Xiaoyun Liu2, Liusheng Zha1*   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China;
    2. Analysis and Measurement Center, Donghua University, Shanghai 201620, China
  • Received:2017-11-17 Revised:2017-12-01 Online:2018-07-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 51373030) and the National Natural Science Youth Foundation of China(No. 51503033).
采用静电纺丝法制备的、平均直径通常小于1000 nm的刺激响应性电纺纳米纤维是一种可响应外界刺激而发生物理化学性能改变的智能聚合物纤维,由它形成的纤维膜具有比表面积大、孔隙率高、对外界刺激产生响应速度快等优点,因此在诸多领域显示出诱人的应用前景,是近年来受到国内外高度关注的一种智能纳米材料。本文首先归纳了制备刺激响应性电纺纳米纤维的三种方法。然后从成纤聚合物的合成或选用、纺丝液配制、静电纺丝和后处理4个方面讨论了制备过程中影响纳米纤维尺寸、结构和刺激响应性等性能的主要因素。接下来重点述评了除电场外的其他各种刺激响应性电纺纳米纤维的设计及其构建研究进展,另外介绍了这些刺激响应性电纺纳米纤维膜在分离与纯化、药物控制释放、伤口敷料、细胞培养、传感器与检测等方面的应用研究情况。最后,就它们的未来研究方向进行了展望。
Stimuli-responsive electrospun nanofibers of less than 1000 nm in diameter are a kind of smart polymer fibers prepared by electrospinning process, which can respond to external stimuli with the change of their physicochemical properties. The nanofibrous membranes consisting of the stimuli-responsive electrospun nanofibers have the advantages of large specific surface area, high porosity and fast stimuli-responsiveness, have attracted worldwide attention in recent years due to their fascinating application prospect within many fields. In this paper, three methods for preparing stimuli-responsive electrospun nanofibers are firstly summarized. Then, the main factors influencing the size, structure and stimuli-responsive property of the nanofibers are discussed from synthesis or selection of the fiber-forming polymers, preparation of spinning solution, electrospinning and post-treatment. Subsequently, the research progress on the designs and fabrications of all kinds of stimuli-responsive electrospun nanofibers except electric field responsive nanofiber is reviewed, and their applications in separation and purification, drug controlled release, wound dressing, cell culture, sensor and detection are introduced. Finally, their future research direction is briefly commented.
Contents
1 Introduction
2 Preparation methods of stimuli-responsive electrospun nanofibers
2.1 Synthesis and choice of fiber forming polymer
2.2 Preparation of spinning solution
2.3 Electrospinning process and choice of its conditions
2.4 Post-treatment
3 Design and fabrication of stimuli-responsive electrospun nanofibers
3.1 Temperature responsive electrospun nanofibers
3.2 pH responsive electrospun nanofibers
3.3 Light responsive electrospun nanofibers
3.4 Magnetic field responsive electrospun nanofibers
3.5 Molecule recognition responsive electrospun nanofibers
3.6 Multiple stimuli responsive electrospun nanofibers
4 Applications of stimuli-responsive electrospun nanofibers
4.1 Separation and purification
4.2 Controlled drug release
4.3 Wound dressing
4.4 Cell culture
4.5 Sensor and detection
5 Conclusion and outlook

中图分类号: 

()
[1] Huang C, Soenen S J, Rejman J, Lucas B, Braeckmans K, Demeester J, De Smedt S C. Chem. Soc. Rev., 2011, 40(5):2417.
[2] Cao S, Hu B, Liu H. Polym. Int., 2009, 58(5):545.
[3] Stuart M A, Huck W T, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9(2):101.
[4] Wu J, Wang N, Zhao Y, Jiang L. J. Mater. Chem. A, 2013, 1(25):7290.
[5] Kenry, Lim C T. Prog. Polym. Sci., 2017, 70:1.
[6] Gil E, Hudson S. Prog. Polym. Sci., 2004, 29(12):1173.
[7] Dai S, Ravi P, Tam K C. Soft Matter, 2008, 4(3):435.
[8] Manesh K M, Santhosh P, Gopalan A, Lee K P. Anal. Biochem., 2007, 360(2):189.
[9] Tiwari A, Terada D, Yoshikawa C, Kobayashi H. Talanta, 2010, 82(5):1725.
[10] Chen L N, Chiu Y C, Hung J J, Kuo C C, Chen W C. Macromol. Chem. Phys., 2014, 215(3):286.
[11] Okuzaki H, Kobayashi K, Yan H. Macromolecules, 2009, 42(16):5916.
[12] Guo H Y, Jeong J H, Kim J C. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2016, 495:1.
[13] Sill T J, von Recum H A. Biomaterials, 2008, 29(13):1989.
[14] Wang L G, Topham P D, Mykhaylyk O O, Howse J R, Bras W, Jones R A L, Ryan A J. Adv. Mater., 2007, 19(21):3544.
[15] Saithongdee A, Varanusupakul P, Imyim A. Green Chemistry Letters and Reviews, 2014, 7(3):220.
[16] Wang L Y, Chen S Y, Zhou J F, Yang J M, Chen X, Ji Y L, Liu X Y, Zha L S. Macromol. Mater. Eng., 2017, 302(10):1700181.
[17] Lu W, Sun J, Jiang X. J. Mater. Chem. B, 2014, 2(17):2369.
[18] Xu F, Sheardown H, Hoare T. Chem. Commun., 2016, 52(7):1451.
[19] Chen S Y, Liu X Y, Zhou J F, Zha L S. J. Appl. Polym. Sci., 2017, 134(41):45375.
[20] Zheng X, Zhou Y, Zhou J, Zha L. ICAFPM, 2017, 230
[21] Agarwal V, Ho D, Ho D, Galabura Y, Yasin F, Gong P, Ye W, Singh R, Munshi A, Saunders M, Woodward R C, St Pierre T, Wood F M, Fear M, Lorenser D, Sampson D D, Zdyrko B, Luzinov I, Smith N M, Iyer K S. ACS Appl. Mater. Interfaces, 2016, 8(7):4934.
[22] Fu G D, Xu L Q, Yao F, Zhang K, Wang X F, Zhu M F, Nie S Z. ACS Appl. Mater. Interfaces, 2009, 1(2):239.
[23] Yang H, Zhang Q, Lin B, Fu G, Zhang X, Guo L. J. Polym. Sci. Part A:Polym. Chem., 2012, 50(20):4182.
[24] Yun J, Im J S, Lee Y S, Kim H I. Eur. Polym. J., 2011, 47(10):1893.
[25] Rockwood D N, Chase D B, Akins R E, Jr., Rabolt J F. Polymer, 2008, 49(18):4025.
[26] Wang N, Zhao Y, Jiang L. Macromol. Rapid Commun., 2008, 29(6):485.
[27] Gu S Y, Wang Z M, Li J B, Ren J. Macromol. Mater. Eng., 2010, 295(1):32.
[28] Nykänen A, Hirvonen S P, Tenhu H, Mezzenga R, Ruokolainen J. Polym. Int., 2014, 63(1):37.
[29] Wang Y F, Lai C L, Hu H W, Liu Y, Fei B, Xin J H. RSC Adv., 2015, 5(63):51078.
[30] Chen M L, Dong M D, Havelund R, Regina V R, Meyer R L, Besenbacher F, Kingshott P. Chem. Mater., 2010, 22(14):4214.
[31] Konosu Y, Matsumoto H, Tsuboi K, Minagawa M, Tanioka A. Langmuir, 2011, 27(24):14716.
[32] Muthiah P, Boyle T J, Sigmund W. Macromol. Mater. Eng., 2013, 298(12):1251.
[33] Marques S C S, Soares P I P, Echeverria C, Godinho M H, Borges J P. RSC Adv., 2016, 6(80):76370.
[34] González E, Frey M W. Polymer, 2017, 108:154.
[35] Jin X, Hsieh Y L. Polymer, 2005, 46(14):5149.
[36] Jahan K I, Goponenko A, Dzenis Y. Macromol. Symposia, 2016, 365(1):118.
[37] Zhang C, Li Y, Wang W, Zhan N, Xiao N, Wang S, Li Y, Yang Q. Eur. Polym. J., 2011, 47(12):2228.
[38] Van der Schueren L, De Meyer T, Steyaert I, Ceylan O, Hemelsoet K, Van Speybroeck V, De Clerck K. Carbohydr. Polym., 2013, 91(1):284.
[39] Qi M, Li X, Yang Y, Zhou S. Eur. J. Pharm. Biopharm., 2008, 70(2):445.
[40] Cui W, Qi M, Li X, Huang S, Zhou S, Weng J. Int. J. Pharm., 2008, 361(1/2):47.
[41] DiBenedetto F, Mele E, Camposeo A, Athanassiou A, Cingolani R, Pisignano D. Adv. Mater., 2008, 20(2):314.
[42] Chen M, Besenbacher F. ACS Nano, 2011, 5(2):1549.
[43] Chen M, Nielsen S R, Uyar T, Zhang S, Zafar A, Dong M, Besenbacher F. J. Mater. Chem. C, 2013, 1(4):850.
[44] Geoffrey A Pietersz X W, May L Y, Bock L K. Nanomedicine, 2017.
[45] Ramanan V V, Hribar K C, Katz J S, Burdick J A. Nanotechnology, 2011, 22(49):494009.
[46] Zhang C L, Cao F H, Wang J L, Yu Z L, Ge J, Lu Y, Wang Z H, Yu S H. ACS Appl. Mater. Interfaces, 2017, 9(29):24857.
[47] Kriha O, Becker M, Lehmann M, Kriha D, Krieglstein J, Yosef M, Schlecht S, Wehrspohn R B, Wendorff J H, Greiner A. Adv. Mater., 2007, 19(18):2483.
[48] Jedlovszky-Hajdu A, Molnar K, Nagy P M, Sinko K, Zrinyi M. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 503:79.
[49] Ghavami-Nejad A, Sasikala A R K, Unnithan A R, Thomas R G, Jeong Y Y, Vatankhah Varnoosfaderani M, Stadler F J, Park C H, Kim C S. Adv. Func. Mater., 2015, 25(19):2867.
[50] Mortimer C J, Wright C J. J.Biotechnol., 2017, 12(7):1600693.
[51] Huang S R, Lin K F, Lee C F, Chiu W Y. J. Polym. Sci. Part A:Polym. Chem., 2014, 52(6):848.
[52] Xiao S, Shen M, Guo R, Wang S, Shi X. J. Phys. Chem. C, 2009, 113:18062.
[53] Burke L, Mortimer C J, Curtis D J, Lewis A R, Williams R, Hawkins K, Maffeis T G, Wright C J. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 70(Pt 1):512.
[54] Faridi-Majidi R, Sharifi-Sanjani N. J. Appl. Polym. Sci., 2007, 105(3):1351.
[55] Li H Y, Chang C M, Hsu K Y, Liu Y L. J. Mater. Chem., 2012, 22(11):4855.
[56] Gupta P, Asmatulu R, Claus R, Wilkes G. J. Appl. Polym. Sci., 2006, 100(6):4935.
[57] Sasikala A R, Unnithan A R, Yun Y H, Park C H, Kim C S. Acta. Biomater., 2016, 31:122.
[58] Kim Y J, Ebara M, Aoyagi T. Adv. Func. Mater., 2013, 23(46):5753.
[59] Wang B, Zheng H, Chang M W, Ahmad Z, Li J S. Colloids and Surfaces B:Biointerfaces, 2016, 145:757.
[60] Wang X, Ding B, Yu J, Wang M, Pan F. Nanotechnology, 2010, 21(5):055502.
[61] Li P, Li Y, Ying B, Yang M. Sensors and Actuators B:Chemical, 2009, 141(2):390.
[62] Bryan D. Vogt C L S, Lee H J, Lin E K, Wu W L. Langmuir, 2004, 20:1453.
[63] Aussawasathien D, Dong J H, Dai L. Synthetic Metals, 2005, 154(1/3):37.
[64] Ding B, Wang M, Yu J, Sun G. Sensors, 2009, 9(3):1609.
[65] Che H, Huo M, Peng L, Fang T, Liu N, Feng L, Wei Y, Yuan J. Angew. Chem. Int. Ed. Engl., 2015, 54(31):8934.
[66] Hu M, Kang W, Cheng B, Li Z, Zhao Y, Li L. Microchimica Acta, 2016, 183(5):1713.
[67] Wolf C, Tscherner M, Köstler S. Sensors and Actuators B:Chemical, 2015, 209:1064.
[68] Hoang A T, Cho Y B, Park J S, Yang Y, Kim Y S. Sensors and Actuators B:Chemical, 2016, 230:250.
[69] Zhang Y, He X, Li J, Miao Z, Huang F. Sensors and Actuators B:Chemical, 2008, 132(1):67.
[70] Yoshida H, Klinkhammer K, Matsusaki M, Moller M, Klee D, Akashi M. Macromol. Biosci., 2009, 9(6):568.
[71] Han D, Yu X, Chai Q, Ayres N, Steckl A J. ACS Appl. Mater. Interfaces, 2017, 9(13):11858.
[72] Lin X L, Tang D Y, Yu Z Q, Feng Q. J. Mater. Chem. B, 2014, 2(6):651.
[73] 张青松(Zhang Q S), 邓伶俐(Deing L L), 陈冰(Chen B), 穆齐峰(Mu Q F), 储智男(Chu Z N), 沈红豆(Shen H D), 杨超(Yang C), 刘鹏飞(Liu P F), 陈莉(Chen L). CN 106319759A.
[74] Yuan H, Li B, Liang K, Lou X, Zhang Y. Biomed. Mater., 2014, 9(5):055001.
[75] Huang C H, Kuo T Y, Lee C F, Chu C H, Hsieh H J, Chiu W Y. Cellulose, 2014, 21(4):2497.
[76] Zhu Y, Feng L, Xia F, Zhai J, Wan M, Jiang L. Macromol. Rapid Commun., 2007, 28(10):1135.
[77] Liu H, Zhen M, Wu R. Macromol. Chem. Phys., 2007, 208(8):874.
[78] Li J J, Zhou Y N, Luo Z H. ACS Appl. Mater. Interfaces, 2015, 7(35):19643.
[79] Wang Y, Lai C, Wang X, Liu Y, Hu H, Guo Y, Ma K, Fei B, Xin J H. ACS Appl. Mater. Interfaces, 2016, 8(38):25612.
[80] Wu J, Wang N, Zhao Y, Jiang L. Nanoscale, 2015, 7(6):2625.
[81] Nagase K, Sakurada Y, Onizuka S, Iwata T, Yamato M, Takeda N, Okano T. Acta Biomater., 2017.
[82] Song F, Wang X L, Wang Y Z. Eur. Polym. J., 2011, 47(10):1885.
[83] Kim Y J, Ebara M, Aoyagi T. Angew. Chem. Int. Ed. Engl., 2012, 51(42):10537.
[84] Shi Q, Hou J, Zhao C, Xin Z, Jin J, Li C, Wong S C, Yin J. Nanoscale, 2016, 8(4):2022.
[85] Wang Y, Kotsuchibashi Y, Uto K, Ebara M, Aoyagi T, Liu Y, Narain R. Biomater. Sci., 2015, 3(1):152.
[86] Mohtaram N K, Montgomery A, Willerth S M. Biomed. Mater., 2013, 8(2):022001.
[87] Chen Z, Chen Z, Zhang A, Hu J, Wang X, Yang Z. Biomater. Sci., 2016, 4(6):922.
[88] Weng L, Xie J. Current Pharm. Design, 2015, 21(15):1944.
[89] Lin X, Tang D, Cui W, Cheng Y. J Biomed. Mater. Res. A, 2012, 100(7):1839.
[90] Lin X L, Tang D Y, Gu S, Du H F, Jiang E Y. New J. Chem., 2013, 37(8):2433.
[91] Kim Y J, Ebara M, Aoyagi T. Sci. Technol. Adv. Mater., 2016, 13(6):064203.
[92] Elashnikov R, Slepicka P, Rimpelova S, Ulbrich P, Svorcik V, Lyutakov O. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 72:293.
[93] Lv Y, Pan Q X, Bligh S W A, Li H Y, Wu H L, Sang Q Q, Zhu L M. J. Pharm. Sci., 2017:1258.
[94] Hua D, Liu Z, Wang F, Gao B, Chen F, Zhang Q, Xiong R, Han J, Samal S K, De Smedt S C, Huang C. Carbohydr. Polym., 2016, 151:1240.
[95] Li W, Tan X N, Luo T, Huang X, Wang Q, Yang Y J, Wang M J, Liu L F. RSC Adv., 2016, 6(48):42589.
[96] Zhao J, Cui W. Nanosci. Nanotechnol. Lett., 2014, 6(4):339.
[97] Tran T, Hernandez M, Patel D, Wu J. Adv. Mater. Sci. Eng., 2015, 2015:1.
[98] Demirci S, Celebioglu A, Aytac Z, Uyar T. Polym. Chem., 2014, 5(6):2050.
[99] Chen C K, Huang S C. Mol. Pharm., 2016, 13(12):4152.
[100] Liu M, Duan X P, Li Y M, Yang D P, Long Y Z. Mater. Sci. Eng. C Mater. Biol. Appl., 2017, 76:1413.
[101] Mele E. J. Mater. Chem. B, 2016, 4(28):4801.
[102] Tan L, Hu J, Huang H, Han J, Hu H. Int. J. Biol. Macromol., 2015, 79:469.
[103] Yuan Z, Zhao J, Zhu W, Yang Z, Li B, Yang H, Zheng Q, Cui W. Biomater. Sci., 2014, 2(4):502.
[104] Dargaville T R, Farrugia B L, Broadbent J A, Pace S, Upton Z, Voelcker N H. Biosens. Bioelectron., 2013, 41:30.
[105] Cicotte K N, Reed J A, Nguyen P A H, De Lora J A, Hedberg-Dirk E L, Canavan H E. Biointerphases, 2017, 12(2):02C417.
[106] Allen A C B, Barone E, Crosby C O K, Suggs L J, Zoldan J. Biomater. Sci., 2017, 5(8):1661.
[107] Singh R K, Patel K D, Lee J H, Lee E J, Kim J H, Kim T H, Kim H W. PLoS One, 2014, 9(4):e91584.
[108] Shintaro Nomura T T Y. Matrix Biology, 2000, 19:91.
[109] Lai K, Jiang W, Tang J Z, Wu Y, He B, Wang G, Gu Z. RSC Adv., 2012, 2(33):13007.
[110] Meng J, Xiao B, Zhang Y, Liu J, Xue H, Lei J, Kong H, Huang Y, Jin Z, Gu N, Xu H. Sci. Rep., 2013, 3:2655.
[111] Kuo C C, Tung Y C, Chen W C. Macromol. Rapid Commun., 2010, 31(1):65.
[112] Ding B, Yamazaki M, Shiratori S. Sensors and Actuators B:Chemical, 2005, 106(1):477.
[113] Balaconis M K, Luo Y, Clark H A. Analyst, 2015, 140(3):716.
[114] Xue R, Nelson M T, Teixeira S A, Viapiano M S, Lannutti J J. Biomaterials, 2016, 76:208.
[115] 查刘生(Zha L S), 王丽英(Wang L Y). CN 104928851A.
[116] 查刘生(Zha L S), 陈思远(Chen S Y), 董旭(Dong X). CN 104911819A.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[3] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[6] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[7] 马亮, 时学娟, 张笑笑, 李莉莉. 可控核/壳结构聚合物电纺纤维的制备与应用[J]. 化学进展, 2019, 31(9): 1213-1220.
[8] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[9] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[10] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.
[11] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[12] 付开乔, 张光彦, 蒋序林. 聚天冬酰胺衍生物药物/基因载体的合成和应用[J]. 化学进展, 2016, 28(8): 1196-1206.
[13] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[14] 王奕寒, 脇坂港. 纳米纤维制备工艺进展及其对壳聚糖的适用性分析[J]. 化学进展, 2014, 26(11): 1821-1831.
[15] 龚雪, 杨金龙, 姜玉林, 木士春. 静电纺丝技术在锂离子动力电池中的应用[J]. 化学进展, 2014, 26(01): 41-47.
阅读次数
全文


摘要

刺激响应性电纺纳米纤维